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ABSTRACT
Although there has been regular improvement in speech recog-
nition technology over the past decade, speech recognition is far
from being a solved problem. Most recognition systems are tuned
to a particular task and porting the system to a new task (or lan-
guage) still requires substantial investment of time and money, as
well as expertise. Todays state-of-the-art systems rely on the avail-
ability of large amounts of manually transcribed data for acous-
tic model training and large normalized text corpora for language
model training. Obtaining such data is both time-consuming and
expensive, requiring trained human annotators with substantial a-
mounts of supervision.

In this paper we address issues in speech recognizer portabil-
ity and activities aimed at developing generic core speech recogni-
tion technology, in order to reduce the manual effort required for
system development. Three main axes are pursued: assessing the
genericity of wide domain models by evaluating performance under
several tasks; investigating techniques for lightly supervised acous-
tic model training; and exploring transparent methods for adapting
generic models to a specific task so as to achieve a higher degree of
genericity.

1. INTRODUCTION
The last decade has seen impressive advances in the capability

and performance of speech recognizers. Todays state-of-the-art
systems are able to transcribe unrestricted continuous speech from
broadcast data with acceptable performance. The advances arise
from the increased accuracy and complexity of the models, which
are closely related to the availability of large spoken and text cor-
pora for training, and the wide availability of faster and cheaper
computational means which have enabled the development and im-
plementation of better training and decoding algorithms. Despite
the extent of progress over the recent years, recognition accuracy is
still extremely sensitive to the environmental conditions and speak-
ing style: channel quality, speaker characteristics, and background
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noise have an important impact on the acoustic component of the
speech recognizer, whereas the speaking style and the discourse
domain have a large impact on the linguistic component.

In the context of the EC IST-1999 11876 project CORETEX we
are investigating methods for fast system development, as well as
development of systems with high genericity and adaptability. By
fast system development we refer to: language support, i.e., the
capability of porting technology to different languages at a reason-
able cost; and task portability, i.e. the capability to easily adapt a
technology to a new task by exploiting limited amounts of domain-
specific knowledge. Genericity and adaptability refer to the capac-
ity of the technology to work properly on a wide range of tasks and
to dynamically keep models up to date using contemporary data.
The more robust the initial generic system is, the less there is a
need for adaptation. Concerning the acoustic modeling component,
genericity implies that it is robust to the type and bandwidth of the
channel, the acoustic environment, the speaker type and the speak-
ing style. Unsupervised normalization and adaptation techniques
evidently should be used to enhance performance further when the
system is exposed to data of a particular type.

With today’s technology, the adaptation of a recognition system
to a new task or new language requires the availability of suffi-
cient amount of transcribed training data. When changing to new
domains, usually no exact transcriptions of acoustic data are avail-
able, and the generation of such transcribed data is an expensive
process in terms of manpower and time. On the other hand, there
often exist incomplete information such as approximate transcrip-
tions, summaries or at least key words, which can be used to pro-
vide supervision in what can be referred to as “informed speech
recognition”. Depending on the level of completeness, this infor-
mation can be used to develop confidence measures with adapted or
trigger language models or by approximate alignments to automatic
transcriptions. Another approach is to use existing recognizer com-
ponents (developed for other tasks or languages) to automatically
transcribe task-specific training data. Although in the beginning the
error rate on new data is likely to be rather high, this speech data
can be used to re-train a recognition system. If carried out in an
iterative manner, the speech data base for the new domain can be
cumulatively extended over time without direct manual transcrip-
tion.

The overall objective of the work presented here is to reduce
the speech recognition development cost. One aspect is to develop
“generic” core speech recognition technology, where by “generic”
we mean a transcription engine that will work reasonably well on a
wide range of speech transcription tasks, ranging from digit recog-
nition to large vocabulary conversational telephony speech, with-
out the need for costly task-specific training data. To start with we
assess the genericity of wide domain models under cross-task con-



Table 1: Brief descriptions and best reported error rates for the corpora used in this work.
Corpus Test Year Task Train (#spkr) Test (#spkr) Textual Resources Best WER

BN 98 TV & Radio News 200h 3h Closed-captions, commercial transcripts,
manual transcripts of audio data

13.5

TI-digits 93 Small Vocabulary 3.5h (112) 4h (113) - 0.2
ATIS 93 H-M Dialog 40h (137) 5h (24) Transcriptions 2.5
WSJ 95 News Dictation 100h (355) 45mn (20) Newspaper, newswire 6.6

S9 WSJ 93 Spontaneous Dictation 43mn (10) Newspaper, newswire 19.1

ditions, i.e., by recognizing task-specific data with a recognizer de-
veloped for a different task. We chose to evaluate the performance
of broadcast news acoustic and language models, on three com-
monly used tasks: small vocabulary recognition (TI-digits), read
and spontaneous text dictation (WSJ), and goal-oriented spoken di-
alog (ATIS). The broadcast news task is quite general, covering a
wide variety of linguistic and acoustic events in the language, en-
suring reasonable coverage of the target task. In addition, there are
sufficient acoustic and linguistic training data available for this task
that accurate models covering a wide range of speaker and language
characteristics can be estimated.

Another research area is the investigation of lightly supervised
techniques for acoustic model training. The strategy taken is to
use a speech recognizer to transcribe unannotated data, which are
then used to estimate more accurate acoustic models. The light
supervision is applied to the broadcast news task, where unlim-
ited amounts of acoustic training data are potentially available. Fi-
nally we apply the lightly supervised training idea as a transpar-
ent method for adapting the generic models to a specific task, thus
achieving a higher degree of genericity. In this work we focus on
reducing training costs and task portability, and do not address lan-
guage transfer.

We selected the LIMSI broadcast news (BN) transcription sys-
tem as the generic reference system. The BN task covers a large
number of different acoustic and linguistic situations: planned to
spontaneous speech; native and non-native speakers with different
accents; close-talking microphones and telephone channels; quiet
studio, on-site reports in noisy places to musical background; and
a variety of topics. In addition, a lot of training resources are avail-
able including a large corpus of annotated audio data and a huge
amount of raw audio data for the acoustic modeling; and large
collections of closed-captions, commercial transcripts, newspapers
and newswires texts for linguistic modeling. The next section pro-
vides an overview of the LIMSI broadcast news transcription sys-
tem used as our generic system.

2. SYSTEM DESCRIPTION
The LIMSI broadcast news transcription system has two main

components, the audio partitioner and the word recognizer. Data
partitioning [6] serves to divide the continuous audio stream into
homogeneous segments, associating appropriate labels for cluster,
gender and bandwidth with the segments. The speech recognizer
uses continuous density HMMs with Gaussian mixture for acous-
tic modeling and n-gram statistics estimated on large text corpora
for language modeling. Each context-dependent phone model is a
tied-state left-to-right CD-HMM with Gaussian mixture observa-
tion densities where the tied states are obtained by means of a de-
cision tree. Word recognition is performed in three steps: 1) initial
hypothesis generation, 2) word graph generation, 3) final hypoth-
esis generation. The initial hypotheses are used for cluster-based
acoustic model adaptation using the MLLR technique [13] prior to

word graph generation. A 3-gram LM is used in the first two de-
coding steps. The final hypotheses are generated with a 4-gram LM
and acoustic models adapted with the hypotheses of step 2.

In the baseline system used in DARPA evaluation tests, the acous-
tic models were trained on about 150 hours of audio data from the
DARPA Hub4 Broadcast News corpus (the LDC 1996 and 1997
Broadcast News Speech collections) [9]. Gender-dependent acous-
tic models were built using MAP adaptation of SI seed models for
wide-band and telephone band speech [7]. The models contain
28000 position-dependent, cross-word triphone models with 11700
tied states and approximately 360k Gaussians [8].

The baseline language models are obtained by interpolation of
models trained on 3 different data sets (excluding the test epochs):
about 790M words of newspaper and newswire texts; 240M word
of commercial broadcast news transcripts; and the transcriptions of
the Hub4 acoustic data. The recognition vocabulary contains 65120
words and has a lexical coverage of over 99% on all evaluation test
sets from the years 1996-1999. A pronunciation graph is associated
with each word so as to allow for alternate pronunciations. The
pronunciations make use of a set of 48 phones set, where 3 phone
units represent silence, filler words, and breath noises. The lexicon
contains compound words for about 300 frequent word sequences,
as well as word entries for common acronyms, providing an easy
way to allow for reduced pronunciations [6].

The LIMSI 10x system obtained a word error of 17.1% on the
1999 DARPA/NIST evaluation set and can transcribe unrestricted
broadcast data with a word error of about 20% [8].

3. TASK INDEPENDENCE
Our first step in developing a “generic” speech transcription en-

gine is to assess the most generic system we have under cross-
task conditions, i.e., by recognizing task-specific data with a rec-
ognizer developed for a different task. Three representative tasks
have been retained as target tasks: small vocabulary recognition
(TI-digits), goal-oriented human-machine spoken dialog (ATIS),
and dictation of texts (WSJ). The broadcast news transcription task
(Hub4E) serves as the baseline. The main criteria for the task se-
lection were that they are realistic enough and task-specific data
should be available. The characteristics of these four tasks and the
available corpora are summarized in Table 1.

For the small vocabulary recognition task, experiments are car-
ried out on the adult speaker portion of the TI-digits corpus [14],
containing over 17k utterances from a total of 225 speakers. The
vocabulary contains 11 words, the digits ‘1’ to ‘9’, plus ‘zero’ and
‘oh’. Each speaker uttered two versions of each digit in isolation
and 55 digit strings. The database is divided into training and test
sets (roughly 3.5 hours each, corresponding to 9k strings). The
speech is of high quality, having been collected in a quiet environ-
ment. The best reported WERs on this task are around 0.2-0.3%.
The digit phonemic coverage being very low, only 108 context-
dependent models are used in our recognition system. The task-



Table 2: Word error rates (%) for BN98, TI-digits, ATIS94,
WSJ95 and S9 WSJ93 test sets after recognition with three dif-
ferent configurations: (left) BN acoustic and language models;
(center) BN acoustic models combined with task-specific lex-
ica and LMs and (right) task-dependent acoustic and language
models.

Test Set BN models Task LMs Task models
BN98 13.6 13.6 13.6
TI-digits 17.5 1.7 0.4
ATIS94 22.7 4.7 4.4
WSJ95 11.6 9.0 7.6
S9 WSJ93 12.1 13.6 15.3

specific LM for the TI-digits is a simple grammar allowing any se-
quence of up to 7 digits. Our task-dependent system performance
is 0.4% WER.

The DARPA Air Travel Information System (ATIS) task is cho-
sen as being representative of a goal-oriented human-machine di-
alog task, and the ARPA 1994 Spontaneous Speech Recognition
(SPREC) ATIS-3 data (ATIS94) [4] is used for testing purposes.
The test data amounts for nearly 5 hours of speech from 24 speakers
recorded with a close-talking microphone. Around 40h of speech
data are available for training. The word error rates for this task in
the 1994 evaluation were mainly in the range of 2.5% to 5%, which
we take as state-of-the-art for this task. The acoustic models used
in our task-specific system include 1641 context-dependent phones
with 4k independent HMM states. A back-off trigram language
model has been estimated on the transcriptions of the training ut-
terances. The lexicon contains 1300 words, with compounds words
for multi-word entities in the air-travel database (city and airport
names, services etc.). The WER obtained with our task-dependent
system is 4.4%.

For the dictation task, the Wall Street Journal continuous speech
recognition corpus [17] is used, abiding by the ARPA 1995 Hub3
test (WSJ95) conditions. The acoustic training data consist of 100
hours of speech from a total of 355 speakers taken from the WSJ0
and WSJ1 corpora. The Hub3 baseline test data consist of stu-
dio quality read speech from 20 speakers with a total duration of
45 minutes. The best result reported at the time of the evaluation
was 6.6%. A contrastive experiment is carried out with the WSJ93
Spoke 9 data comprised of 200 spontaneous sentences spoken by
journalists [11]. The best performance reported in the 1993 evalua-
tion on the spontaneous data was 19.1% [18], however lower word
error rates have since been reported on comparable test sets (14.1%
on the WSJ94 Spoke 9 test data). 21000 context and position-
dependent models have been trained for the WSJ system, with 9k
independent HMM states. A 65k-word vocabulary was selected
and a back-off trigram model obtained by interpolating models trained
on different data sets (training utterance transcriptions and newspa-
pers data). The task-dependent WSJ system has a WER of 7.6% on
the read speech test data and 15.3% on the spontaneous data.

For the BN transcription task, we follow the conditions of the
1998 ARPA Hub4E evaluation (BN98) [15]. The acoustic training
data is comprised of 150 hours of North-American TV and radio
shows. The best overall result on the 1998 baseline test was 13.5%.

Three sets of experiments are reported. The first are cross-task
recognition experiments carried out using the BN acoustic and lan-
guage models to decode the test data for the other tasks. The second
set of experiments made use of mixed models, that is the BN acous-
tic models and task-specific LMs. Due to the different evaluation

paradigms, some minor modifications were made in the transcrip-
tion procedure. First of all, in contrast with the BN data, the data
for the 3 tasks is already segmented into individual utterances so
the partitioning step was eliminated. With this exception, the de-
coding process for the WSJ task is exactly the same as described in
the previous section. For the TI-digits and ATIS tasks, word decod-
ing is carried out in a single trigram pass, and no speaker adaptation
was performed.

The WERs obtained for the three recognition experiments are
reported in Table 2. A comparison with Table 1 shows that the
performances of the task-dependent models are close to the best re-
ported results even though we did not devote too much effort in op-
timizing these models. We can also observe by comparing the task-
dependent (Table 2, right) and mixed (Table 2, middle) conditions,
that the BN acoustic models are relatively generic. These mod-
els seem to be a good start towards truly task-independent acoustic
models. By using task-specific language models For the TI-digits
and ATIS we can see that the gap in performance is mainly due
a linguistic mismatch. For WSJ the language models are more
closely matched to BN and only a small 1.6% WER reduction is
obtained. On the spontaneous journalist dictation (WSJ S9 spoke)
test data there is even an increase in WER using the WSJ LMs,
which can be attributed to a better modelization of spontaneous
speech effects (such as breath and filler words) in the BN models.

Prior to introducing our approach for lightly supervised acoustic
model training, we describe our standard training procedure in the
next section.

4. ACOUSTIC MODEL TRAINING
HMM training requires an alignment between the audio signal

and the phone models, which usually relies on a perfect ortho-
graphic transcription of the speech data and a good phonetic lex-
icon. In general it is easier to deal with relatively short speech seg-
ments so that transcription errors will not propagate and jeopardize
the alignment. The orthographic transcription is usually considered
as ground truth and training is done in a closely supervised man-
ner. For each speech segment the training algorithm is provided
with the exact orthographic transcription of what was spoken, i.e.,
the word sequence that the speech recognizer should hypothesize
when confronted with the same speech segment.

Training acoustic models for a new corpus (which could also re-
flect a change of task and/or language), usually entails the follow-
ing sequence of operations once the audio data and transcription
files have been loaded:

1. Normalize the transcriptions to a common format (some ad-
justment is always needed as different text sources make use
of different conventions).

2. Produce a word list from the transcriptions and correct blatant
errors (these include typographical errors and inconsistencies).

3. Produce a phonemic transcription for all words not in our mas-
ter lexicon (these are manually verified).

4. Align the orthographic transcriptions with the signal using ex-
isting models and the pronunciation lexicon (or bootstrap mod-
els from another task or language). This procedure often re-
jects a substantial portion of the data, particularly for long seg-
ments.

5. Eventually correct transcription errors and realign (or just ig-
nore these if enough audio data is available)

6. Run the standard EM training procedure.

This sequence of operations is usually iterated several times to
refine the acoustic models. In general each iteration recovers a por-
tion of the rejected data.



5. LIGHTLY SUPERVISED ACOUSTIC
MODEL TRAINING

One can imagine training acoustic models in a less supervised
manner, by using an iterative procedure where instead of using
manual transcriptions for alignment, at each iteration the most likely
word transcription given the current models and all the information
available about the audio sample is used. This approach still fits
within the EM training framework, which is well-suited for miss-
ing data training problems. A completely unsupervised training
procedure is to use the current best models to produce an ortho-
graphic transcription of the training data, keeping only words that
have a high confidence measure. Such an approach, while very en-
ticing, is limited since the only supervision is provided by the con-
fidence measure estimator. This estimator must in turn be trained
on development data, which needs to be small to keep the approach
interesting.

Between using carefully annotated data such as the detailed tran-
scriptions provided by the LDC and no transcription at all, there is
a wide spectrum of possibilities. What is really important is the
cost of producing the associated annotations. Detailed annotation
requires on the order of 20-40 times real-time of manual effort, and
even after manual verification the final transcriptions are not ex-
empt from errors [2]. Orthographic transcriptions such as closed-
captions can be done in a few times real-time, and therefore are
quite a bit less costly. These transcriptions have the advantage that
they are already available for some television channels, and there-
fore do not have to be produced specifically for training speech
recognizers. However, closed-captions are a close, but not exact
transcription of what is being spoken, and are only coarsely time-
aligned with the audio signal. Hesitations and repetitions are not
marked and there may be word insertions, deletions and changes
in the word order. They also are missing some of the additional
information provided in the detailed speech transcriptions such as
the indication of acoustic conditions, speaker turns, speaker identi-
ties and gender and the annotation of non-speech segments such as
music. NIST found the disagreement between the closed-captions
and manual transcripts on a 10 hour subset of the TDT-2 data used
for the SDR evaluation to be on the order of 12% [5].

Another approach is to make use of other possible sources of
contemporaneous texts from newspapers, newswires, summaries
and the Internet. However, since these sources have only an indirect
correspondence with the audio data, they provide less supervision.

The basic idea is of light supervision is to use a speech recog-
nizer to automatically transcribe unannotated data, thus generat-
ing “approximate” labeled training data. By iteratively increasing
the amount of training data, more accurate acoustic models are ob-
tained, which can then be used to transcribe another set of unanno-
tated data. The modified training procedure used in this work is:

1. Train a language model on all texts and closed captions after
normalization

2. Partition each show into homogeneous segments and label the
acoustic attributes (speaker, gender, bandwidth) [6]

3. Train acoustic models on a very small amount of manually
annotated data (1h)

4. Automatically transcribe a large amount of training data
5. (Optional) Align the closed-captions and the automatic tran-

scriptions (using a standard dynamic programming algorithm)
6. Run the standard acoustic model training procedure on the

speech segments (in the case of alignment with the closed
captions only keep segments where the two transcripts are in
agreement)

7. Reiterate from step 4.

It is easy to see that the manual work is considerably reduced, not
only in generating the annotated corpus but also during the training
procedure, since we no longer need to extend the pronunciation lex-
icon to cover all words and word fragments occurring in the training
data and we do not need to correct transcription errors. This ba-
sic idea was used to train acoustic models using the automatically
generated word transcriptions of the 500 hours of audio broadcasts
used in the spoken document retrieval task (part of the DARPA
TDT-2 corpus used in the SDR’99 and SDR’00 evaluations) [3].
This corpus is comprised of 902 shows from 6 sources broadcast
between January and June 1998: CNN Headline News (550 30-
minute shows), ABC World News Tonight (139 30-minute shows),
Public Radio International The World (122 1-hour shows), Voice of
America VOA Today and World Report (111 1-hour shows). These
shows contain about 22k stories with time-codes identifying the
beginning and end of each story.

First, the recognition performance as a function of the available
acoustic and language model training data was assessed. Then we
investigated the accuracy of the acoustic models obtained after rec-
ognizing the audio data using different levels of supervision via
the language model. With the exception of the baseline Hub4 lan-
guage models, none of the language models include a component
estimated on the transcriptions of the Hub4 acoustic training data.
The language model training texts come from contemporaneous
sources such as newspapers and newswires, and commercial sum-
maries and transcripts, and closed-captions. The former sources
have only an indirect correspondence with the audio data and pro-
vide less supervision than the closed captions. For each set of LM
training texts, a new word list was selected based on the word fre-
quencies in the training data. All language models are formed by
interpolating individual LMs built on each text source. The interpo-
lation coefficients were chosen in order to minimize the perplexity
on a development set composed of the second set of the Nov98
evaluation data (3h) and a 2h portion of the TDT2 data from Jun98
(not included in the LM training data). The following combinations
were investigated:

� LMa (baseline Hub4 LM): newspaper+newswire (NEWS), com-
mercial transcripts (COM) predating Jun98, acoustic transcripts

� LMn t c: NEWS, COM, closed-captions through May98

� LMn t: NEWS, COM through May98

� LMn c: NEWS, closed-captions through May98

� LMn: NEWS through May98

� LMn to: NEWS through May98, COM through Dec97

� LMno: NEWS through Dec97

Table 3: Word error rate for various conditions using acous-
tic models trained on the HUB4 training data with detailed
manual transcriptions. All runs were done in less than 10xRT,
except the last row. “1S” designates one set of gender-
independent acoustic models, whereas “4S” designates four sets
of gender and bandwidth dependent acoustic models.

Training Conditions bn99 1 bn99 2 Average
1h 1S, LMn t c 35.2 31.9 33.3

69h 1S, LMn t c 20.2 18.0 18.9
123h 1S, LMn t c 19.3 17.1 18.0
123h 4S, LMn t c 18.5 16.1 17.1
123h 4S, LMa 18.3 16.3 17.1
123h 4S, LMa, 50x 17.1 14.5 15.6



Table 4: Word error rate for different language models and increasing quantities of automatically labeled training data on the 1999
evaluation test sets using gender and bandwidth independent acoustic models. LMn t c: NEWS, COM, closed-captions through
May98 LMn t: NEWS, COM through May98 LMn c: NEWS, closed-captions through May98 LMn: NEWS through May98
LMn to: NEWS through May98, COM through Dec97 LMno: NEWS through Dec97.

Amount of training data %WER
raw unfiltered LMn t c LMn t LMn c LMn LMn to LMno
150h 123h 18.0 18.6 19.1 20.6 18.7 20.9

1h 1h 33.3 33.7 34.4 35.9 33.9 36.1
14h 8h 26.4 27.6 27.4 29.0 27.6 30.6
28h 17h 25.2 25.7 25.6 28.1 25.7 28.9
58h 28h 24.3 25.2 25.7 27.4 25.1 27.9

It should be noted that all of the conditions include newspaper
and newswire texts from the same epoch as the audio data. These
provide an important source of knowledge particularly with re-
spect to the vocabulary items. Conditions which include the closed
captions in the LM training data provide additional supervision in
the decoding process when transcribing audio data from the same
epoch.

For testing purposes we use the 1999 Hub4 evaluation data, which
is comprised of two 90 minute data sets selected by NIST. The first
set was extracted from 10 hours of data broadcast in June 1998,
and the second set from a set of broadcasts recorded in August-
September 1998 [16]. All recognition runs were carried out in un-
der 10xRT unless stated otherwise. The LIMSI 10x system ob-
tained a word error of 17.1% on the evaluation set (the combined
scores in the penultimate row in Table 3 4S, LMa) [8]. The word
error can be reduced to 15.6% for a system running at 50xRT (last
entry in Table 3).

As can be seen in Table 3, the word error rates with our orig-
inal Hub4 language model (LMa) and the one without the tran-
scriptions of the acoustic data (LMn t c) give comparable results
using the 1999 acoustic models trained on 123 hours of manually
annotated data (123h, 4S). The quality of the different language
models listed above are compared in the first row of Table 3 us-
ing speaker-independent (1S) acoustic models trained on the same
Hub4 data (123h). As can be observed, removing any text source
leads to a degradation in recognition performance. It appears it is
more important to include commercial transcripts (LMn t), even
if they are old (LMn to) than the closed captions (LMn c). This
suggests that the commercial transcripts more accurately represent
spoken language than closed-captioning. Even if only newspaper
and newswire texts are available (LMn), the word error increases
by only 14% over the best configuration (LMn t c), and even using
older newspaper and newswire texts (LMno) does not substantially
increase the word error rate. The second row of Table 3 gives the
word error rates with acoustic models trained on only 1 hour of
manually transcribed data. These are the models used to initialize
the process of automatically transcribing large quantities of data.
These word error rates range from 33% to 36% across the language
models.

We compared a straightforward approach of training on all the
automatically annotated data with one in which the closed-captions
are used to filter the hypothesized transcriptions, removing words
that are “incorrect”. In the filtered case, the hypothesized transcrip-
tions are aligned with the closed captions story by story, and only
regions where the automatic transcripts agreed with the closed cap-
tions were kept for training purposes. To our surprise, somewhat
comparable recognition results were obtained both with and with-
out filtering, suggesting that inclusion of the closed-captions in the

language model training material provided sufficient supervision
(see Table 5).1 It should be noted that in both cases the closed-
caption story boundaries are used to delimit the audio segments
after automatic transcription.

To investigate this further we are assessing the effects of reduc-
ing the amount of supervision provided by the language model
training texts on the acoustic model accuracy (see Table 4). With
14 hours (raw) of approximately labeled training data, the word er-
ror is reduced by about 20% for all LMs compared with training on
1h of data which has carefully manual transcriptions. Using larger
amounts of data transcribed with the same initial acoustic models
gives smaller improvements, as seen by the entries for 28h and 58h.
The commercial transcripts (LMn+t and LMn+to), even if predat-
ing the data epoch, are seen to be more important than the closed-
captions (LMn+c), supporting the earlier observation that they are
closer to spoken language. Even if only news texts from the same
period (LMn) are available, these provide adequate supervision for
lightly supervised acoustic model training.

Table 5: Word error rates for increasing quantities of auto-
matically label training data on the 1999 evaluation test sets
using gender and bandwidth independent acoustic models with
the language model LMn t c (trained on NEWS, COM, closed-
captions through May98).

Amount of training data %WER
raw unfiltered filtered unfiltered filtered
14h 8h 6h 26.4 25.7
28h 17h 13h 25.2 23.7
58h 28h 21h 24.3 22.5

140h 76h 57h 22.4 21.1
287h 140h 108h 21.0 19.9
503h 238h 188h 20.2 19.4

6. TASK ADAPTATION
The experiments reported in the section 3 show that while direct

recognition with the reference BN acoustic models gives relatively

1The difference in the amounts of data transcribed and actually
used for training is due to three factors. The first is that the total du-
ration includes non-speech segments which are eliminated prior to
recognition during partitioning. Secondly, the story boundaries in
the closed captions are used to eliminate irrelevant portions, such
as commercials. Thirdly, since there are many remaining silence
frames, only a portion of these are retained for training.



Table 6: Word error rates (%) for TI-digits, ATIS94, WSJ95 and S9 WSJ93 test sets after recognition with three different configura-
tions, all including task-specific lexica and LMs: (left) BN acoustic models, (middle left) unsupervised adaptation of the BN acoustic
models, (middle right) supervised adaptation of the BN acoustic models and (right) task-dependent acoustic models.

Test Set BN models Unsupervised Adaptation Supervised Adaptation Task-dep. models
BN models BN models

TI-digits 1.7 0.8 0.5 0.4
ATIS94 4.7 4.7 3.2 4.4
WSJ95 9.0 6.9 6.7 7.6
S9 WSJ93 13.6 12.6 11.4 15.3

competitive results, the WER on the targeted tasks can still be im-
proved. Since we want to minimize the cost and effort involved in
tuning to a target task, we are investigating methods to transpar-
ently adapt the reference acoustic models. By transparent we mean
that the procedure is automatic and can be carried out without any
human expertise. We therefore apply the approach presented in the
previous section, that is the reference BN system is used to tran-
scribe the training data of the destination task. This supposes of
course that audio data have been collected. However, this can be
carried out with an operational system and the cost of collecting
task-specific training data is greatly reduced since no manual tran-
scriptions are needed. The performance of the BN models under
cross task conditions is well within the range for which the approx-
imate transcriptions can be used for acoustic model adaptation.

The reference acoustic models are then adapted by means of a
conventional adaptation technique such as MLLR and MAP. Thus
there is no need to design a new set of models based on the training
data characteristics. Adaptation is also preferred to the training
of new models as it is likely that the new training data will have
a lower phonemic contextual coverage than the original reference
models.

The cross-task unsupervisedadaptation is evaluated for the tasks:
TI-digits, ATIS and WSJ. The 100 hours of the WSJ data were tran-
scribed using the BN acoustic and language models. For ATIS, only
26 of the 40 hours of training data from 276 speakers were tran-
scribed, due to time constraints. For TI-digits, the training data was
transcribed using a mixed configuration, combining the BN acous-
tic models with the simple digit loop grammar.2 For completeness
we also used the task-specific audio data and the associated tran-
scriptions to carry out supervised adaptation of the BN models.

Gender-dependent acoustic models were estimated using the cor-
responding gender-dependent BN models as seeds and the gender-
specific training utterances as adaptation data. For WSJ and ATIS,
the speaker ids were directly used for gender identification since
in previous experiments with this test set there were no gender
classification errors. Only the acoustic models used in the sec-
ond and third word decoding passes have been adapted. For the
TI-digits, the gender of each training utterance was automatically
classified by decoding each utterance twice, once with each set of
gender-dependent models. Then, the utterance gender was deter-
mined based on the best global score between the male and female
models (99.0% correct classification).

Both the MLLR and MAP adaptation techniques were applied.
The recognition tests were carried out under mixed conditions (i.e.,
with the adapted acoustic models and the task-dependent LM). The

2In order to assess the quality of the automatic transcription, we
compared the system hypotheses to the manually provided training
transcriptions. For resulting word error rates on the training data
are 11.8% for WSJ, 29.1% for ATIS and 1.2% for TI-digits.

BN models are first adapted using MLLR with a global transforma-
tion, followed by MAP adaptation.

The word error rates obtained with the task-adapted BN mod-
els are given in Table 6 for the four test sets. Using unsupervised
adaptation the performance is improved for TIdigits (53% relative),
WSJ (19% relative) and S9 (7% relative).

The manual transcriptions for the targeted tasks were used to
carry out supervised model adaptation. The results (see the 4th col-
umn of Table 6) show a clear improvement over unsupervisedadap-
tation for both the TI-digits (60% relative) and ATIS (47% relative)
tasks. A smaller gain of about 10% relative is obtained for the spon-
taneous dictation task, and only 3% relative for read WSJ data. The
gain appears to be correlated with the WER of the transcribed data:
the difference between BN and task specific models is smaller for
WSJ than ATIS and TI-digits. The TI-digit task is the only task for
which the best performance is obtained using task-dependent mod-
els rather than BN models adapted with supervised. For the other
tasks, the lowest WER is obtained when the supervised adapted BN
acoustic models are used: 3.2% for ATIS, 6.7% for WSJ and 11.4%
for S9. This result confirms our hypothesis that better performance
can be achieved by adapting generic models with task-specific data
than by directly training task-specific models.

7. CONCLUSIONS
This paper has explored methods to reduce the cost of developing

models for speech recognizers. Two main axes have been explored:
developing generic acoustic models and the use of low cost data for
acoustic model training.

We have explored the genericity of state-of-the-art speech recog-
nition systems, by testing a relatively wide-domain system on data
from three tasks ranging in complexity. The generic models were
taken from the broadcast news task which covers a wide range of
acoustic and linguistic conditions. These acoustic models are rel-
atively task-independent as there is only a small increase in word
error relative to the word error obtained with task-dependent acous-
tic models, when a task-dependent language model is used. There
remains a large difference in performance on the digit recogni-
tion task which can be attributed to the limited phonetic coverage
of this task. On a spontaneous WSJ dictation task, the broadcast
news acoustic and language are more robust to deviations in speak-
ing style than the read-speech WSJ models. We also have shown
that unsupervised acoustic model adaptation can reduce the perfor-
mance gap between task-independent and task-dependent acoustic
models, and that supervised adaptation of generic models can lead
to better performance than that achieved with task-specific models.
Both supervised and unsupervised adaptation are less effective for
the digits task indicating that these may be a special case.

We have investigated the use of low cost data to train acoustic
models for broadcast news transcription, with supervision provided



the language models. Recognition results obtained with acoustic
models trained on large quantities of automatically annotated data
are comparable (under a 10% relative increase in word error) to
results obtained with acoustic models trained on large quantities
of manually annotated data. Given the significantly higher cost of
detailed manual transcription (substantially more time consuming
than producing commercial transcripts, and more expensive since
closed captions and commercial transcripts are produced for other
purposes), such approaches are very promising as they require sub-
stantial computation time, but little manual effort. Another advan-
tage offered by this approach is that there is no need to extend the
pronunciation lexicon to cover all words and word fragments oc-
curring in the training data. By eliminating the need for manual
transcription, automated training can be applied to essentially un-
limited quantities of task-specific training data. While the focus of
our work has been on reducing training costs and task portability,
we have been exploring these in a multi-lingual context.
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