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Abstract

Prepositional phrase (PP) attachment is a
well known challenge to parsing. In this
paper, we combine the insights of differ-
ent works, namely: (1) treating PP attach-
ment as a classification task with an ar-
bitrary number of attachment candidates;
(2) using auxiliary distributions to aug-
ment the data beyond the hand-annotated
training set; (3) using topological fields
to get information about the distribution
of PP attachment throughout clauses and
(4) using state-of-the-art techniques such
as word embeddings and neural networks.
We show that jointly using these tech-
niques leads to substantial improvements.
We also conduct a qualitative analysis to
gauge where the ceiling of the task is in a
realistic setup.

1 Introduction

Prepositional phrase (PP) attachment is a well-
known structural ambiguity in natural language
parsing (Hindle and Rooth, 1993), that even mod-
ern parsers have difficulty coping with. For exam-
ple, Kummerfeld et al. (2012) investigated parsing
error types across a large number of parsers for
English and found that PP attachment and clause
attachment are the most difficult constructions.
Mirroshandel et al. (2012) show that in a second-
order graph parser for French, 8 of the 13 most
common error types relate to PP attachment. We
found in our experiments with the parser of de Kok
and Hinrichs (2016) that most errors were made in
PP attachment (18.42% of all labeled attachment
errors).

What makes PP attachment particularly difficult
is that the ambiguities can often not be solved us-
ing only structural preferences. Example 1 from

German shows the difficulty of the problem in
its full glory, where the preposition unter “un-
der/among” is attached to Neulinge “newcomers”.
However, the PP could attach to begrüßen “wel-
come” when the complement of the preposition
is a locative noun phrase (e.g. offenem Himmel
“open skies”).

(1)
Wir begrüßen die Neulinge unter uns .
We welcome the newcomers under/among us .

PP
PP

Spread throughout the literature, there are many
important observations about and approaches to
the task of PP attachment, but they have never
been properly combined. We will first discuss
them briefly below, and then summarize the con-
tributions of this paper.

Most work in PP attachment assumes that a
preposition attaches to either the immediately pre-
ceding noun (phrase) or the main verb (Hindle
and Rooth, 1993; Volk, 2002). Some other work
does take multiple nouns candidates into consid-
eration, but only nouns that are within a certain
window preceding the preposition (Ratnaparkhi,
1998; Belinkov et al., 2014) or all the nouns in the
sentence (Foth and Menzel, 2006). Using exam-
ples from German, de Kok et al. (2017) show that
these crude approaches are problematic. In Ger-
man, there are typically more than two possible
attachment sites. In fact, they show that 30% of
the training instances could not even be described
in this typical binary classification setup. More-
over, PPs can attach over relatively long distances
and the preposition can precede its head (e.g. in
PP topicalization). They also show that the task
of PP attachment with multiple noun candidates is
considerably more difficult than the traditional bi-
nary classification task. On the other hand, de Kok
et al. (2017) also show that many spurious heads
can be eliminated by exploiting relatively shallow
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clause structure annotations.

Previous work has shown that bi-lexical prefer-
ences are effective in solving PP attachment am-
biguities (Brunner et al., 1992; Whittemore et
al., 1990). Two words have a strong bi-lexical
preference if the words are likely to occur in a
head-dependent relation. These preferences are
usually stated in terms of information-theoretical
measures, such as point-wise mutual informa-
tion. Since hand-annotated treebanks usually do
not have enough material to obtain reliable bi-
lexical statistics, these statistics were extracted
from raw text (Volk, 2001), automatically tagged
(Ratnaparkhi, 1998), chunk parsed (Volk, 2002)
or parsed (Hindle and Rooth, 1993; Pantel and
Lin, 2000; Mirroshandel et al., 2012) corpora,
resulting in auxiliary distributions. Since these
seminal works in PP attachment, parsers have be-
come faster (Kübler et al., 2009) and more accu-
rate (Chen and Manning, 2014), opening the pos-
sibility to obtain better co-occurrence statistics.

Topological fields are commonly used to cap-
ture the regularities in German word order (Drach,
1937; Höhle, 1986). The distributions of syntac-
tic relations vary significantly across topological
fields, which can benefit dependency parsing of
German (de Kok and Hinrichs, 2016). We expect
topological fields to provide information about the
distribution of PP attachment throughout clauses
and thus benefit PP attachment disambiguation for
German in a similar way as in dependency parsing.

Many tasks in natural language processing have
seen substantial improvements in recent years
through the use of word embeddings in combi-
nation with neural networks. Word embeddings
(Mikolov et al., 2013; Pennington et al., 2014) im-
prove the lexical coverage of systems beyond su-
pervised training sets by giving words that occur
in similar contexts similar vector representations.
Embeddings work especially well with neural net-
works, as neural networks are able to capture non-
linear interactions between features.

Considering these ideas and techniques that can
have an impact on modeling PP attachment, the
question we want to address is where do we stand
in PP attachment? Our contributions are three-
fold: (1) we evaluate PP attachment on a realis-
tic multiple-candidate PP attachment data set for
German; (2) we integrate the aforementioned ad-
vances in parsing and machine learning and con-
firm their usefulness for the task; and (3) we per-

form an error analysis to gauge how many of the
remaining errors can be attributed to the system.

2 PP attachment disambiguation model

Following the discussion in the Introduction, this
paper considers a realistic setup for PP attach-
ment disambiguation, where each disambiguation
instance involves choosing the correct attachment
site from an arbitrary number of candidates. As
the number of classes/candidates varies across dis-
ambiguation instances, it can not be modeled as
a typical multiclass classification. To tackle this
setup, we build a neural candidate scoring model
(Section 2.1) to estimate the probability that the at-
tachment candidate under consideration is the cor-
rect attachment site. Then, among all the candi-
dates for the same PP, the candidate with the high-
est probability is considered to be the correct at-
tachment site.

2.1 Neural candidate scoring model

Our neural candidate scoring model uses a feed-
forward neural network with three layers. The
input layer consists of featurized representations
of a <preposition, object of the preposition,
candidate> triple. These input features are dis-
cussed in more detail in Section 2.2. The net-
work uses a hidden layer with the ReLU activa-
tion function (Hahnloser et al., 2000) as its non-
linearity. Finally, the output layer uses the logistic
function as an activation function to model proba-
bilities. For regularization, dropout (Srivastava et
al., 2014) is applied to the input and hidden lay-
ers. Following the best practice, we apply batch
normalization (Ioffe and Szegedy, 2015) of param-
eters.

The model parameters are trained using (candi-
date, probability) pairs that are constructed from
the training data. Correct and incorrect attach-
ments are assigned probabilities 1 and 0 respec-
tively. To learn the model parameters, we mini-
mize the cross-entropy loss using mini-batch gra-
dient descent. During learning, the global learn-
ing rate follows an exponential decay and the per-
parameter learning rate is adjusted using Adagrad
(Duchi et al., 2011).

2.2 Feature set

Basic features. Following Kübler et al. (2007),
we use the word form and part-of-speech as fea-
tures for the preposition, object and candidate. We
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augment the absolute distance feature of Kübler
et al. (2007) that counts the number of words be-
tween the preposition and the candidate, with the
logarithm of this distance and the relative dis-
tance. The relative distance is the number of com-
peting candidates between the candidate and the
preposition.

Word and tag embeddings Traditional methods
for PP attachment represent the word and tag fea-
tures as one-hot vectors. For the embedding repre-
sentations of these two types of features, we use
the embeddings of de Kok (2015), which were
trained on corpora of 800 millions tokens, us-
ing WANG2VEC (Ling et al., 2015), a variation of
WORD2VEC that is tailored to syntactic tasks.

Topological fields As mentioned in the Introduc-
tion, topological fields are informative for the dis-
tributions of syntactic relations in general. Our
analysis of the TüBa-D/Z dependency treebank
(Telljohann et al., 2006) for German shows that
this observation also holds for the PP attachment
relation. For example, when the preposition is in
the initial field, the preposition is highly likely to
attach to the candidate in either the initial field or
the left bracket. We use the method of de Kok and
Hinrichs (2016) to predict the topological fields
for all three types of tokens: the preposition, ob-
ject and candidate. Each of these token will have
a corresponding one-hot vector that represents its
predicted topological field.

Auxiliary distributions of bi-lexical preferences
have been shown to be useful for resolving syn-
tactical ambiguities in general (Johnson and Rie-
zler, 2000; van Noord, 2007), besides their par-
ticular benefits for PP attachment as discussed
in Section 1. Such bi-lexical preferences can
be captured, for example, by point-wise mutual
information (PMI) that is estimated from large
machine-annotated corpora. Our approach makes
use of a state-of-the-art dependency parser (de
Kok and Hinrichs, 2016) to parse a large cor-
pus, namely articles from the German newspa-
per taz (die tageszeitung) from 1986 to 2009
(28.8 million sentences, 393.7 million tokens).
The parser-predicted PP attachments are repre-
sented as <preposition, object of the preposition,
candidate> triples, which we collect from both
ambiguous and unambiguous PP attachment re-
sults. Here, unambiguous attachments refer to
prepositions that only have one possible attach-
ment site (Ratnaparkhi, 1998).

For bi-lexical association scores, we compute
the normalized point-wise mutual information
(NPMI) (Bouma, 2009), a normalized version
of PMI, for three types of token pairs: (candi-
date, object), (candidate, preposition) and (candi-
date, preposition+object). For the last case, each
preposition-object combination is considered as
one token. NPMI is obtained by normalizing raw
PMI into the range [−1, 1], which is more favor-
able for learning. We also extend bi-lexical associ-
ation scores to tri-lexical association scores by us-
ing specific interaction information and total cor-
relation (Van de Cruys, 2011), both of which can
simultaneously take into account three variables,
which are the preposition, object and candidate in
our case. Overall, our auxiliary distributions con-
sist of 5 types of association scores that are esti-
mated from automatically parsed corpora.

3 Experiments

For evaluation, we use the recently created PP
attachment data set for German (de Kok et al.,
2017). In this data set each preposition has mul-
tiple head candidates. The average number of can-
didates per preposition is 3.15. The data set is ex-
tracted from TüBa-D/Z, using a set of rules de-
rived from the distributions of prepositions and
their heads across topological fields. From this
data set, we remove the instances that originate
from sentences that were used to train the parser
which was used in creating the auxiliary distri-
butions. We split the remaining 43,906 instances
with a 4:1 ratio for respectively training and eval-
uation. Initially, a subset of the training data is
used to tune hyper-parameters. Then we train
the model on the full training set using the cho-
sen hyper-parameters.1 Finally, the model per-
formance is evaluated on the test set, using stan-
dard per-preposition accuracy, i.e the percentage
of prepositions that are correctly attached.

3.1 Comparison with baselines

Ideally, we would like to compare the model pro-
posed in Section 2 to earlier approaches for Ger-
man PP attachment disambiguation, using the new
data set with multiple attachment candidates (see
Section 3). Previous approaches typically used
memory-based learning (Kübler et al., 2007) or

1The relevant hyper-parameters are: number of hid-
den units: 100; dropout probability input/hidden layers:
0.2/0.05; and word/part-of-speech embedding sizes: 50.
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linear SVMs (Volk, 2001). Since the running time
of the memory-based learning implementation on
the data set is extremely long and linear SVMs of-
ten yield results that are similar to logistic regres-
sion on NLP tasks, we build a logistic regression
model (LR) as the baseline. Logistic regression is
a representative linear model with high computa-
tional efficiency. The input representations, reg-
ularization and optimization algorithm remain the
same for both our model and the LR baseline.

3.2 Impact of embeddings and feed-forward
neural networks

In the upper half of Table 3.2, we compare the
LR baseline with two variations of the proposed
neural network model. The baseline and the first
variation (NN1) use the same one-hot feature vec-
tors as input, as previous approaches utilize such
feature representations. Our NN1 model outper-
forms the logistic regression baseline (LR) by
11.3% in terms of absolute accuracy improve-
ment. Note that our experiment only uses core fea-
tures without hand-crafting combinatory features,
which would have improved the performance of
the LR model. Thanks to the non-linearity, neu-
ral networks can implicitly capture useful fea-
ture combinations, thus leading to dramatic per-
formance improvement from LR to NN1. Another
substantial improvement (13.8%) is obtained by
representing the word forms and POS tags with
embeddings instead of one-hot vectors (compar-
ing NN2 with NN1). Our lexical coverage analy-
sis shows that the training set only covers 71.7% of
the word types that occur in the test set, while the
embeddings have the lexical coverage of 89.5%,
which can probably account for much of the im-
proved accuracy of NN2. Note that, in both cases,
the word forms are used without lemmatization or
morphological analyses. The high lexical cover-
age makes embeddings more robust when linguis-
tic pre-processing is absent or inaccurate.

3.3 Impact of topological fields and auxiliary
distributions

To test the benefits of using topological fields and
auxiliary distributions for the task, we conduct
further experiments to test three variations of our
model. The NN3 model extends the NN2 model
by adding the topological field features. The NN4
model further extends the NN3 model by adding
auxiliary distributions that are estimated from all
the PP attachments. Finally, the NN5 model ex-

Name Model Accuracy
LR LR with one-hot vectors 56.9%

NN1 NN with one-hot vectors 68.2%
NN2 NN with embeddings 82.0%
NN3 NN2 + topological fields 83.8%
NN4 NN3 + auxiliary all 86.5%
NN5 NN4 + auxiliary unamb. 86.7%

Table 1: Results on PP attachment disambiguation
on the logistic regression baseline (LR) and our
neural network models (NN*).

tends the NN4 model by adding auxiliary distribu-
tions using only the unambiguous PP attachments.
Although the unambiguous attachments are a sub-
set of the auxiliary all set, the lexical association
distributions of the two sets are different, thus pro-
viding extra information to the model. These re-
sults are shown in the lower half of Table 3.2.
By exploiting topological fields as extra features,
model NN3 obtains 1.8% absolute improvements
in accuracy over model NN2. Adding auxiliary all
features on top of NN3 leads to another 2.7% im-
provement in accuracy. The final 0.2% improve-
ment in accuracy is achieved by adding auxiliary
distributions using only the unambiguous PP at-
tachments. These results confirm the usefulness
of topological fields and auxiliary distributions.

4 Error analysis

To answer the final part of our question “where we
stand in PP attachment”, we take a random sample
of 100 instances that were incorrectly attached by
our most accurate model. We then analyzed each
instance by hand and assigned it to one of four
types of errors: (1) incorrect: the model made a
clear attachment error; (2) discourse: the attach-
ment can only be resolved with discourse-level
information; (3) irrelevant: there are two attach-
ment choices that give rise to the same interpre-
tation, where the gold-standard marked one while
the model marked the other (see Example 2). (4)
other: such as possible errors in the gold standard.
The results are shown in Table 2.

(2)
Sie ist Mitarbeiterin beim AKG Frauenpolitik bei den Grünen
She is employee at-the AKG Women-politics with the Greens

PP

PP

Based on this data analysis, we can conclude
that the ceiling for the task is lower than 100%.
The 36 irrelevant cases and 7 other cases could
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be seen as shortcomings of the data set, which
should mark multiple attachment sites when there
is no substantial shift in meaning. The 13 errors
that require discourse analysis cannot be resolved
as long as PP attachment and consequently pars-
ing are treated as sentence-level tasks. This leaves
44/100 errors that should be solvable be future ad-
vancements in PP attachment models, i.e. the ac-
curacy ceiling of the task on the dataset is expected
to be around 92.6%.

Type #
Incorrect 44
Irrelevant 36
Discourse 13
Other 7

Table 2: Error analysis of a random sample of 100
PPs that are incorrectly attached by the best model.

5 Conclusion

This paper evaluated a state-of-the-art PP attach-
ment model that combines various insights about
the task from the literature on a realistic data set
with multiple attachment sites per preposition. We
showed that by jointly using these insights, we ob-
tain a very substantial improvement over previous
approaches to the task. To answer the question
where we stand in PP attachment, we conducted
a manual analysis of attachment errors. This anal-
ysis showed that for this data set, the margin be-
tween the best models and the ceiling (approxi-
mately 92.6%) is quickly narrowing. Moreover,
any improvements beyond that ceiling requires
changes to gold standards to mark multiple correct
structures and that certain ambiguities in PP at-
tachment and parsing are resolved with discourse-
level information.

The system discussed in this paper is largely
language-independent, because it relies on word
embeddings and bi-lexical preferences as the pri-
mary features. The only exception to this are the
topological field features. However, we should
point out that the topological field model is also
used to describe clause structure in other Ger-
manic languages (e.g. Haeseryn et al. (1997) and
Zwart (2014)). Moreover, similar linear prece-
dence constraints have been found for other lan-
guage families, such as Slavic (Penn, 1999).

In the future, we would like to integrate and
evaluate the PP attachment model that was dis-

cussed in this work in a dependency parser. Our
aim is to use the representations formed by the
feed-forward neural network as additional inputs
to the transition classifier. This would combine the
power of phrasal representations similar to those
proposed by Belinkov et al. (2014) with bi-lexical
preferences trained on large corpora.
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Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing, volume 1. Morgan &
Claypool Publishers.

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at
the Wall Street corral: An empirical investigation
of error types in parser output. In Proceedings of
the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1048–1059, Jeju
Island, Korea, July. Association for Computational
Linguistics.

Wang Ling, Chris Dyer, Alan W. Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1299–1304,
Denver, Colorado, May–June. Association for Com-
putational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119.

Seyed Abolghasem Mirroshandel, Alexis Nasr, and
Joseph Le Roux. 2012. Semi-supervised depen-
dency parsing using lexical affinities. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 777–785, Jeju Island, Korea, July. As-
sociation for Computational Linguistics.

Patrick Pantel and Dekang Lin. 2000. An unsuper-
vised approach to prepositional phrase attachment
using contextually similar words. In Proceedings of
the 38th Annual Meeting of the Association for Com-
putational Linguistics, pages 101–108, Hong Kong,
October. Association for Computational Linguistics.

Gerald Penn. 1999. Linearization and WH-extraction
in HPSG: Evidence from Serbo-Croatian. In
Robert D. Borsley and Adam Przepiórkowski, edi-
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