
A Comparison of Rule-Invocation Strategies
in Context-Free Chart Parsing

Mats Wirdn

Department of Computer and Information S c i e n c e

L i n k S p i n g U n i v e r s i t y

S-581 83 L i n k S p i n g , S w e d e n

Abstract

Currently several grammatical formalisms converge
towards being declarative and towards utilizing
context-free phrase-structure grammar as a back-
bone, e.g. LFG and PATR-II. Typically the pro-
cessing of these formalisms is organized within a
chart-parsing framework. The declarative charac-
ter of the formalisms makes it important to decide
upon an overall optimal control strategy on the part
of the processor. In particular, this brings the rule-
invocation strategy into critical focus: to gain max-
imal processing efficiency, one has to determine the
best way of putting the rules to use. The aim of this
paper is to provide a survey and a practical compari-
son of fundamental rule-invocation strategies within
context-free chart parsing.

1 Background
and Introduction

An apparent tendency in computational linguistics
during the last few years has been towards declara-
tive grammar formalisms. This tendency has mani-
fested itself with respect to linguistic tools, perhaps
seen most clearly in the evolution from ATNs with
their strongly procedural grammars to PATR-II in
its various incarnations (Shieber et al. 1983, Kart-
tunen 1986), and to logic-based formalisms such as
DCG (Pereira and Warren 1980). It has also man-
ifested itself in linguistic theor/es, where there has
been a development from systems employing sequen-
tial derivations in the analysis of sentence struc-
tures to systems like LFG and GPSG which estab-
lish relations among the elements of a sentence in an
order-independent and also direction-independent
way. For example, phenomena such as rule order-
ing simply do not arise in these theories.

This research has been supported by the National Swedish
Board for Technical Development.

In addition, declarative formalisms are, in princi-
ple, processor-independent. Procedural formalisms,
although possibly highly standardized (like Woods'
ATN formalism), typically make references to an
(abstract) machine.

By virtue of this, it is possible for grammar writ-
ers to concentrate on linguistic issues, leaving aside
questions of how to express their descriptions in a
way which provides for efficient execution by the pro-
cessor at hand.

Processing efficiency instead becomes an issue for
the designer of the processor, who has to find an
overall aoptimal~ control strategy for the processing
of the grammar. In particular (and also because of
the potentially very large number of rules in realis-
tic natural-language systems), this brings the rule-
invocation strategy I into critical focus: to gain max-
imal processing efficiency, one has to determine the
best way of putting the rules to use. 2

This paper focuses on rule-invocation strategies
from the perspective of (context-free) chart parsing
(Kay 1973, 1982; Kaplan 1973).

Context-free phrase-structure grammar is of in-
terest here in particular because it is utilized as
the backbone of many declarative formalisms. The
chart-parsing framework is of interest in this connec-
tion because, being a C'higher-order algorithm" (Kay
1982:329), it lends itself easily to the processing of
different grammatical formalisms. At the same time
it is of course a natural test bed for experiments with
various control strategies.

Previously a number of comparisons of rule-
invocation strategies in this or in similar settings
have been reported:

ZThis term seems to have been coined by Thompson
(1981). Basically, it refers to the spectrum between top-down
and bottom-up processing of the grammar rules.

2The other principal control-strategy dimension, the search
~g;/(depth-first vs. breadth-first), is irrelevant for the effi-
ciency in chart parsing since it only affects the order in which
successive (partial) analyses are developed.

226

Kay (1982) is the principal source, providing a
very general exposition of the control strategies and
da ta structures involved in chart parsing. In con-
sidering the efficiency question, Kay favours a ~di-
rected ~ bot tom-up strategy (cf. section 2.2.3}.

Thompson (1981) is another fundamental source,
though he discusses the effects of various rule-
invocation strategies mainly from the perspective of
GPSG parsing which is not the main point here.

Kilbury (1985) presents a left-corner strategy, ar-
guing that with respect to natural-language gram-
mars it will generally outperform the top-down
(Earley-style) strategy.

Wang (1985) discusses Kilbury's and Earley's al-
gorithms, favouring the lat ter because of the ineffi-
cient way in which bot tom-up algorithms deal with
rules with right common factors. Neither Wang nor
Kilbury considers .the natural approach to overcom-
ing this problem, viz. top-down filtering (of. section
2.2.3).

As for empirical studies, Slocum (1981) is a rich
source. Among many other things, he provides some
performance da ta regarding top-down filtering.

Pra t t (1975) reports on a successful augmentation
of a bo t tom-up chart-like parser with a top-down
filter.

Tomita (1985, 1986) introduces a very efficient,
extended LR-parsing algorithm that can deal with
full context-free languages. Based on empirical com-
parisons, Tomita shows his algorithm to be superior
to Earley's algorithm and also to a modified ver-
sion thereof (corresponding here to %elective top-
downS; cf. section 2.1.2). Thus, with respect to
raw efficiency, it seems clear that Tomita 's algorithm
is superior to comparable chart-parsing algorithms.
However, a chart-parsing framework does have its
advantages, particularly in its flexibility and open-
endedness.

The contribution this paper makes is:

to survey fundamental strategies for rule-
invocation within a context-free chart-parsing
framework; in particular

to specify ~directed ~ versions of Kilbury's strat-
egy; and

• to provide a practical comparison of the strate-
gies based on empirical results.

2 A Survey of
R u l e - I n v o c a t i o n Strateg ies

This section surveys the fundamental rule-invocation

strategies in context-flee chart parsing. 3 In a chart-
parsing framework, different rule-invocation strate-
gies correspond to different conditions for and ways
of predicting new edges 4. This section will therefore
in effect constitute a survey of different methods for
predicting new edges.

2.1 Top-Down Strategies
The principle of top-down parsing is to use the rules
of the g rammar to generate a sentence that matches
the one being analyzed.

2.1.1 T o p - D o w n

A strategy for top-down chart parsing 5 is given be-
low. Assume a context-free g rammar G. Also, we
make the usual assumption tha t G is cycle-free, i.e.,
it does not contain derivations of the form A1 --* A~,
A2 "-+ Aa, . . . , Ai --* A1.

S t r a t e g y 16 (TD)
Whenever an active edge is added to the chart,
if its first required constituent is C, then add an
empty active C edge for every rule in G which
expands C. 7

This principle will apply to itself recursively, en-
suring that all subsidiary active edges also get pro-
duced.

2.1.2 Se l ec t i ve T o p - D o w n

Realistic natural-language grammars are likely to be
highly branching. A weak point of the ~normal =
top-down strategy above will then be the excessive
number of predictions typically made: in the begin-
ning of a phrase new edges will be introduced for
all constituents, and constituents within those con-
stituents, tha t the phrase can possibly s tar t with.

One way of limiting the number of predictions
is by making the s t rategy %elective = (Griffiths

aI assume a basic familiarity with chart parsing. For an
excellent introduction, see Thompson and Ritchie (1984).

4Edges correspond to "states ~ in Earley (1970) and to
Uitemsn in Aho and Ullman (1972:320).

5Top-down (context-free) chart parsing is sometimes called
UEarley-style" chart parsing because it corresponds to the way
in which Earley's algorithm (Earley 1970) works. It should
be pointed out that the paree-forest representation employed
here does not suffer from the kind of defect claimed by Tomita
(1985:762, 1986:74) to result from Earley's algorithm.

6This formulation is equivalent to the one in Thompson
(1981:4).

7Note that in order to handle left-recursive rules without
going into an infinite loop, this strategy needs a redundancy
check which prevents more than one identical active edge from
being added to the chart.

2 2 7

and Petrick 1965:291): by looking at the cate-
gory/categories of the next word, it is possible to rule
out some proposed edges that are known not to com-
bine with the corresponding inactive edge(s). Given
that top-down chart parsing starts with a scanning
phase, the adoption of this filter is straightforward.

The strategy makes use of a reachability relation
where A]~B holds if there exists some derivation

from A to B such that B is the first element in a
string dominated by A. Given preterminal look-
ahead symbol(s) py corresponding to the next word,
the processor can then ask if the first required con-
sti tuent of a predicted active edge (say, C) can some-
how start with (some) p~.. In practice, the relation is
implemented as a precompiled table. Determining if

holds can then be made very fast and in constant
time. (Cf. Pra t t 1975:424.)

The strategy presented here corresponds to Kay's
adirected top-down" strategy (Kay 1982:338) and
can be specified in the following manner.

Strategy 2 {TD0)
Let r(X} be the first required constituent of the
(active) edge X. Let u be the vertex to which
the active edge about to be proposed extends.
Let Pl,..., Pn be the preterminal categories of
the edges extending from v that correspond to
the next word. -- Whenever an active edge
. is added to the chart, if its first required con-
stituent is C, then for every rule in G which
expands C add an empty active C edge if for
some] r(C) = pj or r(O)~pj.

2 . 2 B o t t o m - U p S t r a t e g i e s

The principle of bot tom-up parsing is to reduce a
sequence of phrases whose types match the right-
hand side of a grammar rule to a phrase of the type
of the left-hand side of the rule. To make a reduction
possible, all the right-hand-side phrases have to be
present. This can be ensured by matching from right
to left in the right-hand side of the grammar rule;
this is for example the case with the Cocke--Kasami-
Younger algorithm (Aho and Ullman 1972).

A problem with this approach is that the analy-
sis of the first part of a phrase has no influence on
the analysis of the latter parts until the results from
them are combined. This problem can be met by
adopting left-corner parsing.

2.2.1 Lef t C o r n e r

Left-corner parsing is a bottom-up technique where
the right-hand-side symbols of the rules are matched

from left to right, s Once the left-corner symbol has
been found, the grammar rule can be used to predict
what may come next.

A basic strategy for left-corner chart parsing is
given below.

S t r a t e g y 3 g (LC)
Whenever an inactive edge is added to the
chart, if its category is T, then for every rule in
G with T as left-corner symbol add an empty
active edge. 1°

Note that this strategy will make aminimal" pre-
dictions, i.e., it will only predict the nezt higher-level
phrases which a given constituent can begin.

2.2.2 Le f t C o r n e r b la K i l b u r y

Kilbury (1985) presents a modified left-corner strat-
egy. Basically it amounts to this: instead of predict-
hag empty active edges, edges which subsume the
inactive edge that provoked the new edge are pre-
dicted. A predicted new edge may then be either
active or inactive depending on the contents of the
inactive edge and on what is required by the new
edge.

This strategy has two clear advantages: First, it
saves many edges compared to the anormal" left cor-
ner because it never produces empty active edges.
Secondly (and not pointed out by Kilbury), the usual
redundancy check is not needed here since the strat-
egy itself avoids the risk of predicting more than one
identical edge. The reason for this is that a predicted
edge always subsumes the triggering (inactive) edge.
Since the triggering edge is guaranteed to be unique,
the subsuming edge will also be unique. By virtue
of this, Kilbury's prediction strategy is actually the
simplest of all the strategies considered here.

The price one has to pay for this is that rules
with empty-string productions (or e-productions, i.e.
rules of the form A -* e), cannot be handled. This
might look like a serious limitation since most cur-
rent linguistic theories (e.g., LFG, GPSG) make ex-
plicit use of e-productions, typically for the handling
of gaps. On the other hand, context-free gram-
mars can be converted into grammars without e-
productions (Aho and Ullman 1972:150).

In practice however, e-productions can be han-
dled in various ways which circumvent the prob-
lem. For example, Kart tunen 's D-PATR system

SThe left corner of a rule is the leftmost symbol of its right-
hand side.

°This formulation is again equivalent to the one in Thomp-
son (1981:4). Thompson however refers to it a8 "bottom-up".

*°In this case, left-recursive rules will not lead to infinite
loops. The redundancy check is still needed to prevent super-
fluotm analyses from being generated, though.

228

does not allow empty productions. Instead, it takes
care of fillers and gaps through a ~threading" tech-
nique (Karttunen 1986:77). Indeed, the system has
been successfully used for writing LFG-style gram-
mars (e.g., Dyvik 1986).

Kilbury's left-corner strategy can be specified in
the following manner.

Strategy 4 (LCK)
Whenever an inactive edge is added to the
chart, if its category is T, then for every rule
in G with T as left-corner symbol add an edge
that subsumes the T edge.

2.2.3 T o p - D o w n F i l t e r i ng

As often pointed out, bottom-up and left-corner
strategies encounter problems with sets of rules like
A ~ BC and A --* C (right common factors). For
example, assuming standard grammar rules, when
parsing the phrase athe birds fly" an unwanted sen-
tence ~birds fly" will be discovered.

This problem can be met by adopting top-dowN

j~tering, a technique which can be seen as the
dual of the selective top-down strategy. Descrip-
tions of top-down filtering are given for example in
Kay (1982) (~directed bottom-up parsing") and in
Slocum (1981:2). Also, the aoracle" used by Pratt
(1975:424) is a top-down filter.

Essentially top-down filtering is like running a top-
down parser in parallel with a bottom-up parser.
The (simulated} top-down parser rejects some of the
edges that the bottom-up parser proposes, vis. those
that the former would not discover. The additional
question that the top-down filter asks is then: is
there any place in a higher-level structure for the
phrase about to be built by the bottom-up parser?
On the chart, this corresponds to asking if any (ac-
tive) edge ending in the starting vertex of the pro-
posed edge needs this this kind of edge, directly or
indirectly. The procedure for computing the answer
to this again makes use of the reachability relation

(cf. section 2.1.2). 11
Adding top-down filtering to the LC strategy

above produces the following strategy.

Strategy 5 (Let)
Let v be the vertex from which the triggering
edge T extends. Let At, ..., Am be the ac-
tive edges incident to v, and let r(A~) be their

l*Kilbury (1985:10) actually makes use of a similar rela-
tion encoding the left-branchings of the grammar (the "first-
relation"), but he uses it only for speeding up grammar-rule
access (by indexing rules from left corners) and not for the
purpose of filtering out unwanted edges.

respective first required constituents. - - When-
ever an inactive edge is added to the chart, if its
category is T, then for every rule C in G with
T as left-corner symbol add an empty active C
edge if for some i r(A,) = C or r (A,)~C.

Analogously, adding top-down filtering to Kil-
bury's strategy LCK results in the following.

S t r a t e g y 6 (LCKt)
(Same preconditions as above.) - - Whenever
an inactive edge is added to the chart, if its
category is T, then for every rule C in G with
T as left-corner symbol add a C edge subsuming
the T edge if for some i r(A,) = C or r(A~)~C.

One of the advantages with chart parsing is direc-
tion independence: the words of a sentence do not
have to be parsed strictly from left to right but can
be parsed in any order. Although this is still possible
using top-down filtering, processing becomes some-
what less straightforward (cf. Kay 1982:352). The
simplest way of meeting this problem, and also the
solution adopted here, is to presuppose left-to-right
parsing.

2 .2 .4 Selec t iv i ty

By again adopting a kind of lookahead and by uti-
lizing the reachability relation)~, it is possible to
limit the number of edges built even further. This
lookahead can be realized by performing a dictionary
lookup of the words before actually building the cor-
responding inactive edges, storing the results in a
table. Being analogous to the filter used in the di-
rected top-down strategy, this filter makes sure that
a predicted edge can somehow be extended given the
category/categories of the next word. Note that this
filter only affects active predicted edges.

Adding selectivity to Kilbury's strategy LCK re-
sults in the following.

S t r a t e g y 7 (LCK,)
Let p l , . . . , p,, be the categories of the word cor-
responding to the preterminal edges extending
from the vertex to which the T edge is incident.
Let r(C) be defined as above. - - Whenever an
inactive edge is added to the chart, if its cate-
gory is T, then for every rule C in G with T as
left-corner symbol add a C edge subsuming the
T edge if for some] r(C) = py or r(C)~py.

2 .2 .5 T o p - D o w n F i l t e r i ng a n d Se lec t iv i ty

The final step is to combine the two previous strate-
gies to arrive at a maximally directed version of Kil-

229

bury's strategy. Again, left-to-right processing is
presupposed.

Strategy 8 (LCK,t)
Let r(A,), r(C), and pj be defined analogously
to the previous. - - Whenever an inactive edge is
added to the chart, if its category is T, then for
every rule C in G with T as left-corner symbol
add a C edge subsuming the T edge if for some i
r(A,) = C or r (A ,)~C and for some i r(C) = py
or r(C)]~pj.

3 Empir ica l Resu l t s

In order to assess the practical behaviour of the
strategies discussed above, a test bench was devel-
oped where it was made possible in effect to switch
between eight different parsers corresponding to the
eight strategies above, and also between different
grammars, dictionaries, and sentence sets.

Several experiments were conducted along the
way. The test grammars used were first partly based
on a Swedish D-PATR grammar by Merkel (1986).
Later on, I decided to use (some of) the data com-
piled by Tomita (1986) for the testings of his ex-
tended LR parser.

This section presents the results of the latter ex-
periments.

3 . 1 G r a m m a r s a n d S e n t e n c e S e t s

The three grammars and two sentence sets used in
these experiments have been obtained from Masaru
Tomita and can be found in his book (Tomita 1986).

Grammars I and II are toy grammars consisting
of 8 and 43 rules, respectively. Grammar III with
224 rules is constructed to fit sentence set I which is
a collection of 40 sentences collected from authentic
texts. (Grammar IV with 394 rules was not used
here.)

Because grammar I l l contains one empty produc-
tion, not all sentences of sentence set I wil l be cor-
rectly parsed by Kilbury's algorithm. For the pur-
pose of these experiments, I collected 21 sentences
out of the sentence set. This reduced set will hence-
forth be referred to as sentence set I. 12 The sen-
tences in this set vary in length between 1 and 27
words.

Sentence set II was made systematically from the
schema

noun verb det noun (prep det noun) "-z.

12The sentences in the set are 1-3, 9, 13-15, 19-25, 29, and
35-40 (cf. Tomita 1986:152).

An example of a sentence with this structure is ~I
saw the man in the park with a te lescope . . . ' . In
these experiments n = 1, . . . , 7 was used.

The dictionary was constructed from the category
sequences given by Tomita together with the sen-
tences (Tomita 1986 pp. 185-189).

3 . 2 E f f i c i e n c y M e a s u r e s

A reasonable efficiency measure in chart parsing is
the number of edges produced. The motivation for
this is that the working of a chart parser is tightly
centered around the production and manipulation
of edges, and that much of its work can somehow
be reduced to this. For example, a measure of the
amount of work done at each vertex by the procedure
which implements ~the fundamental rule" (Thomp-
son 1981:2) can be expressed as the product of the
number of incoming active edges and the number of
outgoing inactive edges. In addition, the number of
chart edges produced is a measure which is indepen-
dent of implementation and machine.

On the other hand, the number of edges does not
give any indication of the overhead costs involved in
various strategies. Hence I also provide figures of
the parsing times, albeit with a warning for taking
them too seriously, zs

The experiments were run on Xerox 1186 Lisp ma-
chines. The time measures were obtained using the
Interlisp-D function TIMEALL. The time figures be-
low give the CPU time in seconds (garbage-collection
time and swapping time not included; the latter was
however almost non-existent).

3 . 3 E x p e r i m e n t s

This section presents the results of the experiments.

In the tables, the fourth column gives the accumu-
lated number of edges over the sentence set. The sec-
ond and third columns give the corresponding num-
bers of active and inactive edges, respectively. The
fifth column gives the accumulated CPU time in sec-
onds. The last column gives the rank of the strate-
gies with respect to the number of edges produced
and, in parentheses, with respect to time consumed
(ff differing from the former).

Table 1 shows the results of the first experiment:
running grammar I (8 rules) with sentence set II (7
sentences). There were 625 parses for every strategy
(1, 2, 5, 14, 42, 132, and 429).

iSThe parsers are experimental in character and were not
coded for maximal efficiency. For example, edges at a given
vertex are being searched linearly. On the other hand, gram-
mar rules (llke reachability relations) are indexed through pre-
compiled hashtables.

230

Experiment 1:
Strategy Active

TD 1628
TD, 1579
LC 3104
LCt 1579
LCK 2873
LCK, 697
LCKt 1460
L C K . 527

Table 1
Grammar I, sentence set II
Inactive Total Time Rank

3496 5124 62 6
3496 5075 58 4 (5)
3967 7071 79 8
3496 5075 57 4
3967 6840 64 7
3967 4664 47 2 (3)
3496 4956 45 3 (2)
3496 4023 40 1

Table 2
Experiment 2: Grammar II, sentence set II

Strategy Active Inactive Total Time Rank

TD 5015 2675 7690 121 6
TDo 3258 2675 5933 78 4
LC 7232 5547 12779 192 8
LC¢ 3237 2675 5912 132 3 (7)
LCK 6154 5547 11701 i17 7 (5)
LCK. 1283 5547 6830 70 5 (2)
LCKt 2719 2675 5394 74 2 (3)
LCK,t 915 2675 3590 41 1

Experiment 3:
Strategy Active

TD 13676
TDo 9301
LC 19522
LCe 9301
LCK 18227
LCK, 1359
LCK, 8748
LCKe, 718

Table $
Grammar III, sentence

Inactive

5278
5278
7980
5278
7980
7980
5278
5278

set II
Total Time Rank

18954 910 6 (5)
14579 765 4
27502 913 8 (6)
14579 2604 4 (8}
26207 731 7 (3)

9339 482 2
14026 1587 3 (7)
5996 352 1

Table 4
Experiment 4: Grammar III, sentence set I

Strategy Active Inactive Total Time Rank

TD 30403 8376 38779 1524 6 (4)
TD, 14389 8376 23215 1172 4 (2)
LC 42959 19451 62410 2759 8 (6)
LCt 14714 8376 23'090 5843 3 (8)
LCK 38040 19451 57491 1961 7(5)
LCKo 3845 19451 23296 1410 5 (3)
LCKt 12856 8376 21232 3898 2 (7)
LCKst 1265 8376 9641 1019 1

Table 2 shows the results of the second experi-
ment: grammar II with sentence set II. This gram-
mar handles PP attachment in a way different from
grammars I and III which leads to fewer parses: 322
for every strategy.

Table 3 shows the results of the third experiment:
grammar III (224 rules) with sentence set II. Again,
there were 625 parses for every strategy.

Table 4 shows the results of the fourth experiment:
running grammar III with sentence set I (21 sen-
tences}. There were 885 parses for every strategy.

4 D i s c u s s i o n

This section summarizes and discusses the results of
the experiments.

As for the three undirected methods, and with
respect to the number of edges produced, the top-
down (Earley-style) strategy performs best while the
standard left-corner strategy is the worst alternative.

Kilbury's strategy, by saving active looping edges,
produces somewhat fewer edges than the standard
left-corner strategy. More apparent is its time ad-
vantage, due to the basic simplicity of the strategy.
For example, it outperforms the top-down strategy
in experiments 2 and 3.

Results like those above are of course strongly
grammar dependent. If, for example, the branching
factor of the grammar increases, top-down overpre-
dictions will soon dominate superfluous bottom-up
substring generation. This was clearly seen in some
of the early experiments not showed here. In cases
like this, bottom-up parsing becomes advantageous
and, in particular, Kilbury's strategy will outper-
form the two others.

Thus, although Wang (1985:7) seems to be right in
claiming that ~.. . Earley's algorithm is better than
Kilbury's in general.", in practice this can often be
different (as Wang himself recognizes). Incidentally,
Wang's own example (:4), aimed at showing that Kil-
bury's algorithm handles right recursion worse than
Earley's algorithm, illustrates this:

Assume a grammar with rules S --* Ae, A --* aA,
A -* b and a sentence aa a a a b c" to be parsed.
Here a bottom-up parser such as Kilbury's will ob-
viously do some useless work in predicting several
unwanted S edges. But even so the top-down over-
predictions will actually dominate: the Earley-style
strategy gives 16 active and 12 inactive edges, to-
tailing 28 edges, whereas Kilbury's strategy gives 9
and 16, respectively, totalling 25 edges.

The directed methods - - those based on selectiv-
ity or top-down filtering - - reduce the number of
edges very significantly. The selectivity filter here

231

turned out to be much more time efficient, though.
Selectivity testing is also basically a simple opera-
tion, seldom involving more than a few lookups (de-
pending on the degree of lexical ambiguity).

Paradoxically, the effect of top-down filtering was
to degrade time performance as the grammars grew
larger. To a large extent this is likely to have
been caused by implementation idiosyncrasies: ac-
tive edges incident to a vertex were searched linearly;
when the number of edges increases, this gets very
costly. After all, top-down filtering is generally con-
sidered beneficial (e.g. Slocum 1981:4).

The maximally directed strategy m Kilbury's al-
gorithm with selectivity and top-down filtering
remained the most efficient one throughout all the
experiments, both with respect to edges produced
and time consumed (but more so with respect to the
former). Top-down filtering did not degrade time
performance quite as much in this case, presumably
because of the great number of active edges cut off
by the selectivity filter.

Finally, it should be mentioned that bottom-up
parsing enjoys a special advantage not shown here,
namely in being able to detect ungrammatical sen-
tences much more effectively than top-down meth-
ods (cf. Kay 1982:342).

5 Conclusion

This paper has surveyed the fundamental rule-
invocation strategies in context-free chart parsing.
In order to arrive at some quantitative measure
of their performance characteristics, the strategies
have been implemented and tested empirically. The
experiments clearly indicate that it is possible to
significantly increase efficiency in chart parsing by
fine-tuning the rule-invocation strategy. Fine-tuning
however also requires that the characteristics of the
grammars to be used are borne in mind. Never-
theless, the experiments indicate that in general di-
rected methods are to be preferred to undirected
methods; that top-down is the best undirected strat-
egy; that Kilbury's original algorithm is not in itself
a very good candidate, but that its directed versions
-- in particular the one with both selectivity and
top-down filtering -- are very promising.

Future work along these lines is planned to involve
application of (some of) the strategies above within
a unification-based parsing system.

Acknowledgements

I would like to thank Lars Ahrenberg, Nils Dahlb~k,

Arne Jbnsson, Magnus Merkel, Ivan Rankin, and an
anonymous referee for the very helpful comments
they have made on various drafts of this paper. In
addition I am indebted to Masaru Tomita for pro-
viding me with his test grammars and sentences, and
to Martin Kay for comments in connection with my
presentation.

References

Aho, Alfred V. and Jeffrey D. Ullman (1972). The
Theory of Parsing, Translation, and Compiling.
Volume I: Parsing. Prentice-Hall, Englewood Cliffs,
New Jersey.

Dyvik, Helge (1986). Aspects of Unification-Based
Chart Parsing. Ms. Department of Linguistics and
Phonetics, University of Bergen, Bergen, Norway.

Earley, Jay (1970). An Efficient Context-Free
Parsing Algorithm. Communications of the ACM
13(2):94--102.

Griffiths, T. V. and Stanley R. Petrick (1965).
On the Relative Efficiences of Context-Free Gram-
mar Recognizers. Communications of the ACM
8(5):289-300.

Kaplan, Ronald M. (1973). A General Syntactic
Processor. In: Randall Rustin, ed., Natural Lan-
guage Processing. Algorithmics Press, New York,
New York: 193-241.

Karttunen, Lauri (1986). D-PATR: A Develop-
ment Environment for Unification-Based Grammars.
Proe. 11th COLING, Bonn, Federal Republic of Ger-
many: 74-80.

Kay, Martin (1973). The MIND System. In: Ran-
dal] Rustin, ed., Natural Language Processing. AI-
gorithmics Press, New York, New York: 155-188.

Kay, Martin (1982). Algorithm Schemata and Data
Structures in Syntactic Processing. In: Sture All~n,
ed., Tezt Processinf. Proceedinqs of Nobel Sympo-
sium 51. Almqvist & Wiksell International, Stock-
holm, Sweden: 327-358. Also: CSL-80-12, Xerox
PARC, Palo Alto, California.

Kilbury, James (1985). Chart Parsing and the
Earley Algorithm. KIT-Report 24, Projektgruppe
Kfiustliche Intelligenz und Textverstehen, Techni-
sche Universit~t Berlin, West Berlin. Also in:
U. Klenk, ed. (1985), Konteztfreie Syntazen und
verwandte Systeme. Vortr~ge eine8 Kolloquiums
in Grand Ventron im Oktober, 1984. Niemeyer,
Tfibingen, Federal Republic of Germany.

232

Merkel, Magnus (1986). A Swedish Grammar in
D-PATR. Experiences of Working with D-PATR.
Research report LiTH-IDA-R-86-31, Department of
Computer and Information Science, LinkSping Uni-
versity, LinkSping, Sweden.

Pereira, Fernando C. N. and David H. D. Warren
(1980). Definite Clause Grammars for Language
Analysis--A Survey of the Formalism and a Com-
parison with Augmented Transition Networks. Ar-
tificial Intelligence 13(3):231-278.

Pratt, Vaughan R. (1975). LINGOL - - A Progress
Report. Proc. Sth IJCAI, Tbilisi, Georgia, USSR:
422-428.

Shieber, Stuart M., Hans Uszkoreit, Fernando C. N.
Pereira, Jane J. Robinson, and Mabry Tyson (1983).
The Formalism and Implementation of PATR-II. In:
Barbara Grosz and Mark Stickel, eds., Research on
Interactive Acquisition and Use of Knowledge. SRI
Final Report 1894, SRI International, Menlo Park,
California.

Slocum, Jonathan (1981). A Practical Comparison
of Parsing Strategies. Proc. 19th ACL, Stanford,
California: 1-6.

Thompson, Henry (1981). Chart Parsing and Rule
Schemata in GPSG. Research Paper No. 165, De-
partment of Artificial Intelligence, University of Ed-
inburgh, Edinburgh, Scotland. Also in: Proc. 19th
ACL, Stanford, California: 167-172.

Thompson, Henry and Graeme Ritchie (1984). Im-
plementing Natural Language Parsers. In: Tim
O'Shea and Marc Eisenstadt, Arh'ficial Intelligence:
Tools, Techniques, and Applications. Harper & Row,
New York, New York: 245-300.

Tomita, Masaru (1985). An Efficient Context-free
Parsing Algorithm For Natural Languages. Proc.
9th IJCAI, Los Angeles, California: 756=764.

Tomita, Masaru (1986). E~cient Parsing for Nat-
ural Language. A Fast Algorithm for Practical Sys-
tems. Kluwer Academic Publishers, NorweU, Mas-
sachusetts.

Wang, Weiguo (1985}. Computational Linguistics
Technical Notes No. 2. Technical Report 85/013,
Computer Science Department, Boston University,
Boston, Massachusetts.

233

