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Abstract

The paper presents a Bayesian model for
text summarization, which explicitly en-
codes and exploits information on how hu-
man judgments are distributed over the
text. Comparison is made against non
Bayesian summarizers, using test data
from Japanese news texts. It is found that
the Bayesian approach generally lever-
ages performance of a summarizer, at
times giving it a significant lead over non-
Bayesian models.

1 Introduction

Consider figure 1. What is shown there is the pro-
portion of the times that sentences at particular lo-
cations are judged as relevant to summarization, or
worthy of inclusion in a summary. Each panel shows
judgment results on 25 Japanese texts of a particular
genre; columns (G1K3), editorials (G2K3) and news
stories (G3K3). All the documents are from a sin-
gle Japanese news paper, and judgments are elicited
from some 100 undergraduate students. While more
will be given on the details of the data later (Sec-
tion 3.2), we can safely ignore them here.

Each panel has the horizontal axis representing lo-
cation or order of sentence in a document, and the
vertical axis the proportion of the times sentences at
particular locations are picked as relevant to summa-
rization. Thus in G1K3, we see that the first sentence
(to appear in a document) gets voted for about 12%
of the time, while the 26th sentence is voted for less
than 2% of the time.

Curiously enough, each of the panels exhibits a
distinct pattern in the way votes are spread across

a document: G1K3 has the distribution of votes
(DOV) with sharp peaks around 1 and 14; in G2K3,
the distribution is peaked around 1, with a small
bump around 19; in G3K3, the distribution is sharply
skewed to the left, indicating that the majority of
votes went to the initial section of a document. What
is interesting about the DOV is that we could take
it as indicating a collective preference for what to
extract for a summary. A question is then, can we
somehow exploit the DOV in summarization? To
our knowledge, no prior work seems to exist that
addresses the question. The paper discusses how
we could do this under a Bayesian modeling frame-
work, where we explicitly represent and make use
of the DOV by way of Dirichlet posterior (Congdon,
2003).1

2 Bayesian Model of Summaries

Since the business of extractive summarization, such
as one we are concerned with here, is about ranking
sentences according to how useful/important they
are as part of summary, we will consider here a par-
ticular ranking scheme based on the probability of a
sentence being part of summary under a given DOV,
i.e.,

P (y|vvv), (1)

where y denotes a given sentence, andvvv =
(v1, . . . , vn) stands for a DOV, an array of observed
vote counts for sentences in the text;v1 refers to the
count of votes for a sentence at the text initial posi-
tion,v2 to that for a sentence occurring at the second
place, etc.

Thus given a four sentence long text, if we have
three people in favor of a lead sentence, two in favor

1See Yu et al. (2004) and Cowans (2004) for its use in IR.
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Figure 1: Genre-by-genre vote distribution

of the second, one for the third, and none for the
fourth, then we would havevvv = (3, 2, 1, 0).

Now suppose that each sentenceyi (i.e., a sen-
tence at thei-th place in the order of appearance) is
associated with what we might call a prior prefer-
ence factorθi, representing how much a sentence at
a particular position is favored as part of a summary
in general. Then the probability thatyi finds itself in
a summary is given as:

φ(yi|θi)P (θi), (2)

where φ denotes some likelihood function, and
P (θi) a prior probability ofθi.

Since the DOV is something we could actually
observe aboutθi, we might as well coupleθi with
vvv by making a probability ofθi conditioned onvvv.
Formally, this would be written as:

φ(yi|θi)P (θi|vvv). (3)

The problem, however, is that we know nothing
about what eachθi looks like, except that it should
somehow be informed byvvv. A typical Bayesian so-
lution to this is to ‘erase’θi by marginalizing (sum-
ming) over it, which brings us to this:

P (yi|vvv) =
∫
φ(yi|θi)P (θi |vvv) dθi. (4)

Note that equation 4 no longer talks about the proba-
bility of yi under a particularθi; rather it talks about
the expected probability foryi with respect to a pref-
erence factor dictated byvvv. All we need to know

vvv //
ÂÂ

θθθ // yi

Figure 2: A graphical view

aboutP (θi|vvv) to compute the expectation isvvv and a
probability distributionP , and notθi’s, anymore.

We know something aboutvvv, and this would
leave usP . So what is it? In principle it could
be any probability distribution. However largely
for the sake of technical convenience, we assume
it is one component of a multinomial distribution
known as the Dirichlet distribution. In particular,
we talk about Dirichlet(θθθ|vvv), namely a Dirichlet
posterior ofθ, given observationsvvv, whereθθθ =
(θ1, . . . , θi, . . . , θn), and

∑n
i θi = 1 (θi > 0). (Re-

markably, ifP (θ) is a Dirichlet, so isP (θ|vvv).) θθθ
here represents a vector of preference factors forn
sentences — which constitute the text.2

Accordingly, equation 4 could be rewritten as:

P (yi|vvv) =
∫
φ(yi|θθθ)P (θθθ |vvv) dθθθ. (5)

An interesting way to look at the model is by way
of a graphical model (GM), which gives some in-
tuitive idea of what the model looks like. In a GM
perspective, our model is represented as a simple tri-
partite structure (figure 2), in which each node corre-
sponds to a variable (parameter), and arcs represent

2Since texts generally vary in length, we may setn to a suf-
ficiently large number so that none of texts of interest may ex-
ceed it in length. For texts shorter thann, we simply add empty
sentences to make them as long asn.
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dependencies among them.x→ y reads ‘y depends
on x.’ An arc linkage betweenvvv andyi is meant to
represent marginalization overθθθ.

Moreover, we will make use of a scale parame-
ter λ ≥ 1 to have some control over the shape
of the distribution, so we will be working with
Dirichlet(θ|λvvv) rather than Dirichlet(θ|vvv). Intu-
itively, we might takeλ as representing a degree of
confidence we have in a set of empirical observa-
tions we callvvv, as increasing the value ofλ has the
effect of reducing variance over eachθi in θ.

The expectation and variance of Dirichlet(θθθ|vvv) are
given as follows.3

E[θi] =
vi
v0

(6)

V ar[θi] =
vi(v0 − vi)
v2

0(v0 + 1)
, (7)

wherev0 =
∑n

i vi. Therefore the variance of a
scaled Dirichlet is:

V ar[θi|λvvv] =
vi(v0 − vi)
v2

0(λv0 + 1)
. (8)

See howλ is stuck in the denominator. Another ob-
vious fact about the scaling is that it does not affect
the expectation, which remains the same.

To get a feel for the significance ofλ, con-
sider figure 3; the left panel shows a histogram
of 50,000 variates ofp1 randomly drawn from
Dirichlet(p1, p2|λc1, λc2), with λ = 1, and bothc1

andc2 set to 1. The graph shows only thep1 part
but things are no different forp2. (Thex-dimension
represents a particular valuep1 takes (which ranges
between 0 and 1) and they-dimension records the
number of the timesp1 takes that value.) We see that
points are spread rather evenly over the probability
space. Now the right panel shows what happens if
you increaseλ by a factor of 1,000 (which will give
youP (p1, p2|1000, 1000)); points take a bell shaped
form, concentrating in a small region around the ex-
pectation ofp1. In the experiments section, we will
return to the issue ofλ and discuss how it affects
performance of summarization.

Let us turn to the question of how to find a solu-
tion to the integral in equation 5. We will be con-
cerned here with two standard approaches to the is-
sue: one is based on MAP (maximum a posteriori)

3http://www.cis.hut.fi/ahonkela/dippa/dippa.html

and another on numerical integration. We start off
with a MAP based approach known as Bayesian In-
formation Criterion or BIC.

For a given modelm, BIC seeks an analytical ap-
proximation for equation 4, which looks like the fol-
lowing:

lnP (yi|m) = lnφ(yi|θ̂θθ,m)− k

2
lnN, (9)

wherek denotes the number of free parameters in
m, andN that of observations.̂θθθ is a MAP estimate
of θθθ underm, which isE[θθθ]. It is interesting to note
that BIC makes no reference to prior. Also worthy of
note is that a minus of BIC equals MDL (Minimum
Description Length).

Alternatively, one might take a more straightfor-
ward (and fully Bayesian) approach known as the
Monte Carlo integration method (MacKay, 1998)
(MC, hereafter) where the integral is approximated
by:

P (yi|vvv) ≈ 1
n

n∑

j=1

φ(yi|x(j)), (10)

where we draw each samplex(j) randomly from the
distributionP (θθθ|vvv), andn is the number ofx(i)’s
so collected. Note that MC gives an expectation of
P (yi|vvv) with respect toP (θθθ|vvv).

Furthermore,φ could be any probabilistic func-
tion. Indeed any discriminative classifier (such as
C4.5) will do as long as it generates some kind of
probability. Givenφ, what remains to do is essen-
tially training it on samples bootstrapped (i.e., re-
sampled) from the training data based onθθθ — which
we draw from Dirichlet(θθθ|vvv).4 To be more spe-
cific, suppose that we have a four sentence long text
and an array of probabilitiesθθθ = (0.4, 0.3, 0.2, 0.1)
drawn from a Dirichlet distribution: which is to say,
we have a preference factor of 0.4 for the lead sen-
tence, 0.3 for the second sentence, etc. Then we re-
sample with replacement lead sentences from train-
ing data with the probability of 0.4, the second with
the probability of 0.3, and so forth. Obviously, a

4It is fairly straightforward to sample from a Dirichlet pos-
terior by resorting to a gamma distribution, which is what is
happening here. In case one is working with a distribution it is
hard to sample from, one would usually rely on Markov chain
Monte Carlo (MCMC) or variational methods to do the job.
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Figure 3: Histograms of random draws from Dirichlet(p1, p2|λc1, λc2) with λ = 1 (left panel), andλ =
1000 (right panel).

high preference factor causes the associated sen-
tence to be chosen more often than those with a low
preference.

Thus given a textT = (a, b, c, d) with θθθ =
(0.4, 0.3, 0.2, 0.1), we could end up with a data set
dominated by a few sentence types, such asT ′ =
(a, a, a, b), which we proceed to train a classifier on
in place ofT . Intuitively, this amounts to induc-
ing the classifier to attend to or focus on a partic-
ular region or area of a text, and dismiss the rest.
Note an interesting parallel to boosting (Freund and
Schapire, 1996) and the alternating decision tree
(Freund and Mason, 1999).

In MC, for eachθθθ(k) drawn from Dirichlet(θθθ|vvv),
we resample sentences from the training data using
probabilities specified byθθθ(k), use them for train-
ing a classifier, and run it on a test documentd to
find, for each sentence ind, its probability of being
a ‘pick’ (summary-worthy) sentence,i.e.,P (yi|θθθ(k)),
which we average acrossθθθ’s. In experiments later
described, we apply the procedure for 20,000 runs
(meaning we run a classifier on each of 20,000θθθ’s
we draw), and average over them to find an estimate
for P (yi|vvv).

As for BIC, we generally operate along the lines
of MC, except that we bootstrap sentences using
only E[θθθ], and the model complexity term, namely,
−k

2 lnN is dropped as it has no effect on ranking
sentences. As with MC, we train a classifier on the
bootstrapped samples and run it on a test document.
Though we work with a set of fixed parameters, a
bootstrapping based on them still fluctuates, produc-

ing a slightly different set of samples each time we
run the operation. To get a reasonable convergence
in experiments, we took the procedure to 5,000 iter-
ations and averaged over the results.

Either with BIC or with MC, building a summa-
rizer on it is a fairly straightforward matter. Given
a documentd and a compression rater, what a
summarizer would do is simply rank sentences ind
based onP (yi|vvv) and pick anr portion of highest
ranking sentences.

3 Working with Bayesian Summarist

3.1 C4.5

In what follows, we will look at whether and how the
Bayesian approach, when applied for the C4.5 deci-
sion tree learner (Quinlan, 1993), leverages its per-
formance on real world data. This means our model
now operates either by

P (yi|vvv) ≈ 1
n

n∑

j=1

φc4.5(yi|x(j)), (11)

or by

lnP (yi|m) = lnφc4.5(yi|θ̂θθ,m)− k

2
lnN, (12)

with the likelihood functionφ filled out by C4.5.
Moreover, we compare two versions of the classifier;
one with BIC/MC and one without. We used Weka
implementations of the algorithm (with default set-
tings) in experiments described below (Witten and
Frank, 2000).
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While C4.5 here is configured to work in a bi-
nary (positive/negative) classification scheme, we
run it in a ‘distributional’ mode, and use a particular
class membership probability it produces, namely,
the probability of a sentence being positive, i.e., a
pick (summary-worthy) sentence, instead of a cate-
gory label.

Attributes for C4.5 are broadly intended to repre-
sent some aspects of a sentence in a document, an
object of interest here. Thus for each sentenceψ, its
encoding involves reference to the following set of
attributes or features. ‘LocSen’ gives a normalized
location ofψ in the text, i.e., a normalized distance
from the top of the text; likewise, ‘LocPar’ gives a
normalized location of the paragraph in whichψ oc-
curs, and ‘LocWithinPar’ records its normalized lo-
cation within a paragraph. Also included are a few
length-related features such as the length of text and
sentence. Furthermore we brought in some language
specific feature which we call ’EndCue.’ It records
the morphology of a linguistic element that endsψ,
such as inflection, part of speech, etc.

In addition, we make use of the weight feature
(‘Weight’) for a record on the importance ofψ based
on tf.idf. Let ψ = w1, . . . , wn, for some wordwi.
Then the weightW (ψ) is given as:

W (ψ) =
∑
w

(1 + log(tf(w))) · log(N/df(w)).

Here ‘tf(w)’ denotes the frequency of wordw in a
given document, ‘df(w)’ denotes the ’document fre-
quency’ ofw, or the number of documents which
contain an occurrence ofw. N represents the total
number of documents.5

Also among the features used here is ‘Pos,’ a fea-
ture intended to record the position or textual order
of ψ, given by how many sentences away it occurs
from the top of text, starting with 0.

While we do believe that the attributes discussed
above have a lot to do with the likelihood that a given
sentence becomes part of summary, we choose not
to consider them parameters of the Bayesian model,
just to keep it from getting unduly complex. Recall
the graphical model in figure 2.

5Although one could reasonably argue for normalizing
W (ψ) by sentence length, it is not entirely clear at the moment
whether it helps in the way of improving performance.

3.2 Test Data

Here is how we created test data. We collected three
pools of texts from different genres, columns, edito-
rials and news stories, from a Japanese financial pa-
per (Nihon Keizai Shinbun) published in 1995, each
with 25 articles. Then we asked 112 Japanese stu-
dents to go over each article and identify 10% worth
of sentences they find most important in creating
a summary for that article. For each sentence, we
recorded how many of the subjects are in favor of
its inclusion in summary. On average, we had about
seven people working on each text. In the follow-
ing, we say sentences are ‘positive’ if there are three
or more people who like to see them in a summary,
and ‘negative’ otherwise. For convenience, let us
call the corpus of columns G1K3, that of editorials
G2K3 and that of news stories G3K3. Additional
details are found in table 1.

4 Results and Discussion

Tables 2 through 4 show how the Bayesian sum-
marist performs on G1K3, G2K3, and G3K3. The
tables list results in precision at compression rates
(r) of interest (0 < r < 1). The figures thereof indi-
cate performance averaged over leave-one-out cross
validation folds. What this means is that you leave
out one text for testing and use the rest for training,
which you repeat for each one of the texts in the data.
Since we have 25 texts for each data set, this leads
to a 25-fold cross validation. Precision is defined by
the ratio of hits (positive sentences) to the number
of sentences retrieved, i.e.,r-percent of sentences in
the text.6

In each table, figures to the left of the verti-
cal line indicate performance of summarizers with
BIC/MC and those to the right that of summarizers
without them. Parenthetical figures like ‘(5K)’ and
‘(20K)’ indicate the number of iterations we took
them to: thus BIC(5K) refers to a summarizer based
on C4.5/BIC with scores averaged over 5,000 runs.
BSE denotes a reference summarizer based on a reg-
ular C4.5, which it involves no resampling of train-
ing data. LEAD refers to a summarizer which works

6We do not use recall for a evaluation measure, as the num-
ber of positive instances varies from text to text, and may indeed
exceed the length of a summary under a particular compression
rate.
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Table 1:N represents the number of sentences in G1K3 to G3K3. Sentences with three or more votes in
their favor are marked positive, that is, for each sentence marked positive, at least three people are in favor
of including it in a summary.

Genre N Positive (≥ 3) Negative P/N Ratio
G1K3 426 67 359 0.187
G2K3 558 93 465 0.200
G3K3 440 76 364 0.210

Table 2: G1K3.λ = 5. Dashes indicate no meaningful results.

r BIC (5K) MC (20K) BSE LEAD
0.05 0.4583 0.4583 − 0.3333
0.10 0.4167 0.4167 − 0.3472
0.15 0.3333 0.3472 − 0.2604
0.20 0.2757 0.2861 − 0.2306
0.25 0.2525 0.2772 − 0.2233
0.30 0.2368 0.2535 − 0.2066

Table 3: G2K3.λ = 5.

r BIC (5K) MC (20K) BSE LEAD
0.05 0.6000 0.5800 0.4200 0.5400
0.10 0.4200 0.4200 0.3533 0.3933
0.15 0.3427 0.3560 0.2980 0.3147
0.20 0.3033 0.3213 0.2780 0.2767
0.25 0.2993 0.2776 0.2421 0.2397
0.30 0.2743 0.2750 0.2170 0.2054

Table 4: G3K3.λ = 5.

r BIC (5K) MC (20K) BSE LEAD
0.05 0.9600 0.9600 0.8400 0.9600
0.10 0.7600 0.7600 0.6800 0.7000
0.15 0.6133 0.6000 0.5867 0.5133
0.20 0.5233 0.5233 0.4967 0.4533
0.25 0.4367 0.4367 0.3960 0.3840
0.30 0.4033 0.4033 0.3640 0.3673

0 (411.0/65.0)

Figure 4: A non Bayesian C4.5 trained on G1K3.

254



LenSenA

0 (199.0/23.0)

<= 64

EndCueA

> 64

Weight

= 0

LocWithinPar

= 1

0 (0.0)

= 2

Weight

= 3

0 (5.0/1.0)

= 4

LocWithinPar

= 5

0 (7.0)

= 6

LocWithinPar

<= 2.338

0 (17.0)

> 2.338

Weight

<= 0

LenSenA

> 0

LocPar

<= 2.255

1 (7.0)

> 2.255

1 (4.0)

<= 0

0 (22.0/7.0)

> 0

LocWithinPar

<= 114

LocWithinPar

> 114

0 (38.0/4.0)

<= 0.8

1 (2.0)

> 0.8

1 (10.0/2.0)

<= 0.7

0 (3.0)

> 0.7

0 (11.0/1.0)

<= 0.286

LocPar

> 0.286

LenSenA

<= 0.667

1 (8.0)

> 0.667

1 (13.0/1.0)

<= 72

0 (8.0)

> 72

0 (15.0)

<= 1.707

LocSen

> 1.707

LocWithinPar

<= 0.917

0 (7.0)

> 0.917

0 (5.0/1.0)

<= 0

LenSenA

> 0

1 (17.0)

<= 110

LocSen

> 110

0 (3.0)

<= 0.333

1 (2.0)
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<= 0.429

0 (6.0)
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Figure 5: A Bayesian (MC) C4.5 trained on G1K3.

by selecting sentences from the top of the text. It is
generally considered a hard-to-beat approach in the
summarization literature.

Table 4 shows results for G3K3 (a news story do-
main). There we find a significantly improvement to
performance of C4.5, whether it operates with BIC
or MC. The effect is clearly visible across a whole
range of compression rates, and more so at smaller
rates.

Table 3 demonstrates that the Bayesian approach
is also effective for G2K3 (an editorial domain), out-
performing both BSE and LEAD by a large margin.

Similarly, we find that our approach comfortably
beats LEAD in G1K3 (a column domain). Note the
dashes for BSE. What we mean by these, is that we
obtained no meaningful results for it, because we
were unable to rank sentences based on predictions
by BSE. To get an idea of how this happens, let us
look at a decision tree BSE builds for G1K3, which
is shown in figure 4. What we have there is a deci-
sion tree consisting of a single leaf.7 Thus for what-
ever sentence we feed to the tree, it throws back the
same membership probability, which is 65/411. But
then this would make a BSE based summarizer ut-
terly useless, as it reduces to generating a summary
by picking at random, a particular portion of text.8

7This is not at all surprising as over 80% of sentences in a
non resampled text are negative for the most of the time.

8Its expected performance (averaged over106 runs) comes

Now Figure 5 shows what happens with the
Bayesian model (MC), for the same data. There
we see a tree of a considerable complexity, with 24
leaves and 18 split nodes.

Let us now turn to the issues withλ. As we might
recall, λ influences the shape of a Dirichlet distri-
bution: a large value ofλ causes the distribution
to have less variance and therefore to have a more
acute peak around the expectation. What this means
is that increasing the value ofλmakes it more likely
to have us drawing samples closer to the expecta-
tion. As a consequence, we would have the MC
model acting more like the BIC model, which is
based on MAP estimates. That this is indeed the
case is demonstrated by table 5, which gives results
for the MC model on G1K3 to G3K3 atλ = 1. We
see that the MC behaves less like the BIC atλ = 1
than atλ = 5 (table 2 through 4).

Of a particular interest in table 5 is G1K3, where
the MC suffers a considerable degradation in per-
formance, compared to when it works withλ = 5.
G2K3 and G3K3, again, witness some degradation
in performance, though not as extensive as in G1K3.
It is interesting that at times the MC even works bet-
ter withλ = 1 thanλ = 5 in G2K3 and G3K3.9

to: 0.1466 (r = 0.05), 0.1453 (r = 0.1), 0.1508 (r = 0.15),
0.1530 (r = 0.2), 0.1534 (r = 0.25), and 0.1544 (r = 0.3).

9The results suggest that if one like to have some improve-
ment, it is probably a good idea to setλ to a large value. But
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Table 5: MC (20K).λ = 1.

r G1K3 G2K3 G3K3
0.05 0.3333 0.5400 0.9600
0.10 0.3333 0.3867 0.7800
0.15 0.2917 0.3960 0.5867
0.20 0.2549 0.3373 0.5200
0.25 0.2480 0.2910 0.4347
0.30 0.2594 0.2652 0.4100

All in all, the Bayesian model proves more effec-
tive in leveraging performance of the summarizer on
a DOV exhibiting a complex, multiply peaked form
as in G1K3 and G2K3, and less on a DOV which
has a simple, single-peak structure as in G3K3 (cf.
figure 1).10

5 Concluding Remarks

The paper showed how it is possible to incorporate
information on human judgments for text summa-
rization in a principled manner through Bayesian
modeling, and also demonstrated how the approach
leverages performance of a summarizer, using data
collected from human subjects.

The present study is motivated by the view that
that summarization is a particular form of collabo-
rative filtering (CF), wherein we view a summary
as a particular set of sentences favored by a par-
ticular user or a group of users just like any other
things people would normally have preference for,
such as CDs, books, paintings, emails, news articles,
etc. Importantly, under CF, we would not be asking,
what is the ‘correct’ or gold standard summary for
document X? – the question that consumed much of
the past research on summarization. Rather, what we
are asking is, what summary is popularly favored for
X?

Indeed the fact that there could be as many sum-
maries as angles to look at the text from may favor

in general how to best setλ requires some experimenting with
data and the optimal value may vary from domain to domain.
An interesting approach would be to empirically optimizeλ us-
ing methods suggested in MacKay and Peto (1994).

10Incidentally, summarizers, Bayesian or not, perform con-
siderably better on G3K3 than on G1K3 or G2K3. This hap-
pens presumably because a large portion of votes concentrate
in a rather small region of text there, a property any classifier
should pick up easily.

the CF view of summary: the idea of what consti-
tutes a good summary may vary from person to per-
son, and may well be influenced by particular inter-
ests and concerns of people we elicit data from.

Among some recent work with similar concerns,
one notable is the Pyramid scheme (Nenkova and
Passonneau, 2004) where one does not declare a
particular human summary a absolute reference to
compare summaries against, but rather makes every
one of multiple human summaries at hand bear on
evaluation; Rouge (Lin and Hovy, 2003) represents
another such effort. The Bayesian summarist rep-
resents yet another, whereby one seeks a summary
most typical of those created by humans.
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