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Abstract

The success of sentence classification of-
ten depends on understanding both the
syntactic and semantic properties of word-
phrases. Recent progress on this task has
been based on exploiting the grammati-
cal structure of sentences but often this
structure is difficult to parse and noisy.
In this paper, we propose a structure-
independent ‘Gated Representation Align-
ment’ (GRA) model that blends a phrase-
focused Convolutional Neural Network
(CNN) approach with sequence-oriented
Recurrent Neural Network (RNN). Our
novel alignment mechanism allows the
RNN to selectively include phrase infor-
mation in a word-by-word sentence repre-
sentation, and to do this without aware-
ness of the syntactic structure. An em-
pirical evaluation of GRA shows higher
prediction accuracy (up to 4.6%) of fine-
grained sentiment ratings, when compared
to other structure-independent baselines.
We also show comparable results to sev-
eral structure-dependent methods. Finally,
we analyzed the effect of our alignment
mechanism and found that this is critical
to the effectiveness of the CNN-RNN hy-
brid.

1 Introduction

Sentence classification is the task of modeling,
representing and assigning sentences to classes,
which are often based on structure or sentiment.
This task is important for many applications re-
quiring a degree of semantic comprehension. Re-
cent advancements in sentence classification em-
ploy distributed embedding models (Mikolov et
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al., 2013), which discover semantic relations be-
tween words and represent words as real-valued
vectors. State-of-the-art classification methods
typically combine distributed embedding models
with the following three strategies: n-gram mod-
els, sequential models and tree models. Of these,
the best results have been obtained using tree mod-
els (Mou et al., 2015; Tai et al., 2015), which use
sentence syntactic trees originating from gram-
mar to help construct sentence embeddings. How-
ever, noisy text (such as found in online reviews)
does not always contain much grammatical struc-
ture, which reduces the effectiveness of tree mod-
els. Hence it is important to study structure-
independent models.

Much recent research into structure-
independent n-gram CNN models (Kalchbrenner
et al., 2014; Yu et al., 2014; Yin and Schütze,
2015; Kim, 2014; Zhang et al., 2016) attempts
to build comprehensive sentence embeddings
by identifying the most influential n-grams of
different semantic aspects. However, while these
methods are effective at exploring the regional
syntax of words, they are unable to account for
order-sensitive situations, where the order of
words is critical to the meaning.

On the other hand, sequential models based
on RNN (Graves, 2013; Sutskever et al., 2014;
Palangi et al., 2016) build sentence embeddings
using a global cell that reads one word at a time.
The cell contains an update function that uses the
most recent word to update sentence embeddings,
while maintaining some memory of previously
seen words. Recent extensions of RNN cells, such
as Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU) (Cho et al., 2014), better
enable the cell to memorize and forget information
that is pertinent to the meaning of the sentence.
However, it is not clear how much phrase-level in-
formation is captured since the RNN cells are op-
timized from a whole-sentence perspective.
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In this paper, we propose a hybrid CNN-
RNN framework to model relationships between
phrases and word sequences in each sentence. In
the framework, we added a soft-aligning layer
that provides an adaptive mechanism for RNN to
‘peek’ into relevant n-grams generated by a CNN
and selectively include them. We call our model
Gated Representation Alignment (GRA) since we
implement soft-alignment using a group of Gated
Recurrent Units. Similar to CNN and RNN ap-
proaches, GRA requires no explicit structural in-
formation about the sentence, making it adaptable
to noisy text.

In our experiments, GRA outperforms an
LSTM baseline by 4.6% when classifying fine-
grained sentiment datasets. The other eight base-
line models we tested improve on this baseline by
up to 3.2%. Furthermore, GRA achieves compa-
rable results to structure-dependent models. Fur-
ther analysis against baselines shows the align-
ment mechanism in GRA is the key to combine
the power of CNN and RNN approaches.

2 Methodology

Figure 1 depicts the GRA model, which consists
of three stages: the first generates phrase vec-
tors using CNN; the second combines the word
and phrase vectors, and incorporates word order to
generate sentence representations through a soft-
aligned RNN; the third stage makes class predic-
tions based on these sentence representations. The
figure shows the processing flow for the i-th word,
which is equivalent to the i-th time step.

2.1 Phrase Vector CNN

In the first stage of the GRA model, phrase vectors
are derived from a set of CNNs that operate on the
input sequence of words. Each phrase vector is a
representation of between two and five words.

Let Xi ∈ Rk represent a k-dimensional embed-
ding for the i-th word in the sentence. An input
sentence of length N can thus be considered as a
vertical concatenation of X1:N . We apply a set of
convolutional filters W `

P and bias terms b`P to the
sentence as per equation (1), in order to learn a
representation for each phrase of length `.

P `i = Relu(W `
P · [Xi, .., Xi−`] + b`P ) (1)

We use PL={2,3,..,`}
i to represent phrase vectors at

time i, which includes all phrases ended with Xi.

Figure 1: GRA Framework and Details at Step i

2.2 Soft-aligned RNN

The second stage generates sentence vector rep-
resentations (or states) using a soft-aligned RNN.
The state updated with the i-th word is represented
as a d-dimensional vector Si.

Our model was inspired by an attention GRU-
RNN model introduced by Bahdanau et al. (2015),
which was originally used for machine translation.
The attention model provides an interface for a
neural network to selectively include outputs from
another model, which is ideal for our purpose of
combining CNN and RNN.

For the i-th time step in GRU-RNN, the GRU
cell forgets a portion of learned sentence informa-
tion Si−1 using the update gate Z, and updates it
through a reset gate R. In GRU cells, both gates
are controlled by Si−1 and Xi. In GRA, another
vector Ci combines the weight from the Attention
Gates in Figure 1 with each phrase vector from
CNN. This provides input to the GRU RNN cells,
as shown in equation set (2).

An intuitive way to understand Ci is to con-
sider that the model tries to determine which of
the phrases generated by word Xi are more rea-
sonable based on current sentence state Si. In the
example sentence shown in Figure 1, for the word
‘guys’, the weighting function determines weights
for each of the phrase vectors representing ‘cou-
ple of crazy guys’, ‘of crazy guys’ and ‘crazy guys’
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based on their similarity to the sentence state.
To compute similarity, both the phrase vectors

P `i and the sentence state S∗i are projected to a new
vector space (after Si−1 is updated with Xi), and
then similarity is evaluated by a dot product, rep-
resented as α`i . We call this step attention scoring
and formalize in equation set (3).

In the Bahdanau et al. (2015) attention frame-
work, the underlying assumption was that one
neural network always received the output of an-
other. Applying softmax to the attention scores
indicated that the receiving neural network must
focus on a certain part of the input. However, this
assumption might not hold in the GRA framework
as phrase information is not always needed at each
timestep of RNN training. For the example sen-
tence “Then one day, completely out of the blue, I
had a letter from her.”, we clearly need to include
phrase vectors for the word “blue” (which is only
meaningful as part of a phrase) but not for other
words such as “I”. Accordingly, a loosely coupled
framework that dynamically incorporates or omits
phrase vectors is necessary.

The major challenge here is that the algorithm
needs a reference to compute weights for the
phrase vectors. For instance, in softmax, each in-
put is simply weighted by its contribution to the
sum. However, in GRA, the sum of similarity
scores is not a good scaling factor since phrase
vectors are sometimes omitted. Instead, we use
a set of GRU cells that receive previous weights,
other phrase’s weights, and attention scores as in-
puts, and use these to compute the final weights for
each phrase vector. The intuition is that GRA is
trying to determine the weight for P ` by concate-
nating attention scores, past weights and weights
assigned to other phrase vectors. Using a RNN
cell helps to store relevant past information and
allows concurrent weights be easily added into the
formula. To compute the weight for P `i , a GRU
cell receives the weight for P `−1

i−1 if the weight for
P `−1
i is not computed yet. We called this process

attention gating, and the final output is the set of
weightsA`i for the phrase vector P `i , as formalized
in equation set (4).

2.3 Classification Layer and Regularization

The penultimate layer of GRA, which outputs the
final sentence vectors, averages sentence states
from all time steps. Finally, classification is done
using softmax to project the final sentence vec-

tor to K conditional probabilities, where K is the
number of classes, and a class prediction is ob-
tained from the argmax operation.

We implemented a bi-directional RNN with
dropout for regularization (Pham et al., 2014).
The RNN cells are shared for both forward and
backward passes to limit the number of variables.
This also helps to decrease over-fitting.
GRU RNN Cell1,2,3:
Zi = sigmoid(WZ · [Xi, Si−1, Ci] + bZ)
Ri = sigmoid(WR · [Xi, Si−1, Ci] + bR)
Hi = tanh(WH · [Xi, Ri � Si−1, Ci] + bH)
Si = (1− Zi)� Si−1 + Zi �Hi (2)

Attention Scoring:
αli = Uα · tanh((Wα · P li )� S∗i ) + bα

S∗i = Ws · [Si−1, Xi]

αLi = [α2
i , ..., α

`
i ] (3)

Attention Gate4,5:
AZ`i = tanh(W `

AZ · [αLi , AL−`latest, A
`
i−1] + bAZ)

AR`i = tanh(W `
AR · [αLi , AL−`latest, A

`
i−1] + bAR)

AH`
i = tanh(

W `
AH · [αLi , AL−`latest, AR

`
i �A`i−1] + bAH)

A`i = (1−AZ`i )�A`i−1 +AZ`i �AH`
i

Ci = [Ai2 � Pi2, ..., Ai` � Pi`] (4)

3 Datasets and Experimental Setup

We tested our model on datasets containing both
‘clean’ (i.e. well-structured) and ‘noisy’ text.

The clean datasets are obtained from Stanford
Sentiment Treebank (SST5), a 5-class movie re-
view corpus (i.e. very negative, negative, neutral,
positive, very positive) from Socher et al (2013).
Labeling is done at both sentence and phrase level.
Well-known sub-phrases (and individual words)
are labelled separately for training, but are not
used in testing. Dataset SST2 is the same as SST5
but reduced to binary classes.

The noisy dataset is a 5-classes review dataset
from Yelp (Tang et al., 2015). We parsed short
reviews (less than 60 words) from the 200 most
frequently reviewed restaurants. Also, we under-
sampled positive and very positive reviews as the
reviews are skewed toward the positive end.

1� represents element-wise multiplication
2[A,B]represents horizontal concatenation of A and B
3W represents weight matrix used for the corresponding

parameter, and b as bias terms
4AL−`

i represents ` is excluded from L
5latest refers to i or i-1, depending if Ai

L-`is computed
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The accuracy results from the clean datasets
were averaged over 5 runs using the train/test splits
given in the datasets. The noisy dataset wasn’t
broken down in this way in advance, so we evalu-
ated it using 10-fold cross validation.

In order to minimize parameter tuning, we used
the Adadelta (Zeiler, 2012) optimizer to obviate
the need to determine a learning rate. Dropout is
set to 50% for each timestep in RNN, and we use
no dropout in the penultimate layer.

During experiments, we set the dimension of
word vectors to 300, and the CNN filter length to
[2,3,4]. Each CNN filter has 150/50 dimensions
in SST5,SST2/Yelp. Bi-directional RNN state
size is set to 450/150 for SST5, SST2/Yelp for
each direction. Each experiment lasts 10 epochs,
with mini-batch size of 200. Similar to most
benchmark models, GRA uses pre-trained word
vectors6 (trained on GoogleNews) to initialize
the words embeddings. Words not present in the
corpus are initialized randomly.

4 Results and Discussion

The classification accuracy of GRA and baseline
methods are shown in Table 1. Results for baseline
methods running against the SST5 / SST2 datasets
are mostly taken directly from the corresponding
papers7 8. For baseline algorithms we reimple-
mented, we used the parameter settings specified
in the original papers. It was only possible to
run some of the baseline algorithms on the Yelp
dataset due to availability of source code and pa-
rameter configurations.

It can be seen from Table 1 that GRA outper-
forms the baselines on the fine-grained datasets
(SST5 / Yelp), and is also comparable with the bi-
nary case (SST2).

Next, we further investigated the effect of soft-
alignment, and compared GRA with structure de-
pendent models for a more extensive analysis.

4.1 Effect of Soft-alignment

We first empirically evaluate the effect of soft-
alignment by comparing GRA with/without soft-
alignment on the SST5 dataset. In the latter case,

6https://code.google.com/p/word2vec
7* denotes that we reimplemented the algorithm, but re-

ported SST5/SST2 results based on the results shown in their
publications.

8Models without citation are implemented following pa-
rameter settings in section 3.

Table 1: Accuracy of GRA and benchmarks. † de-
notes models that are trained on SST5 but sum the
result of the softmax layer to obtain binary predic-
tions; as stated in Mou et al. (2015), it is more
difficult to obtain good results with this approach.

the last formula in formula set (4) becomes Ci =
[P 2
i , ..., P

`
i ], which can be seen as simply chain-

ing together the two models. We added two more
CNN and RNN hybrid models here for compre-
hensive comparison. Both hybrids combined CNN
and RNN at the penultimate layer, but the first
one combined models by taking the average of the
softmax scores; the second combined models by
concatenating the sentence vectors generated by
CNN and RNN. These two hybrid models can be
seen as ensemble approaches since CNN and RNN
are not interacting while generating the sentence
vector. We show the results in Table 2.

Methods SST5
Average of softmax of CNN and RNN 50.2
Concatenate CNN and RNN 50.6
GRA not-aligned 48.8
GRA 51.0

Table 2: Accuracy of GRA and other hybrids.

It can be seen from Table 2 that even very
simple ensemble methods can yield good results
when compared to standalone models. On the
other hand, for GRA without alignment the result
became worse when compared to RNN without
phrase vectors (i.e. Bi-Directional LSTM in Ta-
ble 1). We suppose that the drop of accuracy in
the not-aligned version is a result of phrase vectors
being over-counted with large weights, and thus
reducing the effectiveness of the sequence learn-
ing ability in RNN. However, with soft-alignment,
GRA can incorporate CNN phrase vectors into an
RNN without impacting the sequence learning ef-
fectiveness.

We further qualitatively tested our assumption
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that GRA preserves more phrase level informa-
tion without compromising the RNN. We eval-
uate this by quantifying the union of correct
cases from GRA (both with and without soft-
alignment) against the CNN/LSTM baselines. If
soft-alignment helps to bridge the two models,
then the predictions from GRA should be closer
to those from CNN/LSTM with soft-alignment en-
abled than the not-aligned case. We show the re-
sults of this evaluation in Figure 2 using the test
set from SST5. Each point shows the size of
the union of correct cases for a variety of sen-
tence lengths, and only for sentences that are pre-
dicted correctly more than 3 times in the 5 runs.
When compared to LSTM and CNN/LSTM mod-
els, GRA with alignment produces a consistently
larger union of correct cases (typically by 5-10%)
than GRA without alignment. These results sup-
port our intuition that soft-alignment make an im-
portant difference.

Figure 2: Coverage of CNN and LSTM correct
cases between GRA and GRA-without-alignment.

We also evaluated how sentimentally-sensitive
the model is with soft-alignment by slightly mod-
ifying some of the sentences. We demonstrate in
Figure 3 how predicted sentiments can be changed
using a sample sentence. In Figure 3, we change
the sentiment of sentence with minimal interrup-
tion, i.e. “good” to “not good” or “bad”. While
all models reacted to the change significantly,
GRA predicts a major sentiment shift and is the
only one that changes the overall output prediction
to negative. We believe the abrupt change in sen-
timent observed by GRA is caused by the model
capturing phrase level changes.
4.2 Structure-dependent Models
In Table 3, we compare GRA with state-of-the-
art structure-dependent models. Although we
were only able to run one baseline against the
noisy Yelp dataset (due to both availability of re-
implementation and the lack of a good sentence-
grammar tree), GRA shows comparable results to

Figure 3: Change of sentiment distribution when
sentiment of sentence is manually reversed. Sen-
timent distribution is obtained by feeding the de-
rived sentence vectors to the softmax layer. The
sample sentence was a positive sentence: “If you
sometimes like to go to the movies to have fun, this
movie is a good place to start”. We replaced “a
good” with “not a good” to reverse the sentiment
of the sentence.

these models, and does no worse than second place
for SST5 and SST2.

Table 3: Accuracy of GRA against structure de-
pendent methods.† has same meaning as Table 1.

5 Conclusion

We propose a novel structure-free method for
combining RNN with CNN to improve sentence
modeling. While CNN captures phrase-level in-
formation by convoluting sub-sentences, RNN
preserves global sentence information. Our soft-
alignment mechanism helps to combine the two.
Empirical results show that our hybrid model out-
performs the baseline structure-free models, and
performs similarly to structure-dependent models.
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