
R a p i d D e v e l o p m e n t of M o r p h o l o g i c a l D e s c r i p t i o n s for
Full Language Processing Systems

David Carter
SRI International Cambridge Computer Science Research Centre

23 Millers Yard, Mill Lane
Cambridge CB2 1RQ, U:K.

dmc~cam, sri. com

Abstract
I describe a compiler and development
environment for feature-augmented two-
level morphology rules integrated into
a full NLP system. The compiler is
optimized for a class of languages in-
cluding many or most European ones,
and for rapid development and debug-
ging of descriptions of new languages.
The key design decision is to compose
morphophonological and morphosyntac-
tic information, but not the lexicon,
when compiling the description. This
results in typical compilation times of
about a minute, and has allowed a rea-
sonably full, feature-based description of
French inflectional morphology to be de-
veloped in about a month by a linguist
new to the system.

1 Introduction
The paradigm of two-level morphology (Kosken-
niemi, 1983) has become popular for handling
word formation phenomena in a variety of lan-
guages. The original formulation has been ex-
tended to allow morphotactic constraints to be ex-
pressed by feature specification (Trost, 1990; A1-
shawi et al, 1991) rather than Koskenniemi's less
perspicuous device of continuation classes. Meth-
ods for the automatic compilation of rules from a
notation convenient for the rule-writer into finite-
state au tomata have also been developed, allowing
the efficient analysis and synthesis of word forms.
The automata may be derived from the rules alone
(Trost, 1990), or involve composition with the lex-
icon (Kart tunen, Kaplan and Zaenen, 1992).

However, there is often a trade-off between run-
time efficiency and factors important for rapid and
accurate system development, such as perspicuity
of notation, ease of debugging, speed of compi-
lation and the size of its output , and the inde-
pendence of the morphological and lexical compo-
nents. In compilation, one may compose any or
all of

(a) the two-level rule set,

(b) the set of affixes and their allowed combina-
tions, and

(c) the lexicon;

see Kaplan and Kay (1994 / for an exposition of
the mathematical basis. The type of compilation
appropriate for rapid development and acceptable
run-time performance depends on, at least, the
nature of the language being described and the
number of base forms in the lexicon; that is, on the
position in the three-dimensional space defined by
(a), (b) and (c).

For example, English inflectional morphology is
relatively simple; dimensions (a) and (b) are fairly
small, so if (c), the lexicon, is known in advance
and is of manageable size, then the entire task of
morphological anMysis can be carried out at com-
pile time, producing a list of analysed word forms
which need only be looked up at run time, or a
network which can be traversed very simply. Al-
ternatively, there may be no need to provide as
powerful a mechanism as two-level morphology at
all; a simpler device such as affix stripping (A1-
shawi, 1992, p l l9f f) or merely listing all inflected
forms explicitly may be preferable.

For agglutinative languages such as Korean,
Finnish and Turkish (Kwon and Kart tunen, 1994;
Koskenniemi, 1983; Oflazer, 1993), dimension (b)
is very large, so creating an exhaustive word list
is out of the question unless the lexicon is trivial.
Compilation to a network may still make sense,
however, and because these languages tend to ex-
hibit few non-eoncatenative morphophonological
phenomena other than vowel harmony, the con-
tinuation class mechanism may suffice to describe
the allowed affix sequences at the surface level.

Many European languages are of the inflect-
ing type, and occupy still another region of the
space of difficulty. They are too complex mor-
phologically to yield easily to the simpler tech-
niques that can work for English. The phonologi-
cal or orthographic changes involved in affixation
may be quite complex, so dimension (a) can be
laige, and a feature mechanism may be needed to
handle such varied but interrelated morphosyn-

202

tactic phenomena such as umlaut (Trost, 1991),
case, number, gender, and different morphologi-
cal paradigms. On the other hand, while there
may be many different affixes, their possibilities
for combination within a word are fairly limited,
so dimension (b) is quite manageable.

This paper describes a representation and as-
sociated compiler intended for two-level morpho-
logical descriptions of the written forms of inflect-
ing languages. The system described is a com-
ponent of the Core Language Engine (CLE; AI-
shawi, 1992), a general-purpose language analyser
and generator implemented in Prolog which sup-
ports both a built-in lexicon and access to large
external lexical databases. In this context, highly
efficient word analysis and generation at run-time
are less important than ensuring that the mor-
phology mechanism is expressive, is easy to debug,
and allows relatively quick compilation. Morphol-
ogy also needs to be well integrated with other
processing levels. In particular, it should be pos-
sible to specify relations among morphosyntactic
and morphophonological rules and lexical entries;
for the convenience of developers, this is done by
means of feature equations. Further, it cannot be
assumed that the lexicon has been fully specified
when the morphology rules are compiled. Devel-
opers may wish to add and test further lexical
entries without frequently recompiling the rules,
and it may also be necessary to deal with un-
known words at run time, for example by query-
ing a large external lexical database or at tempt-
ing spelling correction (Alshawi, 1992, pp124-7).
Also, both analysis and generation of word forms
are required. Run-time speed need only be enough
to make the time spent on morphology small com-
pared to sententia] and contextual processing.

These parameters - languages with a complex
morphology/syntax interface but a limited num-
ber of affix combinations, tasks where the lexicon
is not necessarily known at compile time, bidirec-
tional processing, and the need to ease develop-
ment rather than optimize run-time efficiency -
dictate the design of the morphology compiler de-
scribed in this paper, in which spelling rules and
possible affix combinations (items (a) and (b)),
but not the lexicon (item (c)), are composed in
the compilation phase. Descriptions of French,
Polish and English inflectional morphology have
been developed for it, and I show how various as-
peers of the mechanism allow phenomena in these
languages to be handled.

2 The Description Language

2.1 M o r p h o p h o n o l o g y

The formalism for spelling rules (dimension (a)) is
a syntactic variant of that of Ruessink (1989) and
Pulman (1991). A rule is of the form

s p e l l (N a m e , Surface Op Lexical,
Classes, Features).

Rules may be optional (Op is "~") or obliga-
tory (Op is "¢~"). Surface and Lexical are both
strings of the form

" LContext I Target I RContext"

meaning that the surface and lexical targets may
correspond if the left and right contexts and the
Features specification are satisfied. The vertical
bars simply separate the parts of the string and
do not themselves match letters. The correspon-
dence between surface and lexical strings for an
entire word is licensed if there is a partitioning of
both so that each partit ion (pair of corresponding
surface and lexica] targets) is licensed by a rule,
and no partit ion breaks an obligatory rule. A par-
tition breaks an obligatory rule if the surface tar-
get does not match but everything else, including
the feature specification, does.

The Features in a rule is a list of Feature =
Value equations. The allowed (finite) set of values
of each feature must be prespecified. Value may
be atomic or it may he a boolean expression.

Members of the surface and lexieal strings may
be characters or classes of single characters. The
latter are represented by a single digit N in the
string and an item N/ClassName in the Classes
list; multiple occurrences of the same N in a single
rule must all match the same character in a given
application.

Figure I shows three of the French spelling rules
developed for this system. The change_e_~l rule
(simplified slightly here) makes it obligatory for a
lexical e to be realised as a surface ~ when followed
by t, r, or l, then a morpheme boundary, then
e, as long as the feature cdouble has an appro-
priate value. The d e f a u l t rule that copies char-
acters between surface and lexical levels and the
boundary rule that deletes boundary markers are
both optional. Together these rules permit the fol-
lowing realization of cher ("expensive") followed
by e (feminine gender suffix) as chore, as shown
in Figure 2. Because of the obligatory nature of
change_e_~l, and the fact that the orthographic
feature restriction on the root cher, [cdouble=n] ,
is consistent with the one on that rule, an alter-
native realisation chere, involving the use of the
d e f a u l t rule in third position, is ruled out. 1

Unlike many other flavours of two-level mor-
phology, the Target parts of a rule need not con-
sist of a single character (or class occurrence);
they can contain more than one, and the surface
target may be empty. This obviates the need
for "null" characters at the surface. However,
although surface targets of any length can use-
fully be specified, it is in p rac t i cea good strategy

1The cdouble feature is in fact used to specify the
spelling changes when e is added to various stems:
cher+e=chdre, achet+e=ach~te, but jet+e=jette.

203

spe l l (change_e_~ l , " I ~1" ~:~ " I e I l+e" , [l / t r l] , [,cdouble=n]) .
spell(default, " I l l " =~ " I l l " , [,1/letter], ['3).
spell(boundary, " [[" ~ " I l l " , [,I/bmarker] , ['1).

Figure 1: Three spelling rules

Surface: c h ~ r e
Lexical: c h e r + e +
Rule: def. def. c.e_~l def. bdy. def. bdy.

Figure 2: Parti t ioning of ehtre as chef+e+

always to make lexical targets exactly one char-
acter long, because, by definition, an obligatory
rule cannot block the application of another rule
if their lexicM targets axe of different lengths. The
example in Section 4.1 below clarifies this point.

2.2 W o r d F o r m a t i o n a n d I n t e r f a c i n g to
S y n t a x

The allowed sequences of morphemes, and the
syntactic and semantic properties of morphemes
and of the words derived by combining them, are
specified by morphosyntactic production rules (di-
mension (b)) and lexical entries both for affixes
(dimension (b)) and for roots (dimension (c)), es-
sentially as described by Alshawi (1992) (where
the production rules are referred to as "morphol-
ogy rules"). Affixes may appear explicitly in pro-
duction rules or, like roots, they may be assigned
complex feature-valued categories. Information,
including the creation of logical forms, is passed
between constituents in a rule by the sharing of
variables. These feature-augmented production
rules are just the same device as those used in the
CLE's syntactico-semantic descriptions, and are a
much more natural way to express morphotactic
information than finite-state devices such as con-
t inuation classes (see Trost and Matiasek, 1994,
for a related approach).

The syntactic and semantic production rules for
deriving the feminine singular of a French adjec-
tive by suffixation with "e" are given, with some
details omitted, in Figure 3. In this case, nearly
MI features are shared between the inflected word
and the root, as is the logical form for the word
(shown as Adj in the d o r i v rule). The only differ-
ing feature is that for gender, shown as the third
argument of the ©agr macro, which itself expands
to a category.

Irregular forms, either complete words or affix-
able stems, are specified by listing the morpho-
logical rules and terminal morphemes from which
the appropriate analyses may be constructed, for
example:

irreg(dit, [-dire, ' PRESENT_3s '] ,
[v_v_affix-only]).

Here, PRESENT_3s is a pseudo-affix which has the
same syntactic and semantic information attached

to it as (one sense of) the affix " t " , which is
used to form some regular third person singulars.
However, the spelling rules make no reference to
PRESENT_3s; it is simply a device allowing cate-
gories and logical forms for irregulax words to be
built up using the same production rules as for
regular words.

3 Compilation

All rules and lexieal entries in the CLE are com-
piled to a form that allows normal Prolog unifi-
cation to be used for category matching at run
time. The same compiled forms are used for anal-
ysis and generation, but are indexed differently.
Each feature for a major category is assigned a
unique position in the compiled Prolog term, and
features for which finite value sets have been spec-
ified are compiled into vectors in a form that al-
lows boolean expressions, involving negation as
well as conjunction and disjunction, to be con-
joined by unification (see Mellish, 1988; Alshawi,
1992, pp46-48).

The compilation of morphological information
is motivated by the nature of the task and of the
languages to be handled. As discussed in Sec-
tion 1, we expect the number of affix combina-
tions to be limited, but the lexicon is not neces-
sarily known in advance. Morphophonological in-
teractions may be quite complex, and the purpose
of morphological processing is to derive syntactic
and semantic analyses from words and vice versa
for the purpose of full NLP. Reasonably quick
compilation is required, and run-time speed need
only be moderate.

3.1 C o m p i l i n g Spe l l i ng P a t t e r n s

Compilation of individual s p e l l rules is straight-
forward; feature specifications are compiled to
posit ional/boolean format, characters and occur-
rences of character classes are also converted to
boolean vectors, and left contexts are reversed (cf
Abrahamson, 1992) for efficiency. However, al-
though it would be possible to analyse words di-
rectly with individually compiled rules (see Sec-
tion 5 below), it can take an unacceptably long
time to do so, largely because of the wide range of

204

morph(adjp_adjp_fem,
[a d j p : [a g r = @ a g r (3 , s i n g , f)] Shared] ,
a d j p : [a g r = ~ag r (3 , s ing ,m) I Shared] ,
el)
:- Shared=[aform=Aform, ..., wh=n].

Z rule (syntax)
Z mother category
Z first daughter (category)
Z second daughter (literal)

shared syntactic features

deriv(adjp_adjp_fem, only
[(A d j , a d j p : S h a r e d) ,
(Adj,adjp:Shared), Z
(_,e)])
• - Shared=[anaIn=Ai, ..., subjval=Subj]

rule (semantics)
mother logical form and cat.
first daughter
second daughter
• ~ shared semantic features

Figure 3: Syntactic and semantic morphological production rules

choices of rule available at each point and the need
to check at each stage that obligatory rules have
not been broken. We therefore take the following
approach.

First, all legal sequences of morphemes are pro-
duced by top-down nondeterministic application
of the production rules (Section 2.2), selecting af-
fixes but keeping the root morpheme unspecified
because, as explained above, the lexicon is unde-
termined at this stage. For example, for English,
the sequences *+ed+ly and un+*+ing are among
those produced, the asterisk representing the un-
specified root.

Then, each sequence, together with any associ-
ated restrictions on orthographic features, under-
goes analysis by the compiled spelling rules (Sec-
tion 2.1), with the surface sequence and the root
part of the lexical sequence initially uninstanti-
ated. Rules are applied recursively and nondeter-
ministically, somewhat in the style of Abramson
(1992), taking advantage of Prolog's unification
mechanism to instantiate the part of the surface
string corresponding to affixes and to place some
spelling constraints on the start and/or end of the
surface and/or lexical forms of the root.

This process results in a set of spelling palterns,
one for each distinct application of the spelling
rules to each affix sequence suggested by the pro-
duction rules. A spelling pattern consists of par-
tially specified surface and lexical root character
sequences~ fully specified surface and lexical affix
sequences, orthographic feature constraints asso-
ciated with the spelling rules and affixes used, and
a pair of syntactic category specifications derived
from the production rules used. One category is
for the root form, and one for the inflected form.

Spelling patterns are indexed according to the
surface (for analysis) and lexical (for generation)
affix characters they involve. At run time, an in-
flected word is analysed nondeterministically in
several stages, each of which may succeed any
number of times including zero.

• stripping off possible (surface) affix charac-
ters in the word and locating a spelling pat-
tern that they index;

• matching the remaining characters in the
word against the surface part of the spelling
pattern, thereby, through shared variables,
instantiating the characters for the lexical
part to provide a possible root spelling;

• checking any orthographic feature constraints
on that root;

• finding a lexical entry for the root, by any of a
range of mechanisms including lookup in the
system's own lexicon, querying an external
lexical database, or attempting to guess an
entry for an undefined word; and

• unifying the root lexical entry with the root
category in the spelling pattern, thereby,
through variable sharing with the other cate-
gory in the pattern, creating a fully specified
category for the inflected form that can be
used in parsing.

In generation, the process works in reverse, start-
ing from indexes on the lexical affix characters.

3.2 R e p r e s e n t i n g Lexica l R o o t s

Complications arise in spelling rule application
from the fact that, at compile time, neither the
lexical nor the surface form of the root, nor even
its length, is known. It would be possible to hy-
pothesize all sensible lengths and compile separate
spelling patterns for each. However, this would
lead to many times more patterns being produced
than are really necessary.

Lexical (and, after instantiation, surface)
strings for the unspecified roots are therefore rep-
resented in a more complex but less redundant
way: as a structure

L1 ... Lm v(L, R) R1 ... R , .

Here the Li's are variables later instantiated to
single characters at the beginning of the root, and
L is a variable, which is later instantiated to a
list of characters, for its continuation. Similarly,
the /~ 's represent the end of the root, and R
is the continuation (this time reversed) leftwards
into the root from the R1. The v(L, R) structure
is always matched specially with a Kleene-star of

205

the d e f a u l t spelling rule. For full generality and
minimal redundancy, Lm and R1 are constrained
not to match the default rule, but the other Li 's
and Ri 's may. The values of n required are those
for which, for some spelling rule, there are k char-
acters in the target lexical string and n - k from
the beginning of the right context up to (but not
including) a boundary symbol. The lexical string
of tha t rule may then match R1, . . . ,Rk, and its
right context match Rk+l, . . . , Rn,+,.... The re-
quired values of m may be calculated similarly
with reference to the left contexts of rules. 2

During rule compilation, the spelling pa t te rn
tha t leads to the run-t ime analysis of chore given
above is derived from m = 0 and n = 2 and the
specified rule sequence, with the variables R1 R2
matching as in Figure 4.

3.3 A p p l y i n g O b l i g a t o r y R u l e s

In the absence of a lexical string for the root, the
correct t rea tment of obligatory rules is another
problem for compilation. If an obligatory rule
specifies tha t lexical X must be realised as surface
Y when certain contextual and feature conditions
hold, then a part i t ioning where X is realised as
something other than Y is only" allowed if one or
more of those conditions is unsatisfied. Because of
the use of boolean vectors for both features and
characters, it is quite possible to constrain each
part i t ioning by unifying it with the complement
of one of the conditions of each applicable obliga-
tory rule, thereby preventing that rule from apply-
ing. For English, with its relatively simple inflec-
tional spelling changes, this works well. However,
for other languages, including French, it leads to
excessive numbers of spelling patterns, because
there are many obligatory rules with non-trivial
contexts and feature specifications.

For this reason, complement unification is not
actually carried out at compile time. Instead, the
spelling pat terns are augmented with the fact tha t
certain conditions on certain obligatory rules need
to be checked on certain parts of the parti t ioning
when it is fully instantiated. This slows down run-
t ime performance a little but, as we will see below,
the speed is still quite acceptable.

3.4 T i m i n g s

The compilation process for the entire rule set
takes just over a minute for a fairly thorough de-

2Alternations in the middle of a root, such as um-
laut, can be handled straightforwardly by altering the
root/affix pattern from L1 . . . Lm v(L,R) R1.. .R, to
L 1 . . . L m v(L,R) M v (L ' ,R ') R1...Rn, with M for-
bidden to be the de fau l t rule. This has not been
necessary for the descriptions developed so far, but its
implementation is not expected to lead to any great
decrease in run-time performance, because the non-
determinism it induces in the lookup process is no
different in kind from that arising from alternations
at root-affix boundaries.

scription of French inflectional morphology, run-
ning on a Sparcstat ion 10/41 (SPECint92=52.6).
Run-t ime speeds are quite adequate for full NLP,
and reflect the fact tha t the sys tem is imple-
mented in Prolog rather than (say) C and that full
syntactico-semantic analyses of sentences, rather
than just morpheme sequences or acceptabili ty
judgments, are produced.

Analysis of French words using this rule set and
only an in-core lexicon averages around 50 words
per second, with a mean of 11 spelling analyses
per word leading to a mean of 1.6 morphological
analyses (the reduction being because many of the
roots suggested by spelling analysis do not exist
or cannot combine with the affixes produced). If
results are cached, subsequent a t t empts to anal-
yse the same word are around 40 times faster still.
Generat ion is also quite acceptably fast, running
at around 100 Words per second; it is slightly faster
than analysis because only one spelling, rather
than all possible analyses, is sought from each
call. Because of the separation between lexical
and morphological representations, these timings
are essentially unaffected by in-core lexicon size,
as full advantage is taken of Prolog's built-in in-
dexing.

Development times are at least as impor tant
as computat ion times. A rule set embodying a
quite comprehensive t r ea tment of French inflec-
tional morphology was developed in about one
person month. The English spelling rule set was
adapted from Ritchie e~ al (1992) in only a day or
two. A Polish rule set is also under development,
and Swedish is planned for the near future.

4 Some Examples

To clarify further the use of the formalism and
the operation of the mechanisms, we now examine
several further examples.

4.1 M u l t i p l e - l e t t e r s p e l l i n g c h a n g e s

Some obligatory spelling changes in French involve
more than one letter. For example, masculine ad-
jectives and nouns ending in eau have feminine
counterparts ending in elle: beau ("nice") becomes
belle, chameau ("camel") becomes chamelle. The
final e is a feminizing affix and can be seen as
inducing the obligatory spelling change au ~ II.
However, al though the obvious spelling rule,

spell(change_au_ll, "Ill[" +-+ "laui+e"),

allows this change, it does not rule out the incor-
rect realization of beau+e as e'beaue, shown in Fig-
ure 5, because it only affects parti t ionings where
the au at the lexical level forms a single parti t ion,
ra ther than one for a and one for u. Instead, the
following pair of rules, in which the lexical targets
have only one character each, achieve the desired
effect:

206

Compile
time:

Run
time:

Variable: v(L, t=0 R1 R2 ...
Surface: c h ~ r e

Figure 4: Spelling pat tern application to the analysis of ch@re

Surface: b e a u e
Lexical: b e a u + e +
Rule: def. def. def. def. bdy. def. bdy.

Figure 5: Incorrect partit ioning for beau+e+

spell(change_au_lll, " Ill" ~ "lalu+e")
spell(change_au_ll2, "Ill" ~-+ "alul+e")

Here, change_au_lll rules out a:a partition in
Figure 5, and change_au_ll2 rules out the u:u
one.

It is not necessary for the surface target to con-
tain exactly one character for the blocking effect
to apply, because the semantics of obligatoriness
is that the lezicaltarget and all contexts, taken to-
gether, make the specified surface target (of what-
ever length) obligatory for that partit ion. The re-
verse constraint, on the lexical target, does not
apply.

4.2 U s i n g f e a t u r e s t o c o n t r o l r u l e
a p p l i c a t i o n

Features can be used to control the application of
rules to particular lexical items where the appli-
cability cannot be deduced from spellings alone.
For example, Polish nouns with stems whose fi-
nal syllable has vowel 6 normally have inflected
forms in which the accent is dropped. Thus in the
nominative plural, kr6j ("style") becomes kroje,
b6r ("forest") becomes bory, b6j ("combat") be-
comes boje. However, there are exceptions, such as
zb6j ("bandi t") becoming zbgje. Similarly, some
French verbs whose infinitives end in -eler take
a grave accent on the first e in the third per-
son singular future (modeler, "model", becomes
mod~lera), while others double the I instead (e.g.
appeler, "call", becomes appellera).

These phenomena can be handled by providing
an obligatory rule for the case whether the letter
changes, but constraining the applicability of the
rule with a feature and making the feature clash
with tha t for roots where the change does not oc-
cur. In the Polish case:

spe l l (change_6_o , "[o[" +-+ "[611+2",

[i / c , 21v], [c l m g o : y]) .

o r t h (z b 6 j , [chngo=n]) .

Then the parti t ionings given in Figure 6 will be
the only possible ones. For b6j, the change_6_o

rule must apply, because the chngo feature for b6j
is unspecified and therefore can take any value; for
zb@ however, the rule is prevented from applying
by the feature clash, and so the default rule is the
only one that can apply.

5 Debugging the Rules

The debugging tools help in checking the opera-
tion of the spelling rules, either (1) in conjunction
with other constraints or (2) on their own.

For case (1), the user may ask to see all inflec-
tions of a root licensed by the spelling rules, pro-
duction rules, and lexicon; for chef, the output
is

[c h e r , e] : a d j p -> chore
[c h e r , e , s] : ad jp -> chores
[c h e r , s] : adjp -> chers

meaning that when cher is an a d j p (adjective) it
may combine with the suffixes listed to produce
the inflected forms shown. This is useful in check-
ing over- and undergeneration. It is also possible
to view the spelling pat terns and production rule
tree used to produce a form; for chore, the trace
(slightly simplified here) is as in figure 7. The
spelling pat tern 194 referred to here is the one
depicted in a different form in Figure 4. The no-
tation {clmnprstv=A} denotes a set of possible
consonants represented by the variable A, which
also occurs on the right hand side of the rule, in-
dicating that the same selection must be made for
both occurrences. Production rule tree 17 is that
for a single application of the rule ad jp_adjp_fem,
which describes the feminine form of the an ad-
jective, where the root is taken to be the mas-
culine form. The Root and I n f l lines show the
features that differ between the root and inflected
forms, while the Both line shows those that they
share. Tree 18, which is also pointed to by the
spelling pat tern, describes the feminine forms of
nouns analogously.

For case (2), the spelling rules may be applied
directly, just as in rule compilation, to a speci-
fied surface or lexical character sequence, as if no

207

Surface: b o j e
Lexical: b 6 j + e +
Rule: def. c_6_o, def. bdy . def. bdy.

Surface: z b 6 j e
Lexicah z b 6 j + e +
Rule: def. def. def. def. bdy . def. bdy.

Figure 6: Feature-dependent dropping of accent

"chbre" has root "chef" with pattern 194 and tree 17.

Pattern 194:

"___~{clmnprstv=A}e" <-> "___e{clmnprstv=A}+e+"

=> tree 17 and 18 if [doublec=n]

Uses: default* change_e_~l default boundary default boundary

Tree 17:

Both = adjp:[dmodified=n,headfinal=y,mhdfl=y,synmorpha=l,wh=n]
Root = adjp:[agr=agr:[gender=m]]

Infl = adjp:[agr=agr:[gender=f]]

Tree = adjp_adjp_fem=>[*,e]

Figure 7: Debugger trace of derivation of chore

lexical or morphotactic constraints existed. Fea-
ture constraints, and cases where the rules will not
apply if those constraints are broken, are shown.
For the lexical sequence cher+e+, for example, the
output is as follows.

Surface: "chbre" <->

Lexical: "chef". Suffix: "e"

c :: c <- default

h :: h <- default

b : : e < - c h a n g e _ e _ b l

r : : r < - d e f a u l t

:: + <- boundary

Category: orth: [cdouble=n]

e :: e <- default

:: + <~ boundary

Surface :

Lexical :

c :: c <- default

h :: h <- default

e :: e <- default

" change_e_ b l !')
r :: r <- default

:: + <- boundary

e :: e <- default

:: + <- boundary

"chere" <->

"cher". Suffix: "e"

(breaks

This indicates to the user tha t if chef is given
a lexical entry consistent with the constraint

c d o u b l e = n , then only the first analysis will be
valid; otherwise, only the second will be.

6 C o n c l u s i o n s and F u r t h e r W o r k

The rule formalism and compiler described here
work well for European languages with reasonably
complex orthographic changes but a limited range
of possible affix combinations. Development, com-
pilation and run-time efficiency are quite accept-
able, and the use of rules containing complex
feature-augmented categories allows morphotactic
behaviours and non-segmentM spelling constraints
to be specified in a way that is perspicuous to lin-
guists, leading to rapid development of descrip-
tions adequate for full NLP.

The kinds of non-linear effects common in
Semitic languages, where vowel and consonant
pat terns are interpolated in words (Kay, 1987;
Kiraz, 1994) could be t reated efficiently by the
mechanisms described here if it proved possible to
define a representation that allowed the parts of
an inflected word corresponding to the root to be
separated fairly cleanly from the parts expressing
the inflection. The latter could then be used by a
modified version of the current system as the basis
for efficient lookup of spelling patterns which, as
in the current system, would allow possible lexical
roots to be calculated.

Agglutinative languages could be handled ef-

208

flciently by the current mechanism if specifica-
tions were provided for the affix combinations that
were likely to occur at all often in real texts. A
backup mechanism could then be provided which
attempted a slower, but more complete, direct ap-
plication of the rules for the rarer cases.

The interaction of morphological analysis with
spelling correction (Carter, 1992; Oflazer, 1994;
Bowden, 1995) is another possibly fruitful area of
work. Once the root spelling patterns and the affix
combinations pointing to them have been created,
analysis essentially reduces to an instance of affix-
stripping, which would be amenable to exactly the
technique outlined by Carter (1992). As in that
work, a discrimination net of root forms would be
required; however, this could be augmented inde-
pendently of spelling pattern creation, so that the
flexibility resulting from not composing the lexi-
con with the spelling rules would not be lost.

A c k n o w l e d g m e n t s

I am grateful to Manny Rayner and anonymous
European ACL referees for commenting on earlier
versions of this paper, and to Pierrette Bouillion
and Malgorzata Styg for comments and also fo~
providing me with their analyses of the French
and Polish examples respectively.

This research was partly funded by the Defence
Research Agency, Malvern, UK, under Strategic
Research Project M2YBT44X.

R e f e r e n c e s

Abramson, H., (1992). "A Logic Programming
View of Relational Morphology". Proceedings
of COLING-92, 850-854.

Alshawi, H. (1992). The Core Language Engine
(ed). MIT Press.

Alshawi, H., D.J. Arnold, R. Backofen, D.M.
Carter, J. Lindop, K. Netter, S.G. Pulman,
J. Tsujii, and H. Uszkoreit (1991). Euro-
ira ET6/I: Rule Formalism and Virtual Ma-
chine Design Study. Commission of the Eu-
ropean Communities, Luxembourg.

Bowden, T. (1995) "Cooperative Error Handling
and Shallow Processing", these proceedings.

Carter, D.M. (1992). "Lattice-based Word Identi-
fication in CLARE". Proceedings of A CL-92.

Kaplan, R., and M. Kay (1994). "Regular Mod-
els of Phonological Rule Systems", Computa-
tional Linguistics, 20:3, 331-378.

Kay, M. (1987). "Non-concatenative Finite-State
Morphology". Proceedings of EA CL-87.

Karttunen, L., R.M. Kaplan, and A. Zaenen
(1992). "Two-level Morphology with Com-
position". Proceedings of COLING-92, 141:
148.

Kiraz, G. (1994). "Multi-tape Two-level Morphol-
ogy". Proceedings of COLING-94, 180-186.

Koskenniemi, K. (1983). Two-level morphology:
a general computational model for word.form
recognition and production. University of
Helsinki, Department of General Linguistics,
Publications, No. 11.

Kwon, H-C., and L. Karttunen (1994). "Incre-
mental Construction of a Lexical Transducer
for Korean". Proceedings of COLING-9~,
1262-1266.

Mellish, C. S. (1988). "Implementing Systemic
Classification by Unification". Computa-
tional Linguistics 14:40-51.

Oflazer, K. (1993). "Two-level Description of
Turkish Morphology". Proceedings of Euro-
pean A CL- 93.

Oflazer, K. (1994). Spelling Correction in Agglu-
tinative Languages. Article 9410004 in
cmp-lg©xxx, l an l . gov archive.

Ritchie, G., G.J. Russell, A.W. Black and S.G.
Pulman (1992). Computational Morphology.
MIT Press.

Ruessink, H. (1989). Two Level Formalisms.
Utrecht Working Papers in NLP, no. 5.

Trost, H. (1990). "The Application of Two-level
Morphology to Non-Concatenative German
Morphology". Proceedings of COLING.90,
371-376.

Trost, H. (1991). "X2MORF: A Morphologi-
cal Component Based on Augmented Two-
level Morphology". Proceedings of IJCAI-91,
1024-1030.

Tr0st, H., and J. Matiasek (1994). "Morphol-
ogy with a Null-Interface", Proceedings of
COLING-94.

209

