
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 164–169,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Identifying beneficial task relations for multi-task learning
in deep neural networks

Joachim Bingel
Department of Computer Science

University of Copenhagen
bingel@di.ku.dk

Anders Søgaard∗
Department of Computer Science

University of Copenhagen
soegaard@di.ku.dk

Abstract

Multi-task learning (MTL) in deep neural
networks for NLP has recently received in-
creasing interest due to some compelling
benefits, including its potential to effi-
ciently regularize models and to reduce the
need for labeled data. While it has brought
significant improvements in a number of
NLP tasks, mixed results have been re-
ported, and little is known about the con-
ditions under which MTL leads to gains in
NLP. This paper sheds light on the specific
task relations that can lead to gains from
MTL models over single-task setups.

1 Introduction

Multi-task learning is receiving increasing inter-
est in both academia and industry, with the po-
tential to reduce the need for labeled data, and
to enable the induction of more robust models.
The main driver has been empirical results push-
ing state of the art in various tasks, but prelimi-
nary theoretical findings guarantee that multi-task
learning works under various conditions. Some
approaches to multi-task learning are, for exam-
ple, known to work when the tasks share opti-
mal hypothesis classes (Baxter, 2000) or are drawn
from related sample generating distributions (Ben-
David and Borberly, 2003).

In NLP, multi-task learning typically involves
very heterogeneous tasks. However, while great
improvements have been reported (Luong et al.,
2016; Klerke et al., 2016), results are also of-
ten mixed (Collobert and Weston, 2008; Søgaard
and Goldberg, 2016; Martı́nez Alonso and Plank,
2017), and theoretical guarantees no longer apply.
The question what task relations guarantee gains
or make gains likely in NLP remains open.

∗Both authors contributed to the paper in equal parts.

Contributions This paper presents a systematic
study of when and why MTL works in the context
of sequence labeling with deep recurrent neural
networks. We follow previous work (Klerke et al.,
2016; Søgaard and Goldberg, 2016; Bollman and
Søgaard, 2016; Plank, 2016; Braud et al., 2016;
Martı́nez Alonso and Plank, 2017) in studying
the set-up where hyperparameters from the single
task architectures are reused in the multi-task set-
up (no additional tuning), which makes predict-
ing gains feasible. Running MTL experiments on
90 task configurations and comparing their per-
formance to single-task setups, we identify data
characteristics and patterns in single-task learn-
ing that predict task synergies in deep neural net-
works. Both the LSTM code used for our single-
task and multi-task models, as well as the script
we used for the analysis of these, are available at
github.com/jbingel/eacl2017_mtl.

2 Related work

In the context of structured prediction in NLP,
there has been very little work on the conditions
under which MTL works. Luong et al. (2016) sug-
gest that it is important that the auxiliary data
does not outsize the target data, while Benton et
al. (2017) suggest that multi-task learning is par-
ticularly effective when we only have access to
small amounts of target data. Martı́nez Alonso
and Plank (2017) present a study on different task
combinations with dedicated main and auxiliary
tasks. Their findings suggest, among others, that
success depends on how uniformly the auxiliary
task labels are distributed.

Mou et al. (2016) investigate multi-task learn-
ing and its relation to transfer learning, and un-
der which conditions these work between a set of
sentence classification tasks. Their main finding
with respect to multi-task learning is that success

164

depends largely on “how similar in semantics the
source and target datasets are”, and that it gener-
ally bears close resemblance to transfer learning in
the effect it has on model performance.

3 Multi-task Learning

While there are many approaches to multi-task
learning, hard parameter sharing in deep neural
networks (Caruana, 1993) has become extremely
popular in recent years. Its greatest advantages
over other methods include (i) that it is known to
be an efficient regularizer, theoretically (Baxter,
2000), as well as in practice (Søgaard and Gold-
berg, 2016); and (ii) that it is easy to implement.

The basic idea in hard parameter sharing in deep
neural networks is that the different tasks share
some of the hidden layers, such that these learn
a joint representation for multiple tasks. Another
conceptualization is to think of this as regulariz-
ing our target model by doing model interpolation
with auxiliary models in a dynamic fashion.

Multi-task linear models have typically been
presented as matrix regularizers. The parame-
ters of each task-specific model makes up a row
in a matrix, and multi-task learning is enforced
by defining a joint regularization term over this
matrix. One such approach would be to define
the joint loss as the sum of losses and the sum
of the singular values of the matrix. The most
common approach is to regularize learning by the
sum of the distances of the task-specific models to
the model mean. This is called mean-constrained
learning. Hard parameter sharing can be seen as
a very crude form of mean-constrained learning,
in which parts of all models (typically the hidden
layers) are enforced to be identical to the mean.

Since we are only forcing parts of the models to
be identical, each task-specific model is still left
with wiggle room to model heterogeneous tasks,
but the expressivity is very limited, as evidenced
by the inability of such networks to fit random
noise (Søgaard and Goldberg, 2016).

3.1 Models

Recent work on multi-task learning of NLP mod-
els has focused on sequence labeling with recur-
rent neural networks (Klerke et al., 2016; Søgaard
and Goldberg, 2016; Bollman and Søgaard, 2016;
Plank, 2016; Braud et al., 2016; Martı́nez Alonso
and Plank, 2017), although sequence-to-sequence
models have been shown to profit from MTL as

well (Luong et al., 2016). Our multi-task learn-
ing architecture is similar to the former, with a
bi-directional LSTM as a single hidden layer of
100 dimensions that is shared across all tasks. The
inputs to this hidden layer are 100-dimensional
word vectors that are initialized with pretrained
GloVe embeddings, but updated during training.
The embedding parameters are also shared. The
model then generates predictions from the bi-
LSTM through task-specific dense projections.
Our model is symmetric in the sense that it does
not distinguish between main and auxiliary tasks.

In our MTL setup, a training step consists of
uniformly drawing a training task, then sampling a
random batch of 32 examples from the task’s train-
ing data. Every training step thus works on ex-
actly one task, and optimizes the task-specific pro-
jection and the shared parameters using Adadelta.
As already mentioned, we keep hyper-parameters
fixed across single-task and multi-task settings,
making our results only applicable to the scenario
where one wants to know whether MTL works in
the current parameter setting (Collobert and We-
ston, 2008; Klerke et al., 2016; Søgaard and Gold-
berg, 2016; Bollman and Søgaard, 2016; Plank,
2016; Braud et al., 2016; Martı́nez Alonso and
Plank, 2017).

3.2 Tasks

In our experiments below, we consider the follow-
ing ten NLP tasks, with one dataset for each task.
Characteristics of the datasets that we use are sum-
marized in Table 1.

1. CCG Tagging (CCG) is a sequence tagging
problem that assigns a logical type to every
token. We use the standard splits for CCG
super-tagging from the CCGBank (Hocken-
maier and Steedman, 2007).

2. Chunking (CHU) identifies continuous spans
of tokens that form syntactic units such as
noun phrases or verb phrases. We use the
standard splits for syntactic chunking from
the English Penn Treebank (Marcus et al.,
1993).

3. Sentence Compression (COM) We use the
publicly available subset of the Google Com-
pression dataset (Filippova and Altun, 2013),
which has token-level annotations of word
deletions.

165

Task Size # Labels Tok/typ %OOV H(y) ||X||F JSD F1

CCG 39,604 1,285 23.08 1.13 3.28 981.3 0.41 86.1
CHU 8,936 22 12.01 1.35 1.84 466.4 0.47 93.9
COM 9,600 2 9.47 0.99 0.47 519.3 0.44 51.9
FNT 3,711 2 8.44 1.79 0.51 286.8 0.30 58.0
POS 1,002 12 3.24 14.15 2.27 116.9 0.24 82.6
HYP 2,000 2 6.14 2.14 0.47 269.3 0.48 39.3
KEY 2,398 2 9.10 4.46 0.61 289.1 0.39 64.5
MWE 3,312 3 9.07 0.73 0.53 217.3 0.18 43.3
SEM 15,465 73 11.16 4.72 2.19 614.6 0.35 70.8
STR 3,312 118 9.07 0.73 2.43 217.3 0.26 61.5

Table 1: Dataset characteristics for the individual tasks as defined in Table 2, as well as single-task model
performance on test data (micro-averaged F1).

4. Semantic frames (FNT) We use
FrameNet 1.5 for jointly predicting tar-
get words that trigger frames, and deciding
on the correct frame in context.

5. POS tagging (POS) We use a dataset of
tweets annotated for Universal part-of-speech
tags (Petrov et al., 2011).

6. Hyperlink Prediction (HYP) We use the hy-
pertext corpus from Spitkovsky et al. (2010)
and predict what sequences of words have
been bracketed with hyperlinks.

7. Keyphrase Detection (KEY) This task
amounts to detecting keyphrases in scientific
publications. We use the SemEval 2017 Task
10 dataset.

8. MWE Detection (MWE) We use the Streusle
corpus (Schneider and Smith, 2015) to learn
to identify multi-word expressions (on my
own, cope with).

9. Super-sense tagging (SEM) We use the stan-
dard splits for the Semcor dataset, predicting
coarse-grained semantic types of nouns and
verbs (super-senses).

10. Super-sense Tagging (STR) As for the MWE
task, we use the Streusle corpus, jointly pre-
dicting brackets and coarse-grained semantic
types of the multi-word expressions.

4 Experiments

We train single-task bi-LSTMs for each of the ten
tasks, as well as one multi-task model for each of

Data features

Size Number of training sentences.
Labels The number of labels.
Tokens/types Type/token ratio in training data.
OOV rate Percentage of training words not in

GloVe vectors.
Label Entropy Entropy of the label distribution.
Frobenius norm ||X||F = [

∑
i,j

X2
i,j]

1/2, where
Xi,j is the frequency of term j in
sentence i.

JSD Jensen-Shannon Divergence be-
tween train and test bags-of-words.

Learning curve features

Curve gradients See text.
Fitted log-curve See text.

Table 2: Task features

the pairs between the tasks, yielding 90 directed
pairs of the form 〈Tmain, {Tmain, Taux}〉. The
single-task models are trained for 25,000 batches,
while multi-task models are trained for 50,000
batches to account for the uniform drawing of the
two tasks at every iteration in the multi-task setup.
The relative gains and losses from MTL over the
single-task models (see Table 1) are presented in
Figure 1, showing improvements in 40 out of 90
cases. We see that chunking and high-level se-
mantic tagging generally contribute most to other
tasks, while hyperlinks do not significantly im-
prove any other task. On the receiving end, we
see that multiword and hyperlink detection seem
to profit most from several auxiliary tasks. Sym-
biotic relationships are formed, e.g., by POS and
CCG-tagging, or MWE and compression.

We now investigate whether we can predict
gains from MTL given features of the tasks and
single-task learning characteristics. We will use

166

Figure 1: Relative gains and losses (in percent)
over main task micro-averaged F1 when incor-
porating auxiliary tasks (columns) compared to
single-task models for the main tasks (rows).

the induced meta-learning for analyzing what such
characteristics are predictive of gains.

Specifically, for each task considered, we ex-
tract a number of dataset-inherent features (see Ta-
ble 2) as well as features that we derive from the
learning curve of the respective single-task model.
For the curve gradients, we compute the gradients
of the loss curve at 10, 20, 30, 50 and 70 percent
of the 25,000 batches. For the fitted log-curve pa-
rameters, we fit a logarithmic function to the loss
curve values, where the function is of the form:
L(i) = a · ln(c ·i+d)+b. We include the fitted pa-
rameters a and c as features that describe the steep-
ness of the learning curve. In total, both the main
and the auxiliary task are described by 14 features.
Since we also compute the main/auxiliary ratios
of these values, each of our 90 data points is de-
scribed by 42 features that we normalize to the
[0, 1] interval. We binarize the results presented
in Figure 1 and use logistic regression to predict
benefits or detriments of MTL setups based on the
features computed above.1

4.1 Results

The mean performance of 100 runs of randomized
five-fold cross-validation of our logistic regression

1An experiment in which we tried to predict the magni-
tude of the losses and gains with linear regression yielded
inconclusive results.

Acc. F1 (gain)
Majority baseline 0.555 0.615
All features 0.749 0.669
Best, data features only 0.665 0.542
Best combination 0.785 0.713

Table 3: Mean performance across 100 runs of 5-
fold CV logistic regression.

model for different feature combinations is listed
in Table 3. The first observation is that there is a
strong signal in our meta-learning features. In al-
most four in five cases, we can predict the outcome
of the MTL experiment from the data and the sin-
gle task experiments, which gives validity to our
feature analysis. We also see that the features de-
rived from the single task inductions are the most
important. In fact, using only data-inherent fea-
tures, the F1 score of the positive class is worse
than the majority baseline.

4.2 Analysis

Table 4 lists the coefficients for all 42 features. We
find that features describing the learning curves
for the main and auxiliary tasks are the best pre-
dictors of MTL gains. The ratios of the learning
curve features seem less predictive, and the gra-
dients around 20-30% seem most important, af-
ter the area where the curve typically flattens a bit
(around 10%). Interestingly, however, these gradi-
ents correlate in opposite ways for the main and
auxiliary tasks. The pattern is that if the main
tasks have flattening learning curves (small neg-
ative gradients) in the 20-30% percentile, but the
auxiliary task curves are still relatively steep, MTL
is more likely to work. In other words, multi-task
gains are more likely for target tasks that quickly
plateau with non-plateauing auxiliary tasks. We
speculate the reason for this is that multi-task
learning can help target tasks that get stuck early in
local minima, especially if the auxiliary task does
not always get stuck fast.

Other features that are predictive include the
number of labels in the main task, as well as
the label entropy of the auxiliary task. The
latter supports the hypothesis put forward by
Martı́nez Alonso and Plank (2017) (see Related
work). Note, however, that this may be a side
effect of tasks with more uniform label distribu-
tions being easier to learn. The out-of-vocabulary
rate for the target task also was predictive, which

167

Feature Task Coefficient
Curve grad. (30%) Main -1.566
Curve grad. (20%) Main -1.164
Curve param. c Main 1.007
Labels Main 0.828
Label Entropy Aux 0.798
Curve grad. (30%) Aux 0.791

Curve grad. (50%) Main 0.781
OOV rate Main 0.697
OOV rate Main/Aux 0.678
Curve grad. (20%) Aux 0.575
Fr. norm Main -0.516
Labels Main/Aux 0.504

Curve grad. (70%) Main 0.434
Label entropy Main/Aux -0.411
Fr. norm Aux 0.346
Tokens/types Main -0.297
Curve param. a Aux -0.297
Curve grad. (70%) Aux -0.279

Curve grad. (10%) Aux 0.267
Tokens/types Aux 0.254
Curve param. a Main/Aux -0.241
Size Aux 0.237
Fr. norm Main/Aux -0.233
JSD Aux -0.207

Labels Aux -0.184
Curve param. c Aux -0.174
Tokens/types Main/Aux -0.117
Curve param. c Main/Aux -0.104
Curve grad. (20%) Main/Aux 0.104
Label entropy Main -0.102

Curve grad. (50%) Aux -0.099
Curve grad. (50%) Main/Aux 0.076
OOV rate Aux 0.061
Curve grad. (30%) Main/Aux -0.060
Size Main -0.032
Curve param. a Main 0.027

Curve grad. (10%) Main/Aux 0.023
JSD Main 0.019
JSD Main/Aux -0.015
Curve grad. (10%) Main 6 · 10−2

Size Main/Aux −6 · 10−3

Curve grad. (70%) Main/Aux −4 · 10−4

Table 4: Predictors of MTL benefit by logistic re-
gression model coefficient (absolute value).

makes sense as the embedding parameters are also
updated when learning from the auxiliary data.

Less predictive features include Jensen-
Shannon divergences, which is surprising, since
multi-task learning is often treated as a transfer
learning algorithm (Søgaard and Goldberg, 2016).
It is also surprising to see that size differences
between the datasets are not very predictive.

5 Conclusion and Future Work

We present the first systematic study of when MTL
works in the context of common NLP tasks, when
single task parameter settings are also applied for
multi-task learning. Key findings include that
MTL gains are predictable from dataset character-
istics and features extracted from the single-task
inductions. We also show that the most predictive
features relate to the single-task learning curves,
suggesting that MTL, when successful, often helps
target tasks out of local minima. We also observed
that label entropy in the auxiliary task was also
a good predictor, lending some support to the hy-
pothesis in Martı́nez Alonso and Plank (2017); but
there was little evidence that dataset balance is a
reliable predictor, unlike what previous work has
suggested.

In future work, we aim to extend our experi-
ments to a setting where we optimize hyperparam-
eters for the single- and multi-task models individ-
ually, which will give us a more reliable picture of
the effect to be expected from multi-task learning
in the wild. Generally, further conclusions could
be drawn from settings where the joint models do
not treat the two tasks as equals, but instead give
more importance to the main task, for instance
through a non-uniform drawing of the task con-
sidered at each training iteration, or through an
adaptation of the learning rates. We are also in-
terested in extending this work to additional NLP
tasks, including tasks that go beyond sequence la-
beling such as language modeling or sequence-to-
sequence problems.

Acknowledgments

For valuable comments, we would like to thank
Dirk Hovy, Yoav Goldberg, the attendants at the
second author’s invited talk at the Danish Society
for Statistics, as well as the anonymous review-
ers. This research was partially funded by the ERC
Starting Grant LOWLANDS No. 313695, as well
as by Trygfonden.

168

References
Jonathan Baxter. 2000. A model of inductive bias

learning. Journal of Artificial Intelligence Research,
12:149–198.

Shai Ben-David and Reba Borberly. 2003. A notion
of task relatedness yielding provable multiple-task
learning guarantees. Machine Learning, 73:273–
287.

Adrian Benton, Margaret Mitchell, and Dirk Hovy.
2017. Multitask learning for mental health condi-
tions with limited social media data. In EACL.

Marcel Bollman and Anders Søgaard. 2016. Im-
proving historical spelling normalization with bi-
directional lstms and multi-task learning. In COL-
ING.

Chloe Braud, Barbara Plank, and Anders Søgaard.
2016. Multi-view and multi-task training of rst dis-
course parser. In COLING.

Rich Caruana. 1993. Multitask learning: a knowledge-
based source of inductive bias. In ICML.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In ICML.

Katja Filippova and Yasemin Altun. 2013. Overcom-
ing the lack of parallel data in sentence compression.
In EMNLP, pages 1481–1491.

Julia Hockenmaier and Mark Steedman. 2007. Ccg-
bank: A corpus of ccg derivations and dependency
structures extracted from the penn treebank. Com-
put. Linguist., 33(3):355–396, September.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learning
to predict gaze. In NAACL.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In ICLR.

Mitchell Marcus, Mary Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, 19(2):313–330.

Héctor Martı́nez Alonso and Barbara Plank. 2017.
Multitask learning for semantic sequence prediction
under varying data conditions. In EACL.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable are
neural networks in nlp applications? In EMNLP.

Slav Petrov, Dipanjan Das, and Ryan McDonald.
2011. A universal part-of-speech tagset. CoRR
abs/1104.2086.

Barbara Plank. 2016. Keystroke dynamics as signal
for shallow syntactic parsing. In COLING.

Nathan Schneider and Noah A Smith. 2015. A corpus
and model integrating multiword expressions and
supersenses. Proc. of NAACL-HLT. Denver, Col-
orado, USA.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multitask learning with low level tasks supervised at
lower layers. In ACL.

Valentin I Spitkovsky, Daniel Jurafsky, and Hiyan Al-
shawi. 2010. Profiting from mark-up: Hyper-text
annotations for guided parsing. In ACL.

169

