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Abstract 

Currently several grammatical formalisms converge 
towards being declarative and towards utilizing 
context-free phrase-structure grammar as a back- 
bone, e.g. LFG and PATR-II. Typically the pro- 
cessing of these formalisms is organized within a 
chart-parsing framework. The declarative charac- 
ter of the formalisms makes it important to decide 
upon an overall optimal control strategy on the part 
of the processor. In particular, this brings the rule- 
invocation strategy into critical focus: to gain max- 
imal processing efficiency, one has to determine the 
best way of putting the rules to use. The aim of this 
paper is to provide a survey and a practical compari- 
son of fundamental rule-invocation strategies within 
context-free chart parsing. 

1 Background 
and Introduction 

An apparent tendency in computational linguistics 
during the last few years has been towards declara- 
tive grammar formalisms. This tendency has mani- 
fested itself with respect to linguistic tools, perhaps 
seen most clearly in the evolution from ATNs with 
their strongly procedural grammars to PATR-II in 
its various incarnations (Shieber et al. 1983, Kart- 
tunen 1986), and to logic-based formalisms such as 
DCG (Pereira and Warren 1980). It has also man- 
ifested itself in linguistic theor/es, where there has 
been a development from systems employing sequen- 
tial derivations in the analysis of sentence struc- 
tures to systems like LFG and GPSG which estab- 
lish relations among the elements of a sentence in an 
order-independent and also direction-independent 
way. For example, phenomena such as rule order- 
ing simply do not arise in these theories. 

This research has been supported by the National Swedish 
Board for Technical Development. 

In addition, declarative formalisms are, in princi- 
ple, processor-independent. Procedural  formalisms, 
although possibly highly standardized (like Woods' 
ATN formalism), typically make references to an 
(abstract) machine. 

By virtue of this, it is possible for grammar writ- 
ers to concentrate on linguistic issues, leaving aside 
questions of how to express their descriptions in a 
way which provides for efficient execution by the pro- 
cessor at hand. 

Processing efficiency instead becomes an issue for 
the designer of the processor, who has to find an 
overall aoptimal~ control strategy for the processing 
of the grammar. In particular (and also because of 
the potentially very large number of rules in realis- 
tic natural-language systems), this brings the rule- 
invocation strategy I into critical focus: to gain max- 
imal processing efficiency, one has to determine the 
best way of putting the rules to use. 2 

This paper focuses on rule-invocation strategies 
from the perspective of (context-free) chart parsing 
(Kay 1973, 1982; Kaplan 1973). 

Context-free phrase-structure grammar is of in- 
terest here in particular because it is utilized as 
the backbone of many declarative formalisms. The 
chart-parsing framework is of interest in this connec- 
tion because, being a C'higher-order algorithm" (Kay 
1982:329), it lends itself easily to the processing of 
different grammatical formalisms. At the same time 
it is of course a natural test bed for experiments with 
various control strategies. 

Previously a number of comparisons of rule- 
invocation strategies in this or in similar settings 
have been reported: 

ZThis term seems to have been coined by Thompson 
(1981). Basically, it refers to the spectrum between top-down 
and bottom-up processing of the grammar rules. 

2The other principal control-strategy dimension, the search 
~g;/(depth-first  vs. breadth-first), is irrelevant for the effi- 
ciency in chart parsing since it only affects the order in which 
successive (partial) analyses are developed. 
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Kay (1982) is the principal source, providing a 
very general exposition of the control strategies and 
da ta  structures involved in chart parsing. In con- 
sidering the efficiency question, Kay favours a ~di- 
rected ~ bot tom-up strategy (cf. section 2.2.3}. 

Thompson (1981) is another fundamental  source, 
though he discusses the effects of various rule- 
invocation strategies mainly from the perspective of 
GPSG parsing which is not the main point here. 

Kilbury (1985) presents a left-corner strategy, ar- 
guing that  with respect to natural-language gram- 
mars it will generally outperform the top-down 
(Earley-style) strategy. 

Wang (1985) discusses Kilbury's and Earley's al- 
gorithms, favouring the lat ter  because of the ineffi- 
cient way in which bot tom-up algorithms deal with 
rules with right common factors. Neither Wang nor 
Kilbury considers .the natural  approach to overcom- 
ing this problem, viz. top-down filtering (of. section 
2.2.3). 

As for empirical studies, Slocum (1981) is a rich 
source. Among many other things, he provides some 
performance da ta  regarding top-down filtering. 

Pra t t  (1975) reports  on a successful augmentation 
of a bo t tom-up  chart-like parser with a top-down 
filter. 

Tomita  (1985, 1986) introduces a very efficient, 
extended LR-parsing algorithm that  can deal with 
full context-free languages. Based on empirical com- 
parisons, Tomita  shows his algorithm to be superior 
to Earley's  algorithm and also to a modified ver- 
sion thereof (corresponding here to %elective top- 
downS; cf. section 2.1.2). Thus, with respect to 
raw efficiency, it seems clear that  Tomita 's  algorithm 
is superior to comparable chart-parsing algorithms. 
However, a chart-parsing framework does have its 
advantages, particularly in its flexibility and open- 
endedness. 

The contribution this paper  makes is: 

to survey fundamental  strategies for rule- 
invocation within a context-free chart-parsing 
framework; in particular 

to specify ~directed ~ versions of Kilbury's strat-  
egy; and 

• to provide a practical comparison of the strate- 
gies based on empirical results. 

2 A Survey  of 
R u l e - I n v o c a t i o n  Strateg ies  

This section surveys the fundamental  rule-invocation 

strategies in context-flee chart parsing. 3 In a chart- 
parsing framework, different rule-invocation strate- 
gies correspond to different conditions for and ways 
of predicting new edges 4. This section will therefore 
in effect constitute a survey of different methods for 
predicting new edges. 

2.1 Top-Down Strategies 
The principle of top-down parsing is to use the rules 
of the g rammar  to generate a sentence that  matches 
the one being analyzed. 

2.1.1 T o p - D o w n  

A strategy for top-down chart parsing 5 is given be- 
low. Assume a context-free g rammar  G. Also, we 
make the usual assumption tha t  G is cycle-free, i.e., 
it does not contain derivations of the form A1 --* A~, 
A2 "-+ Aa, . . . ,  Ai --* A1. 

S t r a t e g y  16 (TD) 
Whenever an active edge is added to the chart, 
if its first required constituent is C, then add an 
empty  active C edge for every rule in G which 
expands C. 7 

This principle will apply to itself recursively, en- 
suring that  all subsidiary active edges also get pro- 
duced. 

2.1.2 Se l ec t i ve  T o p - D o w n  

Realistic natural-language grammars  are likely to be 
highly branching. A weak point of the ~normal = 
top-down strategy above will then be the excessive 
number  of predictions typically made: in the begin- 
ning of a phrase new edges will be introduced for 
all constituents, and constituents within those con- 
stituents, tha t  the phrase can possibly s tar t  with. 

One way of limiting the number  of predictions 
is by making the s t rategy %elective = (Griffiths 

aI assume a basic familiarity with chart parsing. For an 
excellent introduction, see Thompson and Ritchie (1984). 

4Edges correspond to "states ~ in Earley (1970) and to 
Uitemsn in Aho and Ullman (1972:320). 

5Top-down (context-free) chart parsing is sometimes called 
UEarley-style" chart parsing because it corresponds to the way 
in which Earley's algorithm (Earley 1970) works. It should 
be pointed out that the paree-forest representation employed 
here does not suffer from the kind of defect claimed by Tomita 
(1985:762, 1986:74) to result from Earley's algorithm. 

6This formulation is equivalent to the one in Thompson 
(1981:4). 

7Note that in order to handle left-recursive rules without 
going into an infinite loop, this strategy needs a redundancy 
check which prevents more than one identical active edge from 
being added to the chart. 
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and Petrick 1965:291): by looking at the cate- 
gory/categories of the next word, it is possible to rule 
out some proposed edges that are known not to com- 
bine with the corresponding inactive edge(s). Given 
that top-down chart parsing starts with a scanning 
phase, the adoption of this filter is straightforward. 

The strategy makes use of a reachability relation 
where A]~B holds if there exists some derivation 

from A to B such that  B is the first element in a 
string dominated by A. Given preterminal look- 
ahead symbol(s) py corresponding to the next word, 
the processor can then ask if the first required con- 
sti tuent of a predicted active edge (say, C) can some- 
how start  with (some) p~.. In practice, the relation is 
implemented as a precompiled table. Determining if 

holds can then be made very fast and in constant 
time. (Cf. Pra t t  1975:424.) 

The strategy presented here corresponds to Kay's 
adirected top-down" strategy (Kay 1982:338) and 
can be specified in the following manner. 

Strategy 2 {TD0) 
Let r(X} be the first required constituent of the 
(active) edge X. Let u be the vertex to which 
the active edge about to be proposed extends. 
Let Pl,..., Pn be the preterminal categories of 
the edges extending from v that correspond to 
the next word. -- Whenever an active edge 
. is added to the chart, if its first required con- 
stituent is C, then for every rule in G which 
expands C add an empty active C edge if for 
some ] r(C) = pj or r(O)~pj. 

2 . 2  B o t t o m - U p  S t r a t e g i e s  

The principle of bot tom-up parsing is to reduce a 
sequence of phrases whose types match the right- 
hand side of a grammar rule to a phrase of the type 
of the left-hand side of the rule. To make a reduction 
possible, all the right-hand-side phrases have to be 
present. This can be ensured by matching from right 
to left in the right-hand side of the grammar rule; 
this is for example the case with the Cocke--Kasami- 
Younger algorithm (Aho and Ullman 1972). 

A problem with this approach is that  the analy- 
sis of the first part  of a phrase has no influence on 
the analysis of the latter parts until the results from 
them are combined. This problem can be met by 
adopting left-corner parsing. 

2.2.1 Lef t  C o r n e r  

Left-corner parsing is a bottom-up technique where 
the right-hand-side symbols of the rules are matched 

from left to right, s Once the left-corner symbol has 
been found, the grammar rule can be used to predict 
what may come next. 

A basic strategy for left-corner chart parsing is 
given below. 

S t r a t e g y  3 g (LC) 
Whenever an inactive edge is added to the 
chart, if its category is T, then for every rule in 
G with T as left-corner symbol add an empty 
active edge. 1° 

Note that  this strategy will make aminimal" pre- 
dictions, i.e., it will only predict the nezt higher-level 
phrases which a given constituent can begin. 

2.2.2 Le f t  C o r n e r  b la  K i l b u r y  

Kilbury (1985) presents a modified left-corner strat- 
egy. Basically it amounts to this: instead of predict- 
hag empty active edges, edges which subsume the 
inactive edge that  provoked the new edge are pre- 
dicted. A predicted new edge may then be either 
active or inactive depending on the contents of the 
inactive edge and on what is required by the new 
edge. 

This strategy has two clear advantages: First, it 
saves many edges compared to the anormal" left cor- 
ner because it never produces empty active edges. 
Secondly (and not pointed out by Kilbury), the usual 
redundancy check is not needed here since the strat- 
egy itself avoids the risk of predicting more than one 
identical edge. The reason for this is that  a predicted 
edge always subsumes the triggering (inactive) edge. 
Since the triggering edge is guaranteed to be unique, 
the subsuming edge will also be unique. By virtue 
of this, Kilbury's prediction strategy is actually the 
simplest of all the strategies considered here. 

The price one has to pay for this is that  rules 
with empty-string productions (or e-productions, i.e. 
rules of the form A -* e), cannot be handled. This 
might look like a serious limitation since most cur- 
rent linguistic theories (e.g., LFG, GPSG) make ex- 
plicit use of e-productions, typically for the handling 
of gaps. On the other  hand, context-free gram- 
mars can be converted into grammars without e- 
productions (Aho and Ullman 1972:150). 

In practice however, e-productions can be han- 
dled in various ways which circumvent the prob- 
lem. For example, Kart tunen 's  D-PATR system 

SThe left corner of a rule is the leftmost symbol of its right- 
hand side. 

°This formulation is again equivalent to the one in Thomp- 
son (1981:4). Thompson however refers to it a8 "bottom-up". 

*°In this case, left-recursive rules will not lead to infinite 
loops. The redundancy check is still needed to prevent super- 
fluotm analyses from being generated, though. 
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does not allow empty productions. Instead, it takes 
care of fillers and gaps through a ~threading" tech- 
nique (Karttunen 1986:77). Indeed, the system has 
been successfully used for writing LFG-style gram- 
mars (e.g., Dyvik 1986). 

Kilbury's left-corner strategy can be specified in 
the following manner. 

Strategy 4 (LCK) 
Whenever an inactive edge is added to the 
chart, if its category is T, then for every rule 
in G with T as left-corner symbol add an edge 
that subsumes the T edge. 

2.2.3 T o p - D o w n  F i l t e r i ng  

As often pointed out, bottom-up and left-corner 
strategies encounter problems with sets of rules like 
A ~ BC and A --* C (right common factors). For 
example, assuming standard grammar rules, when 
parsing the phrase athe birds fly" an unwanted sen- 
tence ~birds fly" will be discovered. 

This problem can be met by adopting top-dowN 

j~tering, a technique which can be seen as the 
dual of the selective top-down strategy. Descrip- 
tions of top-down filtering are given for example in 
Kay (1982) (~directed bottom-up parsing") and in 
Slocum (1981:2). Also, the aoracle" used by Pratt 
(1975:424) is a top-down filter. 

Essentially top-down filtering is like running a top- 
down parser in parallel with a bottom-up parser. 
The (simulated} top-down parser rejects some of the 
edges that the bottom-up parser proposes, vis. those 
that the former would not discover. The additional 
question that the top-down filter asks is then: is 
there any place in a higher-level structure for the 
phrase about to be built by the bottom-up parser? 
On the chart, this corresponds to asking if any (ac- 
tive) edge ending in the starting vertex of the pro- 
posed edge needs this this kind of edge, directly or 
indirectly. The procedure for computing the answer 
to this again makes use of the reachability relation 

(cf. section 2.1.2). 11 
Adding top-down filtering to the LC strategy 

above produces the following strategy. 

Strategy 5 (Let) 
Let v be the vertex from which the triggering 
edge T extends. Let At, ..., Am be the ac- 
tive edges incident to v, and let r(A~) be their 

l*Kilbury (1985:10) actually makes use of a similar rela- 
tion encoding the left-branchings of the grammar (the "first- 
relation"), but he uses it only for speeding up grammar-rule 
access (by indexing rules from left corners) and not for the 
purpose of filtering out unwanted edges. 

respective first required constituents. - -  When- 
ever an inactive edge is added to the chart, if its 
category is T, then for every rule C in G with 
T as left-corner symbol add an empty active C 
edge if for some i r(A,) = C or r (A,)~C.  

Analogously, adding top-down filtering to Kil- 
bury's strategy LCK results in the following. 

S t r a t e g y  6 (LCKt) 
(Same preconditions as above.) - -  Whenever 
an inactive edge is added to the chart, if its 
category is T, then for every rule C in G with 
T as left-corner symbol add a C edge subsuming 
the T edge if for some i r(A,) = C or r(A~)~C. 

One of the advantages with chart parsing is direc- 
tion independence: the words of a sentence do not 
have to be parsed strictly from left to right but can 
be parsed in any order. Although this is still possible 
using top-down filtering, processing becomes some- 
what less straightforward (cf. Kay 1982:352). The 
simplest way of meeting this problem, and also the 
solution adopted here, is to presuppose left-to-right 
parsing. 

2 .2 .4  Selec t iv i ty  

By again adopting a kind of lookahead and by uti- 
lizing the reachability relation )~, it is possible to 
limit the number of edges built even further. This 
lookahead can be realized by performing a dictionary 
lookup of the words before actually building the cor- 
responding inactive edges, storing the results in a 
table. Being analogous to the filter used in the di- 
rected top-down strategy, this filter makes sure that 
a predicted edge can somehow be extended given the 
category/categories of the next word. Note that this 
filter only affects active predicted edges. 

Adding selectivity to Kilbury's strategy LCK re- 
sults in the following. 

S t r a t e g y  7 (LCK,) 
Let p l , . . . ,  p,, be the categories of the word cor- 
responding to the preterminal edges extending 
from the vertex to which the T edge is incident. 
Let r(C) be defined as above. - -  Whenever an 
inactive edge is added to the chart, if its cate- 
gory is T, then for every rule C in G with T as 
left-corner symbol add a C edge subsuming the 
T edge if for some ] r(C) = py or r(C)~py. 

2 .2 .5  T o p - D o w n  F i l t e r i ng  a n d  Se lec t iv i ty  

The final step is to combine the two previous strate- 
gies to arrive at a maximally directed version of Kil- 
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bury's strategy. Again, left-to-right processing is 
presupposed. 

Strategy 8 (LCK,t) 
Let r(A,),  r(C),  and pj be defined analogously 
to the previous. - -  Whenever an inactive edge is 
added to the chart, if its category is T, then for 
every rule C in G with T as left-corner symbol 
add a C edge subsuming the T edge if for some i 
r(A,) = C or r (A , )~C and for some i r(C) = py 
or r(C)]~pj. 

3 Empir ica l  Resu l t s  

In order to assess the practical behaviour of the 
strategies discussed above, a test bench was devel- 
oped where it was made possible in effect to switch 
between eight different parsers corresponding to the 
eight strategies above, and also between different 
grammars, dictionaries, and sentence sets. 

Several experiments were conducted along the 
way. The test grammars used were first partly based 
on a Swedish D-PATR grammar by Merkel (1986). 
Later on, I decided to use (some of) the data  com- 
piled by Tomita (1986) for the testings of his ex- 
tended LR parser. 

This section presents the results of the latter ex- 
periments. 

3 . 1  G r a m m a r s  a n d  S e n t e n c e  S e t s  

The three grammars and two sentence sets used in 
these experiments have been obtained from Masaru 
Tomita and can be found in his book (Tomita 1986). 

Grammars I and II are toy grammars consisting 
of 8 and 43 rules, respectively. Grammar  III with 
224 rules is constructed to fit sentence set I which is 
a collection of 40 sentences collected from authentic 
texts. (Grammar IV with 394 rules was not used 
here.) 

Because grammar I l l  contains one empty produc- 
tion, not all sentences of sentence set I wil l  be cor- 
rectly parsed by Kilbury's algorithm. For the pur- 
pose of these experiments, I collected 21 sentences 
out of the sentence set. This reduced set will hence- 
forth be referred to as sentence set I. 12 The sen- 
tences in this set vary in length between 1 and 27 
words. 

Sentence set II was made systematically from the 
schema 

noun verb det noun (prep det noun) "-z. 

12The sentences in the set are 1-3, 9, 13-15, 19-25, 29, and 
35-40 (cf. Tomita 1986:152). 

An example of a sentence with this structure is ~I 
saw the man in the park with a te lescope . . . ' .  In 
these experiments n = 1, . . . ,  7 was used. 

The dictionary was constructed from the category 
sequences given by Tomita together with the sen- 
tences (Tomita 1986 pp. 185-189). 

3 . 2  E f f i c i e n c y  M e a s u r e s  

A reasonable efficiency measure in chart parsing is 
the number of edges produced. The motivation for 
this is that  the working of a chart parser is tightly 
centered around the production and manipulation 
of edges, and that  much of its work can somehow 
be reduced to this. For example, a measure of the 
amount of work done at each vertex by the procedure 
which implements ~the fundamental rule" (Thomp- 
son 1981:2) can be expressed as the product of the 
number of incoming active edges and the number of 
outgoing inactive edges. In addition, the number of 
chart edges produced is a measure which is indepen- 
dent of implementation and machine. 

On the other hand, the number of edges does not 
give any indication of the overhead costs involved in 
various strategies. Hence I also provide figures of 
the parsing times, albeit with a warning for taking 
them too seriously, zs 

The experiments were run on Xerox 1186 Lisp ma- 
chines. The time measures were obtained using the 
Interlisp-D function TIMEALL. The time figures be- 
low give the CPU time in seconds (garbage-collection 
time and swapping time not included; the latter was 
however almost non-existent). 

3 . 3  E x p e r i m e n t s  

This section presents the results of the experiments. 

In the tables, the fourth column gives the accumu- 
lated number of edges over the sentence set. The sec- 
ond and third columns give the corresponding num- 
bers of active and inactive edges, respectively. The 
fifth column gives the accumulated CPU time in sec- 
onds. The last column gives the rank of the strate- 
gies with respect to the number of edges produced 
and, in parentheses, with respect to time consumed 
(ff differing from the former). 

Table 1 shows the results of the first experiment: 
running grammar I (8 rules) with sentence set II (7 
sentences). There were 625 parses for every strategy 
(1, 2, 5, 14, 42, 132, and 429). 

iSThe parsers are experimental in character and were not 
coded for maximal efficiency. For example, edges at a given 
vertex are being searched linearly. On the other hand, gram- 
mar rules (llke reachability relations) are indexed through pre- 
compiled hashtables. 
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Experiment 1: 
Strategy Active 

TD 1628 
TD, 1579 
LC 3104 
LCt 1579 
LCK 2873 
LCK, 697 
LCKt 1460 
L C K .  527 

Table  1 
Grammar I, sentence set II 
Inactive Total Time Rank 

3496 5124 62 6 
3496 5075 58 4 (5) 
3967 7071 79 8 
3496 5075 57 4 
3967 6840 64 7 
3967 4664 47 2 (3) 
3496 4956 45 3 (2) 
3496 4023 40 1 

Table 2 
Experiment 2: Grammar II, sentence set II 

Strategy Active Inactive Total Time Rank 

TD 5015 2675 7690 121 6 
TDo 3258 2675 5933 78 4 
LC 7232 5547 12779 192 8 
LC¢ 3237 2675 5912 132 3 (7) 
LCK 6154 5547 11701 i17 7 (5) 
LCK. 1283 5547 6830 70 5 (2) 
LCKt 2719 2675 5394 74 2 (3) 
LCK,t  915 2675 3590 41 1 

Experiment 3: 
Strategy Active 

TD 13676 
TDo 9301 
LC 19522 
LCe 9301 
LCK 18227 
LCK, 1359 
LCK, 8748 
LCKe, 718 

Table  $ 
Grammar III, sentence 

Inactive 

5278 
5278 
7980 
5278 
7980 
7980 
5278 
5278 

set II 
Total Time Rank 

18954 910 6 (5) 
14579 765 4 
27502 913 8 (6) 
14579 2604 4 (8} 
26207 731 7 (3) 

9339 482 2 
14026 1587 3 (7) 
5996 352 1 

Table  4 
Experiment 4: Grammar III, sentence set I 

Strategy Active Inactive Total Time Rank 

TD 30403 8376 38779 1524 6 (4) 
TD, 14389 8376 23215 1172 4 (2) 
LC 42959 19451 62410 2759 8 (6) 
LCt 14714 8376 23'090 5843 3 (8) 
LCK 38040 19451 57491 1961 7(5) 
LCKo 3845 19451 23296 1410 5 (3) 
LCKt 12856 8376 21232 3898 2 (7) 
LCKst 1265 8376 9641 1019 1 

Table 2 shows the results of the second experi- 
ment: grammar II with sentence set II. This gram- 
mar handles PP attachment in a way different from 
grammars I and III which leads to fewer parses: 322 
for every strategy. 

Table 3 shows the results of the third experiment: 
grammar III (224 rules) with sentence set II. Again, 
there were 625 parses for every strategy. 

Table 4 shows the results of the fourth experiment: 
running grammar III with sentence set I (21 sen- 
tences}. There were 885 parses for every strategy. 

4 D i s c u s s i o n  

This section summarizes and discusses the results of 
the experiments. 

As for the three undirected methods, and with 
respect to the number of edges produced, the top- 
down (Earley-style) strategy performs best while the 
standard left-corner strategy is the worst alternative. 

Kilbury's strategy, by saving active looping edges, 
produces somewhat fewer edges than the standard 
left-corner strategy. More apparent is its time ad- 
vantage, due to the basic simplicity of the strategy. 
For example, it outperforms the top-down strategy 
in experiments 2 and 3. 

Results like those above are of course strongly 
grammar dependent. If, for example, the branching 
factor of the grammar increases, top-down overpre- 
dictions will soon dominate superfluous bottom-up 
substring generation. This was clearly seen in some 
of the early experiments not showed here. In cases 
like this, bottom-up parsing becomes advantageous 
and, in particular, Kilbury's strategy will outper- 
form the two others. 

Thus, although Wang (1985:7) seems to be right in 
claiming that  ~.. .  Earley's algorithm is better than 
Kilbury's in general.", in practice this can often be 
different (as Wang himself recognizes). Incidentally, 
Wang's own example (:4), aimed at showing that Kil- 
bury's algorithm handles right recursion worse than 
Earley's algorithm, illustrates this: 

Assume a grammar with rules S --* Ae, A --* aA, 
A -* b and a sentence aa a a a b c" to be parsed. 
Here a bottom-up parser such as Kilbury's will ob- 
viously do some useless work in predicting several 
unwanted S edges. But even so the top-down over- 
predictions will actually dominate: the Earley-style 
strategy gives 16 active and 12 inactive edges, to- 
tailing 28 edges, whereas Kilbury's strategy gives 9 
and 16, respectively, totalling 25 edges. 

The directed methods - -  those based on selectiv- 
ity or top-down filtering - -  reduce the number of 
edges very significantly. The selectivity filter here 
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turned out to be much more time efficient, though. 
Selectivity testing is also basically a simple opera- 
tion, seldom involving more than a few lookups (de- 
pending on the degree of lexical ambiguity). 

Paradoxically, the effect of top-down filtering was 
to degrade time performance as the grammars grew 
larger. To a large extent this is likely to have 
been caused by implementation idiosyncrasies: ac- 
tive edges incident to a vertex were searched linearly; 
when the number of edges increases, this gets very 
costly. After all, top-down filtering is generally con- 
sidered beneficial (e.g. Slocum 1981:4). 

The maximally directed strategy m Kilbury's al- 
gorithm with selectivity and top-down filtering 
remained the most efficient one throughout all the 
experiments, both with respect to edges produced 
and time consumed (but more so with respect to the 
former). Top-down filtering did not degrade time 
performance quite as much in this case, presumably 
because of the great number of active edges cut off 
by the selectivity filter. 

Finally, it should be mentioned that bottom-up 
parsing enjoys a special advantage not shown here, 
namely in being able to detect ungrammatical sen- 
tences much more effectively than top-down meth- 
ods (cf. Kay 1982:342). 

5 Conclusion 

This paper has surveyed the fundamental rule- 
invocation strategies in context-free chart parsing. 
In order to arrive at some quantitative measure 
of their performance characteristics, the strategies 
have been implemented and tested empirically. The 
experiments clearly indicate that it is possible to 
significantly increase efficiency in chart parsing by 
fine-tuning the rule-invocation strategy. Fine-tuning 
however also requires that the characteristics of the 
grammars to be used are borne in mind. Never- 
theless, the experiments indicate that in general di- 
rected methods are to be preferred to undirected 
methods; that top-down is the best undirected strat- 
egy; that Kilbury's original algorithm is not in itself 
a very good candidate, but that its directed versions 
-- in particular the one with both selectivity and 
top-down filtering -- are very promising. 

Future work along these lines is planned to involve 
application of (some of) the strategies above within 
a unification-based parsing system. 
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