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Abstract

Progress in text understanding has been
driven by large datasets that test partic-
ular capabilities, like recent datasets for
reading comprehension (Hermann et al.,
2015). We focus here on the LAMBADA
dataset (Paperno et al., 2016), a word
prediction task requiring broader context
than the immediate sentence. We view
LAMBADA as a reading comprehension
problem and apply comprehension models
based on neural networks. Though these
models are constrained to choose a word
from the context, they improve the state
of the art on LAMBADA from 7.3% to
49%. We analyze 100 instances, finding
that neural network readers perform well
in cases that involve selecting a name from
the context based on dialogue or discourse
cues but struggle when coreference reso-
lution or external knowledge is needed.

1 Introduction

The LAMBADA dataset (Paperno et al., 2016)
was designed by identifying word prediction tasks
that require broad context. Each instance is drawn
from the BookCorpus (Zhu et al., 2015) and con-
sists of a passage of several sentences where the
task is to predict the last word of the last sen-
tence. The instances are manually filtered to find
cases that are guessable by humans when given
the larger context but not when only given the last
sentence. The expense of this manual filtering has
limited the dataset to only about 10,000 instances
which are viewed as development and test data.
The training data is taken to be books in the corpus
other than those from which the evaluation pas-
sages were extracted.

Paperno et al. (2016) provide baseline results
with popular language models and neural network
architectures; all achieve zero percent accuracy.
The best accuracy is 7.3% obtained by randomly
choosing a capitalized word from the passage.

Our approach is based on the observation that
in 83% of instances the answer appears in the con-
text. We exploit this in two ways. First, we auto-
matically construct a large training set of 1.8 mil-
lion instances by simply selecting passages where
the answer occurs in the context. Second, we treat
the problem as a reading comprehension task sim-
ilar to the CNN/Daily Mail datasets introduced by
Hermann et al. (2015), the Children’s Book Test
(CBT) of Hill et al. (2016), and the Who-did-What
dataset of Onishi et al. (2016). We show that stan-
dard models for reading comprehension, trained
on our automatically generated training set, im-
prove the state of the art on the LAMBADA test
set from 7.3% to 49.0%. This is in spite of the fact
that these models fail on the 17% of instances in
which the answer is not in the context.

We also perform a manual analysis of the LAM-
BADA task, provide an estimate of human perfor-
mance, and categorize the instances in terms of
the phenomena they test. We find that the com-
prehension models perform best on instances that
require selecting a name from the context based on
dialogue or discourse cues, but struggle when re-
quired to do coreference resolution or when exter-
nal knowledge could help in choosing the answer.

2 Methods

We now describe the models that we employ for
the LAMBADA task (Section 2.1) as well as our
dataset construction procedure (Section 2.2).

2.1 Neural Readers
Hermann et al. (2015) developed the CNN/Daily
Mail comprehension tasks and introduced ques-
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tion answering models based on neural networks.
Many others have been developed since. We re-
fer to these models as “neural readers”. While a
detailed survey is beyond our scope, we briefly
describe the neural readers used in our exper-
iments: the Stanford (Chen et al., 2016), At-
tention Sum (Kadlec et al., 2016), and Gated-
Attention (Dhingra et al., 2016) Readers. These
neural readers use attention based on the question
and passage to choose an answer from among the
words in the passage. We use d for the context
word sequence, q for the question (with a blank to
be filled), A for the candidate answer list, and V
for the vocabulary. We describe neural readers in
terms of three components:

1. Embedding and Encoding: Each word in d
and q is mapped into a v-dimensional vector via
the embedding function e(w) ∈ Rv, for all w ∈
d ∪ q.1 The same embedding function is used
for both d and q. The embeddings are learned
from random initialization; no pretrained word
embeddings are used. The embedded context
is processed by a bidirectional recurrent neural
network (RNN) which computes hidden vectors
hi for each position i:

h→ = fRNN (θ→d , e(d))
h← = bRNN (θ←d , e(d))
h = 〈h→, h←〉

where θ→d and θ←d are RNN parameters, and
each of fRNN and bRNN return a sequence of
hidden vectors, one for each position in the in-
put e(d). The question is encoded into a single
vector g which is the concatenation of the final
vectors of two RNNs:

g→ = fRNN (θ→q , e(q))

g← = bRNN (θ←q , e(q))

g = 〈g→|q|, g←0 〉

The RNNs use either gated recurrent
units (Cho et al., 2014) or long short-term
memory (Hochreiter and Schmidhuber, 1997).

2. Attention: The readers then compute atten-
tion weights on positions of h using g. In
general, we define αi = softmax(att(hi, g)),
where i ranges over positions in h. The
1We overload the e function to operate on sequences and

denote the embedding of d and q as matrices e(d) and e(q).

att function is an inner product in the At-
tention Sum Reader and a bilinear product in
the Stanford Reader. The computed attentions
are then passed through a softmax function to
form a probability distribution. The Gated-
Attention Reader uses a richer attention archi-
tecture (Dhingra et al., 2016); space does not
permit a detailed description.

3. Output and Prediction: To output a prediction
a∗, the Stanford Reader computes the attention-
weighted sum of the context vectors and then an
inner product with each candidate answer:

c =
|d|∑
i=1

αihi a∗ = argmax
a∈A

o(a)>c

where o(a) is the “output” embedding function.
As the Stanford Reader was developed for the
anonymized CNN/Daily Mail tasks, only a few
entries in the output embedding function needed
to be well-trained in their experiments. How-
ever, for LAMBADA, correct answers can range
over the entirety of V , making the output em-
bedding function difficult to train. Therefore we
also experiment with a modified version of the
Stanford Reader that uses the same embedding
function e for both input and output words:

a∗ = argmax
a∈A

e(a)>W c (1)

whereW is an additional parameter matrix used
to match dimensions and model any additional
needed transformation.

For the Attention Sum and Gated-Attention
Readers the answer is computed by:

∀a ∈ A, P (a|d,q) =
∑

i∈I(a,d)

αi

a∗ = argmax
a∈A

P (a|d,q)

where I(a,d) is the set of positions where a ap-
pears in context d.

2.2 Training Data Construction

Each LAMBADA instance is divided into a con-
text (4.6 sentences on average) and a target sen-
tence, and the last word of the target sentence
is the target word to be predicted. The LAM-
BADA dataset consists of development (DEV) and
test (TEST) sets; Paperno et al. (2016) also provide
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a control dataset (CONTROL), an unfiltered sample
of instances from the BookCorpus.

We construct a new training dataset from the
BookCorpus. We restrict it to instances that con-
tain the target word in the context. This decision
is natural given our use of neural readers that as-
sume the answer is contained in the passage. We
also ensure that the context has at least 50 words
and contains 4 or 5 sentences and we require the
target sentences to have more than 10 words.

Some neural readers require a candidate target
word list to choose from. We list all words in the
context as candidate answers, except for punctu-
ation.2 Our new dataset contains 1,827,123 in-
stances in total. We divide it into two parts, a
training set (TRAIN) of 1,618,782 instances and a
validation set (VAL) of 208,341 instances. These
datasets can be found at the authors’ websites.

3 Experiments

We use the Stanford Reader (Chen et al., 2016),
our modified Stanford Reader (Eq. 1), the Atten-
tion Sum (AS) Reader (Kadlec et al., 2016), and
the Gated-Attention (GA) Reader (Dhingra et al.,
2016). We also add the simple features from Wang
et al. (2016) to the AS and GA Readers. The fea-
tures are concatenated to the word embeddings in
the context. They include: whether the word ap-
pears in the target sentence, the frequency of the
word in the context, the position of the word’s first
occurrence in the context as a percentage of the
context length, and whether the text surrounding
the word matches the text surrounding the blank
in the target sentence. For the last feature, we only
consider matching the left word since the blank is
always the last word in the target sentence.

All models are trained end to end without any
warm start and without using pretrained embed-
dings. We train each reader on TRAIN for a max
of 10 epochs, stopping when accuracy on DEV de-
creases two epochs in a row. We take the model
from the epoch with max DEV accuracy and eval-
uate it on TEST and CONTROL. VAL is not used.

We evaluate several other baseline systems in-
spired by those of Paperno et al. (2016), but we fo-
cus on versions that restrict the choice of answers
to non-stopwords in the context.3 We found this

2This list of punctuation symbols is at https:
//raw.githubusercontent.com/ZeweiChu/
lambada-dataset/master/stopwords/
shortlist-stopwords.txt

3We use the stopword list from Richardson et al. (2013).

Method TEST CONTROL
all all context

Baselines (Paperno et al., 2016)
Random in context 1.6 0 N/A
Random cap. in context 7.3 0 N/A
n-gram 0.1 19.1 N/A
n-gram + cache 0.1 19.1 N/A
LSTM 0 21.9 N/A
Memory network 0 8.5 N/A
Our context-restricted non-stopword baselines
Random 5.6 0.3 2.2
First 3.8 0.1 1.1
Last 6.2 0.9 6.5
Most frequent 11.7 0.4 8.1
Our context-restricted language model baselines
n-gram 10.7 2.2 15.6
n-gram + cache 11.8 2.2 15.6
LSTM 9.2 2.4 16.9
Our neural reader results
Stanford Reader 21.7 7.0 49.3
Modified Stanford Reader 32.1 7.4 52.3
AS Reader 41.4 8.5 60.2
AS Reader + features 44.5 8.6 60.6
GA Reader 45.4 8.8 62.5
GA Reader + features 49.0 9.3 65.6
Human 86.0∗ 36.0† -

Table 1: Accuracies on TEST and CONTROL

datasets, computed over all instances (“all”) and
separately on those in which the answer is in
the context (“context”). The first section is from
Paperno et al. (2016). ∗Estimated from 100
randomly-sampled DEV instances. †Estimated
from 100 randomly-sampled CONTROL instances.

strategy to consistently improve performance even
though it limits the maximum achievable accuracy.

We consider two n-gram language model base-
lines. We use the SRILM toolkit (Stolcke, 2002)
to estimate a 4-gram model with modified Kneser-
Ney smoothing on the combination of TRAIN and
VAL. One uses a cache size of 100 and the other
does not use a cache. We use each model to score
each non-stopword from the context. We also
evaluate an LSTM language model. We train it on
TRAIN, where the loss is cross entropy summed
over all positions in each instance. The output
vocabulary is the vocabulary of TRAIN, approxi-
mately 130k word types. At test time, we again
limit the search to non-stopwords in the context.

We also test simple baselines that choose partic-
ular non-stopwords from the context, including a
random one, the first in the context, the last in the
context, and the most frequent in the context.

4 Results

Table 1 shows our results. We report accuracies
on the entirety of TEST and CONTROL (“all”), as
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well as separately on the part of CONTROL where
the target word is in the context (“context”). The
first part of the table shows results from Paperno
et al. (2016). We then show our baselines that
choose a word from the context. Choosing the
most frequent yields a surprisingly high accuracy
of 11.7%, which is better than all results from Pa-
perno et al.

Our language models perform comparably, with
the n-gram + cache model doing best. By forcing
language models to select a word from the con-
text, the accuracy on TEST is much higher than the
analogous models from Paperno et al., though ac-
curacy suffers on CONTROL.

We then show results with the neural readers,
showing that they give much higher accuracies on
TEST than all other methods. The GA Reader with
the simple additional features (Wang et al., 2016)
yields the highest accuracy, reaching 49.0%. We
also measured the “top k” accuracy of this model,
where we give the model credit if the correct an-
swer is among the top k ranked answers. On TEST,
we reach 65.4% top-2 accuracy and 72.8% top-3.

The AS and GA Readers work much better than
the Stanford Reader. One cause appears to be that
the Stanford Reader learns distinct embeddings for
input and answer words, as discussed above. Our
modified Stanford Reader, which uses only a sin-
gle set of word embeddings, improves by 10.4%
absolute. Since the AS and GA Readers merely
score words in the context, they do not learn sepa-
rate answer word embeddings and therefore do not
suffer from this effect.

We suspect the remaining accuracy difference
between the Stanford and the other readers is due
to the difference in the output function. The
Stanford Reader was developed for the CNN and
Daily Mail datasets, in which correct answers are
anonymized entity identifiers which are reused
across instances. Since the identifier embeddings
are observed so frequently in the training data,
they are frequently updated. In our setting, how-
ever, answers are words from a large vocabulary,
so many of the word embeddings of correct an-
swers may be undertrained. This could potentially
be addressed by augmenting the word embeddings
with identifiers to obtain some of the modeling
benefits of anonymization (Wang et al., 2016).

All context restricted models yield poor accu-
racies on the entirety of CONTROL. This is due
to the fact that only 14.1% of CONTROL instances

label # GA+ human
single name cue 9 89% 100%
simple speaker tracking 19 84% 100%
basic reference 18 56% 72%
discourse inference rule 16 50% 88%
semantic trigger 20 40% 80%
coreference 21 38% 90%
external knowledge 24 21% 88%
all 100 55% 86%

Table 2: Labels derived from manual analysis of
100 LAMBADA DEV instances. An instance can
be tagged with multiple labels, hence the sum of
instances across labels exceeds 100.

have the target word in the context, so this sets the
upper bound that these models can achieve.

4.1 Manual Analysis
One annotator, a native English speaker, sampled
100 instances randomly from DEV, hid the final
word, and attempted to guess it from the context
and target sentence. The annotator was correct
in 86 cases. For the subset that contained the
answer in the context, the annotator was correct
in 79 of 87 cases. Even though two annotators
were able to correctly answer all LAMBADA in-
stances during dataset construction (Paperno et al.,
2016), our results give an estimate of how often a
third would agree. The annotator did the same on
100 instances randomly sampled from CONTROL,
guessing correctly in 36 cases. These results are
reported in Table 1. The annotator was correct on
6 of the 12 CONTROL instances in which the an-
swer was contained in the context.

We analyzed the 100 LAMBADA DEV in-
stances, tagging each with labels indicating the
minimal kinds of understanding needed to answer
it correctly.4 Each instance can have multiple la-
bels. We briefly describe each label below:

• single name cue: the answer is clearly a name
according to contextual cues and only a single
name is mentioned in the context.

• simple speaker tracking: instance can be an-
swered merely by tracking who is speaking
without understanding what they are saying.

• basic reference: answer is a reference to some-
thing mentioned in the context; simple under-
standing/context matching suffices.
4The annotations are available from the authors’ websites.
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• discourse inference rule: answer can be found
by applying a single discourse inference rule,
such as the rule: “X left Y and went in search
of Z”→ Y 6= Z.

• semantic trigger: amorphous semantic informa-
tion is needed to choose the answer, typically re-
lated to event sequences or dialogue turns, e.g.,
a customer says “Where is the X?” and a sup-
plier responds “We got plenty of X”.

• coreference: instance requires non-trivial coref-
erence resolution to solve correctly, typically
the resolution of anaphoric pronouns.

• external knowledge: some particular external
knowledge is needed to choose the answer.

Table 2 shows the breakdown of these labels
across instances, as well as the accuracy on each
label of the GA Reader with features.

The GA Reader performs well on instances in-
volving shallower, more surface-level cues. In 9
cases, the answer is clearly a name based on con-
textual cues in the target sentence and there is only
one name in the context; the reader answers all but
one correctly. When only simple speaker tracking
is needed (19 cases), the reader gets 84% correct.

The hardest instances are those that involve
deeper understanding, like semantic links, coref-
erence resolution, and external knowledge. While
external knowledge is difficult to define, we chose
this label when we were able to explicitly write
down the knowledge that one would use when
answering the instances, e.g., one instance re-
quires knowing that “when something explodes,
noise emanates from it”. These instances make
up nearly a quarter of those we analyzed, making
LAMBADA a good task for work in leveraging ex-
ternal knowledge for language understanding.

4.2 Discussion

On CONTROL, while our readers outperform our
other baselines, they are outperformed by the lan-
guage modeling baselines from Paperno et al. This
suggests that though we have improved the state of
the art on LAMBADA by more than 40% absolute,
we have not solved the general language modeling
problem; there is no single model that performs
well on both TEST and CONTROL. Our 36% esti-
mate of human performance on CONTROL shows
the difficulty of the general problem, and reveals a
gap of 14% between the best language model and
human accuracy.

A natural question to ask is whether applying
neural readers is a good direction for this task,
since they fail on the 17% of instances which
do not have the target word in the context. Fur-
thermore, this subset of LAMBADA may in fact
display the most interesting and challenging phe-
nomena. Some neural readers, like the Stanford
Reader, can be easily used to predict target words
that do not appear in the context, and the other
readers can be modified to do so. Doing this will
require a different selection of training data than
that used above. However, we do wish to note that,
in addition to the relative rarity of these instances
in LAMBADA, we found them to be challenging
for our annotator (who was correct on only 7 of
the 13 in this subset).

We note that TRAIN has similar characteristics
to the part of CONTROL that contains the answer
in the context (the final column of Table 1). We
find that the ranking of systems according to this
column is similar to that in the TEST column. This
suggests that our simple method of dataset cre-
ation could be used to create additional training or
evaluation sets for challenging language modeling
problems like LAMBADA, perhaps by combining
it with baseline suppression (Onishi et al., 2016).

5 Conclusion

We constructed a new training set for LAMBADA
and used it to train neural readers to improve the
state of the art from 7.3% to 49%. We also pro-
vided results with several other strong baselines
and included a manual evaluation in an attempt
to better understand the phenomena tested by the
task. Our hope is that other researchers will seek
models and training regimes that simultaneously
perform well on both LAMBADA and CONTROL,
with the goal of solving the general problem of
language modeling.
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