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Abstrac t  

This paper presents a grammar formalism de- 
signed for use in data-oriented approaches to lan- 
guage processing. It  goes on to investigate ways 
in which a corpus pre-parsed with this formalism 
may be processed to provide a probabilistic lan- 
guage model for use in the parsing of fresh texts. 

In troduc t i on  

Recent years have seen a resurgence of interest 
in probabilistic techniques for automatic language 
analysis. In particular, there has arisen a dis- 
tinct paradigm of processing on the basis of pre- 
analyzed data  which has taken the name D a t a -  
O r i e n t e d  Pa r s ing .  

"Data Oriented Parsing (DOP) is a model 
where no abstract rules, but  language experi- 
ences in the form of an analyzed corpus, con- 
stitute the basis for language processing." 1 

There is not space here to present full justification 1. 
for adopting such an approach or to detail the ad- 
vantages that  it offers. The main claim it makes is 
that  effective language processing requires a con- 
sideration of both the structural and statistical as- 2. 
pects of language, whereas traditional competence 
grammars rely only on the former, and standard 
statistical techniques such as n-gram models only 
on the latter. DOP at tempts to combine these two 
traditions and produce "performance grammars",  
which: 

"... should not only contain information 
on the structural possibilities of the general 3. 
language system, but  also on details of actual 
language use in a language community... ''2 

*This research was funded by a research studentship 
from the ESRC. My thanks also for discussion and com- 
ments to Matt Crocker, Chris Brew, David Milward and 
Anna Babarczy. 

1Bod, 1992. 4. 
2ibid. 

This approach entails however tha t  a corpus has 
first to be pre-analyzed (ie. hand-parsed), and the 
question immediately arises as to the formalism 
to be used for this. There is no lack of compet- 
ing competence grammars available, but  also no 
reason to expect that  such grammars should be 
suited to a DOP approach, designed as they were 
to characterize the nature of linguistic competence 
rather than performance. 

The next section sets out some of the properties 
that  we might require from such a "performance 
grammar" and offers a formalism which a t tempts  
to satisfy these requirements. 

A Formal ism for D O P  

Given that  we are at tempting to construct a for- 
malism that  will do justice to both  the statistical 
and structural aspects of language, the features 
that  we would wish to maximize will include the 
following: 

The formalism should be easy to use with prob- 
abilistic processing techniques, ideally having a 
close correspondence to a simple probabilistic 
model such as a Markov process. 

The formalism should be fine-grained, ie. re- 
sponsive to the behaviour of individual words 
(as n-gram models are). This suggests a r ad i -  
cal ly  lex iea l i s t  approach (cf. Kart tunen,  1990) 
in which all rules are encoded in the lexicon, 
there being no phrase structure rules which do 
not introduce lexical items. 

It should be capable of capturing fully the lin- 
guistic intuitions of language users. In other 
words, using the formalism one should be able 
to characterize the structural regularities of lan- 
guage with at least the sophistication of modern 
competence grammars. 

As it is to be used with real data,  the formalism 
should be able to characterize the wide range 

272 



of syntactic structures found in actual language 
use, including those normally excluded by com- 
petence grammars as belonging to the "pe- 
riphery" of the language or as being "ungram- 
matical". Ideally every interpretable utterance 
should have one and only one analysis for any 
interpretation of it. 

Considering the first of these points, namely a 
close relation to a simple probabilistic model, a 
good place to start  the search might be with a 
right-branching f i n l t e - s t a t e  g r a m m a r .  In this 
class of grammars every rule has the form A -4 a 
B (A,B E {non-terminals}, a E {terminals}) and 
all trees have the simple structure : 

a A 
A - -  B - -  C - -  D - -  b B 
I I I I Or: c c 
a b c d d D 

(with an equivalent vertical alignment, henceforth 
to be used in this paper, on the right) 

In probabilistic terms, a finite-state grammar cor- 
responds to a first-order Markov process, where 
given a sequence of states Si, Sj,... drawn from 
a finite set of possible states {So,..,S=} the prob- 
ability of a particular state occurring depends 
solely on the identity of the previous state. In 
the finite-state grammar each word is associated 
with a transition between two categories, in the 
tree above 'a '  with the transition A -4 B and so 
on. To calculate the probability that  a string of 
words x l ,  x2, x3,.. ,  xn has the parse represented 
by the string of category-states 81, $2, S3,...S=, 
we simply take the product  of the probability of 
each transition: ie. l-h~l P(xi  : si  -4 si+l). 

In addition to satisfying our first criterion, a finite- 
state grammar also fulfills the requirement that  
the formalism be radically lexicalist, as by defini- 
tion every rule introduces a lexical item. 

A c c o u n t i n g  for L i n g u i s t i c  S t r u c t u r e  

If a finite-state grammar is chosen however, the 
third criterion, that  of linguistic adequacy, seems 
to present an insurmountable stumbling block. 
How can such a simple formalism, in which syntax 
is reduced to a string of category-states, hope to 
capture even the basic hierarchical structure, the 
familiar "tree structure",  of linguistic expressions? 

Indeed, if the non-terminals are viewed as atomic 
categories then there is no way this can be done. If 
however, in line with most current theories, cat- 
egories are taken to be bundles of features and 

crucially if one of these featflres has the value of a 
s t ack  o f  ca t egor i e s ,  then this hierarchical struc- 
ture can indeed be represented. 

Using the notation A [B] to represent a state of 
basic category A carrying a category B on its 
stack, the hierarchical structure of the sentence: 

(1) The man gave the dog a bone. 

can be represented as: 

The S [] 
man N [VP] 
gave VP [ ] 

(la) the NP [NP] 
dog N [NP] 
a NP [] 
bone N [] 

Intuitively, syntactic links between non-adjacent 
words, impossible in a standard finite-state gram- 
mar, are here established by passing categories 
along on the stack "through" the state of inter- 
vening words. Tha t  such a formalism can fully 
capture basic linguistic structures is confirmed by 
the proof in Aho (1968) that  an i n d e x e d  g r a m -  
m a r  (ie. one where categories are supplemented 
with a stack of unbounded length, as above), if 
restricted to right linear trees (also as above), is 
equivalent to a c o n t e x t - f r e e  g r a m m a r .  

A perusal of the state transitions associated with 
individual words in (la) reveals an obvious re- 
lationship to the "types" of categorial grammar. 
Using a to represent a list of categories (possibly 
null), we arrive at the following transitions (with 
their corresponding categorial types alongside). 

The ditransitive verb 'gave' is 

V P  [a]3 _+ N P  [NP,a]  ( V P / N P ) / N P  

Determiners in complement position are both: 

N P  [a] -4 N [a] N P / N  

Determiner in subject position is 'type-raised '4 to: 

S [a] -4 N [VP,a]  (S /VP) /N  

The common nouns are all: 

N [a] -4 a N 

In fact as no intermediate constituents are formed 
in the analysis, an even closer parallel is to a de- 
pendency syntax where only rightward pointing 
arrows are allowed, of which the formalism as pre- 
sented above is a notational variant. This lack of 

3 "vP" is used here and henceforth as a shorthand for 
an S with a missing (ie. "slashed") subject. 

4The unidirectionality of the formalism results in an 
automatic type-raising of all categories appearing before 
their heads. 
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intermediate constituents has the added benefit 
that  no "spurious ambiguities" can arise. 

Knowing now that  the addition of a stack-valued 
feature suffices to cap tu re  the basic hierarchi- 
cal structure of language, additional features can 
be used to deal with other syntactic relations. 
For example, following the example of GPSG, 
unbounded dependencies can be captured using 
"slashed" categories. If we represent a "slashed" 
category X with the lower case x, and use the no- 
tation A(b)  for a category A carrying a feature 
b, then the topicalized sentence: 

(2) This bone the man gave the puppy. 

will have the analysis: 

(2a) 

This S [1 
bone N [S(np)] 
the S(np) [l 
man N [VP(np)] 
gave VP(np)[ ] 
the NP [] 
puppy N [] 

Although there is no space in this paper to go 
into greater detail, further constructions involving 
unbounded dependency and complement control 
phenomena can be captured in similar ways. 

Coverage 

The criterion that  remains to be satisfied is that  
of width of coverage: can the formalism cope 
with the many "peripheral" structures found in 
real written and spoken texts? As it stands the 
formalism is weakly equivalent to a context-free 
grammar and as such will have problems dealing 
with phenomena like discontinuous constituents, 
non-constituent coordination and gapping. For- 
tunately if extensions are made to the formalism, 
necessarily taking it outside weak equivalence to 
a context-free grammar, natural and general anal- 
yses present themselves for such constructions. 
Two of these will now be sketched. 

Discont inuous  Const i tuents  

Consider the pair of sentences (3) and (4), iden- 
tical in interpretation, but the latter containing a 
discontinuous noun phrase and the former not: 

(3) I saw a dog which had no nose yesterday. 

(4) I saw a dog yesterday which had no nose. 

which have the respective analyses: 

I S [] 
saw VP [] 
a NP [NP(t)] 
dog N [NP(t)] 

(3a) which S(rel) [NP(t)] 
had VP [NP(t)] 
no NP [NP(t)] 
nose N [NP(t)] 
yesterday NP (t) [ ] 

i s [] 
saw VP [] 
a NP [NP(t)] 
dog N [NP(t)] 

(4a) yesterday NP(t)[S(rel)] 
which S(rel) [ ] 
had VP [] 
no NP [] 
nose N [] 

' t '  ~--- 

' t ime adjunct '  
'rel' = 
'relative' 

The only transition in (4a) that  differs from that  
of the corresponding word in the 'core' variant 
(3a) is that  of 'dog' which has the respective tran- 
sitions: 

N [NP(t) ]  ~ S(rel)  [NP(t ) ]  (in 3a) 

N [NP(t) ]  ~ N P ( t )  [S(rel)] (in 4a) 

Both nouns introduce a relative clause modifier 
S(rel) ,  the difference being that  in the discon- 
tinuous variant a category has been taken off the 
stack at the same time as the modifier has been 
placed on the stack. It has been assumed so far 
that  we are using a right-linear indexed grammar, 
but such a rule is expressly disallowed in an in- 
dexed grammar and so allowing transitions of this 
kind ends the formalism's weak equivalence to the 
context-free grammars. 

Of course, having allowed such crossed dependen- 
cies, there is nothing in the formalism itself that  
will disallow a similar analysis for a discontinuity 
unacceptable in English such as: 

(5) I saw a yesterday dog. 

This does not present a problem, however, as in 
DOP it is information in the parsed corpus which 
determines the structures that  are possible. There 
is no need to explicitly rule out (5), as the transi- 
tion N P  [hi --+ a [N] will be vanishingly rare in 
any corpus of even the most garbled speech, while 
the transition N [hi --+ a [S(rel)] is commonly 
met with in both written and spoken English. 

Non-Cons t i tuent  Coordinat ion  

The analysis of standard coordination is shown in 
(6): 
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Fido S [] 
gnawed VP [] 
a NP [VP(+)] 

(6) bone N [VP(+)] 
and VP(+)[ ] 
barked VP [ ] 

Instead of a typical transition for 'gnawed' of V P  
-+ N P ,  we have a transition introducing a coor- 
dinated VP: V P  -4 N P  [VP(+) ]  

In general for any transition X -4 Y , where X 
is a category and Y a list of categories (possibly 
empty), there will be a transition introducing co- 
ordination: X -4 Y IX(+)]  

Non-constituent coordinations such as (7) present 
serious problems for phrase-structure approaches: 

(7) Fido had a bone yesterday and biscuit today. 

However if we generalize the schema already ob- 
tained for standard coordination by allowing X 
to be not only a single category, but a list 
of categories ~, it is found to suffice for non- 
constituent coordination as well. 

Fido S [1 
had VP [] 
a NP [Ne(t)] 

(Ta) bone N [Ne(t)] 
yesterday NP(t)[N(+)[NP(t)]] 
and N(+) [NP(t)] 
biscuit N [NP(t)] 
today NP(t)[ ] 

In this analysis instead of a regular transition for 
'bone' of: N [NP(t ) ]  -4 N P ( t )  [] 

there is instead a transition introducing coordina- 
tion: N [NP(t) ]  -4 N P ( t )  [N(+)  [NP(t)]]  

Allowing categories on the stack to themselves 
have non-empty stacks moves the formalism one 
step further from being an indexed grammar. This 
is the final incarnation of the formalism, being the 
S t a t e - T r a n s i t i o n  G r a m m a r  of the title 6. 

Similar schemas are being investigated to charac- 
terize ga pp i ng  constructions. 

Centre-Embedding 
It should be noted that  an indefinite amount of 
c e n t r e - e m b e d d i n g  can be described, but only 

5There  is in general  no uppe r  l imit  to t he  length  of th is  
list, eg. "I gave Fido a biscui t  yes te rday  in the  house  and 
Rover  a bone  today  in his  kennel." 

fiMilward (1990) in t roduces  a fo rma l i sm essential ly 
identical  to the  one presen ted  here, a l t hough  viewed f rom 
a very different perspect ive .  Milward (1994) shows how it 
hand les  a wide range  of  non-cons t i t uen t  co-ordinat ions .  

at the expense of unlimited' growth in the length 
of states: 

The S [] 
ny N [VP] 
the S(np) [VP] 
dog N [VP(np),VP] 

(8) the S(np) [VP(np),VP] 
cat N [VP(np),VP(nD),VP] 
scratched VP(np)[VP(np),VP] 
swallowed VP (np) [VP] 
died VP [] 

This contrasts with unlimited right-reeursion 
where there is no growth in state length: 

i s [] 
saw VP [] 
the NP [] 
cat N [] 

(9) that  S(rel)[ ] 
scratched VP [] 
the NP [] 
dog N [] 
that  S(rel)[ ] 

As the model is to be trained from real data, tran- 
sitions involving long states as in (8) will have an 
ever smaller and eventually effectively nil proba- 
bility. Therefore, when tuned to any particular 
language corpus the resulting grammar will be ef- 
fectively finite-state r. 

Pars ing  

Assuming that we now have a corpus parsed with 
the state-transition grammar, how can this infor- 
mation be used to parse fresh text? 

Firstly, for each word type in the corpus we can 
collect the transitions with which it occurs and 
calculate its probability distribution over all pos- 
sible transitions (an infinite number of which will 
be zero). To make this concrete, there are five to- 
kens of the word 'dog' in the examples thus far, 
and so 'dog' will have the transition probability 
distribution: 

N [NP] -4 N P  [] 0.2 
N [NP(t ) ]  -4 S(rel) [NP(t ) ]  0.2 
N [NP(t)]  -4 N P ( t )  [S(rel)] 0.2 
N [VP(np) ,VP]  -4 S(np)  [ V P ( n p ) , V P ]  0.2 

r T h i s  m a y  be compared  to the  c la im in Krauwer  & 
Des Tombes  (1981) t h a t  f in i te-s ta te  a u t o m a t a  offer a more  
sa t i s fac tory  charac te r iza t ion  of l anguage  t h a n  context - f ree  
g r a m m a r s .  
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N [] -~ S(rel) [1 0.2 

To find the most probable parse for a sentence, 
we simply find the path from word to word which 
maximizes the product of the state transitions (as 
we have a first order Markov process). 

However this simple-minded approach, although 
easy to implement, in other ways leaves much to 
be desired. The probability distributions are far 
too "gappy" and even if a huge amount of data 
were collected, the chances that they would pro- 
vide the desired path for a sentence of any reason- 
able length are slim. The process of generalizing 
or smoothing the transition probabilities is there- 
fore seen to be indispensable. 

Smoothing Probability Distributions 

Although far from exhausting the possible meth- 
ods for smoothing, the following three are those 
used in the implementation described at the end 
of the paper. 

1. Factor out elements on the stack which are 
merely carried over from state to state (which was 
done earlier in looking at the correspondence of 
state transitions to categorial types). The previ- 
ous transitions for 'dog' then become: 

N [.] -~ ~ [1 0.2 
N [a] --+ a [S(rel)] 0.2 
N [.] -~ S(np)  [.] 0.2 
N [a] --+ S(rel)  [a] 0.4 

2. Factor out other features which are merely 
passed from state to state. For instance in the 
example sentences, 'the' has the generalized tran- 
sitions: 

s [~] ~ N [VP,~] 
S(np)  [a] --4 N [VP(np) ,a ]  

which can be further generalized to the single 
transition: 

S(fl) [a] -~ N [VP(j3),a] /3 = set of features 

Words hitherto unknown to the system can be 
treated as being extreme examples of words lack- 
ing sufficient transition data and they might then 
be given a transition distribution blended from the 
open class word paradigms. 

Problems Arising from Smoothing 

Although essential for effective processing, the 
smoothing operations may give rise to new prob- 
lems. For example, factoring out items on the 
stack, as in (1), removes from the model the dis- 
inclination for long states inherent in the original 
corpus. To recapture this discarded aspect of the 
language, it would be sufficient to introduce into 
the model a probabilistic penalty based on state 
length. This penalty may easily be calculated ac- 
cording to the lengths of states in the parsed cor- 
pus. 

Not only would this allow the modelling of the re- 
striction on centre-embedding, but it would also 
allow many other "processing" phenomena to be 
accurately characterized. Taking as an exam- 
ple "heavy-NP shift", suppose that the corpus 
contained two distinct transitions for the word 
'threw', with the particle 'out' both before and 
after the object. 

threw VP ~ NP, X(out) prob: pl 
VP --+ X(out), NP prob: p2 

Even if pl  were considerably greater than p2, the 
cumulative negative effect of the longer states in 
(10) would eventually lead to the model giving 
the sentence with the shifted NP (11) a higher 
probability. 

3. Establish word paradigms, ie. classes of words 
which occur with similar transitions. The prob- I 
ability distribution for individual words can then 

threw 
be smoothed by suitably blending in the paradig- out 
matic distribution. These paradigms will corre- 

the spond to a great extent to the word classes of 
(11) bacon 

rule-based grammars. The advantage would be re- 
that 

tained however that the system is still fine-grained Fido 
enough to reflect the idiosyncratic patterns of in- 

had 
dividual words and could override this paradig- chewed 
matic information if sufficient data were available. 

I S [] 
threw VP [] 
the NP [X(out)] 
bacon N [X(out)] 

(10) that S(rel) [X(out)] 
Fido S ( n p )  [X(out)] 
had VP(np) [X(out)] 
chewed VP(np) [X(out)] 
out X(out) [] 

s [1 
v P  [] 
X(out) [NP] 
NP [1 
N [1 
S(rel) [1 
S(np) [1 
VP(np) [1 
VP(np) [] 
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Capturing Lexical Preferences 

One strength of n-gram models is that  they can 
capture a certain amount  of lexical preference 
information. For example, in a bigram model 
trained on sufficient da ta  the probabili ty of the 
bigram 'dog barked'  could be expected to be sig- 
nificantly higher than  'cat  barked' ,  and this slice of 
"world knowledge" is something our model lacks. 

It  would not be difficult to make a small extension 
to the present model to capture such information, 
namely by introducing an additional feature con- 
taining the "lexical value" of the head of a phrase. 
Abandoning the shorthand 'VP '  and representing 
a subject explicitly as a "slashed" NP, a sentence 
with added lexical head features would appear  as: 

The 
dog 
which 

(12) chased 
the 
cat 
barked 

s [] 
N(dog) [S(np(dog))] 
S(rel,np(dog))[S (np(dog))] 
S(np(dog)) [S(np(dog))] 
NP(cat) [S(np(dog))] 
N(cat) [S(np(dog))] 
S(np(dog)) [] 

In contrast  to n-grams, where this sentence would 
cloud somewhat  the "world knowledge", contain- 
ing as it does the bigram 'cat  barked' ,  the added 
structure of our model allows the lexical prefer- 
ence to be captured no mat te r  how far the head 
noun is from the head verb. From (12) the world 
knowledge of the system would be reinforced by 
the two stereotypical transitions: 

'chased' S ( n p ( d o g ) )  -+ N P ( c a t )  
'barked '  S ( n p ( d o g ) )  -+ [ ]  

Present Implementation 

16,000+ running words from section N of the 
Brown corpus (texts N01-N08) were hand-parsed 
using the state-transit ion grammar .  The actual 
formalism used was much fuller than the rather  
schematic one given above, including many  ad- 
ditional features such as case, tense, person and 
number. Transition probabilities were generalized 
in the ways discussed in the previous section. 

R e s u l t s  

100 sentences of less than 15 words were chosen 
randomly from other texts in section N of the 
Brown corpus (N09-N14) and fed to the parser 
without alteration. Unknown words in the input, 
of which there were obviously many, were assigned 

to one of seven orthographic classes and given ap- 
propriate transitions calculated from the corpus. 

* 27 were parsed correctly, ie. exactly the same 
as the hand parse or differing in only relatively 
insignificant ways which the model could not 
hope to know s . 

• 23 were parsed wrongly, ie. the analysis differed 
from the hand parse in some non-trivial way. 

* 50 were not parsed at all, ie. one or more of the 
transitions necessary to find a parse pa th  was 
lacking, even after generalizing the transitions. 

Future Development 

Although the results at present are extremely 
modest,  it should be borne in mind both tha t  the 
amount  of da ta  the system has to work on is very 
small and tha t  the smoothing of transit ion prob- 
abilities is still far from optimal.  The present tar-  
get is to achieve such a level of performance tha t  
the corpus can be extended by hand-correction of 
the parser output,  ra ther  than hand-parsing from 
scratch. Not only will this hopefully save a cer- 
tain amount  of drudgery, it should also help to 
minimize .errors and maintain consistency. 

A more distant goal is to ascertain whether the 
performance of the model can improve after pars- 
ing new texts and processing the da ta  therein even 
without hand-correction of the parses, and if so 
what the limits are to such "self-improvement". 
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