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Abstract

Translating in real-time, a.k.a. simultane-
ous translation, outputs translation words
before the input sentence ends, which is a
challenging problem for conventional ma-
chine translation methods. We propose a
neural machine translation (NMT) frame-
work for simultaneous translation in which
an agent learns to make decisions on when
to translate from the interaction with a
pre-trained NMT environment. To trade
off quality and delay, we extensively ex-
plore various targets for delay and design
a method for beam-search applicable in
the simultaneous MT setting. Experiments
against state-of-the-art baselines on two
language pairs demonstrate the efficacy
of the proposed framework both quantita-
tively and qualitatively.1

1 Introduction

Simultaneous translation, the task of translating
content in real-time as it is produced, is an im-
portant tool for real-time understanding of spoken
lectures or conversations (Fügen et al., 2007; Ban-
galore et al., 2012). Different from the typical
machine translation (MT) task, in which transla-
tion quality is paramount, simultaneous translation
requires balancing the trade-off between transla-
tion quality and time delay to ensure that users
receive translated content in an expeditious man-
ner (Mieno et al., 2015). A number of methods
have been proposed to solve this problem, mostly
in the context of phrase-based machine translation.
These methods are based on a segmenter, which
receives the input one word at a time, then decides
when to send it to a MT system that translates each

1Code and data can be found at https://github.
com/nyu-dl/dl4mt-simul-trans.
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Figure 1: Example output from the proposed
framework in DE → EN simultaneous transla-
tion. The heat-map represents the soft alignment
between the incoming source sentence (left, up-
to-down) and the emitted translation (top, left-
to-right). The length of each column represents
the number of source words being waited for be-
fore emitting the translation. Best viewed when
zoomed digitally.

segment independently (Oda et al., 2014) or with a
minimal amount of language model context (Ban-
galore et al., 2012).

Independently of simultaneous translation, ac-
curacy of standard MT systems has greatly im-
proved with the introduction of neural-network-
based MT systems (NMT) (Sutskever et al., 2014;
Bahdanau et al., 2014). Very recently, there have
been a few efforts to apply NMT to simultane-
ous translation either through heuristic modifica-
tions to the decoding process (Cho and Esipova,
2016), or through the training of an independent
segmentation network that chooses when to per-
form output using a standard NMT model (Satija
and Pineau, 2016). However, the former model
lacks a capability to learn the appropriate timing
with which to perform translation, and the latter
model uses a standard NMT model as-is, lack-
ing a holistic design of the modeling and learning
within the simultaneous MT context. In addition,
neither model has demonstrated gains over previ-
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ous segmentation-based baselines, leaving ques-
tions of their relative merit unresolved.

In this paper, we propose a unified design for
learning to perform neural simultaneous machine
translation. The proposed framework is based on
formulating translation as an interleaved sequence
of two actions: READ and WRITE. Based on this,
we devise a model connecting the NMT system
and these READ/WRITE decisions. An example
of how translation is performed in this framework
is shown in Fig. 1, and detailed definitions of the
problem and proposed framework are described in
§2 and §3. To learn which actions to take when, we
propose a reinforcement-learning-based strategy
with a reward function that considers both qual-
ity and delay (§4). We also develop a beam-search
method that performs search within the translation
segments (§5).

We evaluate the proposed method on English-
Russian (EN-RU) and English-German (EN-DE)
translation in both directions (§6). The quantita-
tive results show strong improvements compared
to both the NMT-based algorithm and a conven-
tional segmentation methods. We also extensively
analyze the effectiveness of the learning algorithm
and the influence of the trade-off in the optimiza-
tion criterion, by varying a target delay. Finally,
qualitative visualization is utilized to discuss the
potential and limitations of the framework.

2 Problem Definition
Suppose we have a buffer of input words X =
{x1, ..., xTs} to be translated in real-time. We de-
fine the simultaneous translation task as sequen-
tially making two interleaved decisions: READ or
WRITE. More precisely, the translator READs a
source word xη from the input buffer in chrono-
logical order as translation context, or WRITEs a
translated word yτ onto the output buffer, resulting
in output sentence Y = {y1, ..., yTt}, and action
sequence A = {a1, ..., aT } consists of Ts READs
and Tt WRITEs, so T = Ts + Tt.

Similar to standard MT, we have a measure
Q(Y ) to evaluate the translation quality, such as
BLEU score (Papineni et al., 2002). For simulta-
neous translation we are also concerned with the
fact that each action incurs a time delay D(A).
D(A) will mainly be influenced by delay caused
by READ, as this entails waiting for a human
speaker to continue speaking (about 0.3s per word
for an average speaker), while WRITE consists of
generating a few words from a machine transla-

Figure 2: Illustration of the proposed framework:
at each step, the NMT environment (left) com-
putes a candidate translation. The recurrent agent
(right) will the observation including the candi-
dates and send back decisions–READ or WRITE.

tion system, which is possible on the order of mil-
liseconds. Thus, our objective is finding an opti-
mal policy that generates decision sequences with
a good trade-off between higher quality Q(Y ) and
lower delay D(A). We elaborate on exactly how
to define this trade-off in §4.2.

In the following sections, we first describe how
to connect the READ/WRITE actions with the NMT
system (§3), and how to optimize the system to
improve simultaneous MT results (§4).

3 Simultaneous Translation
with Neural Machine Translation

The proposed framework is shown in Fig. 2, and
can be naturally decomposed into two parts: envi-
ronment (§3.1) and agent (§3.2).

3.1 Environment

Encoder: READ The first element of the NMT
system is the encoder, which converts input words
X = {x1, ..., xTs} into context vectors H =
{h1, ..., hTs}. Standard NMT uses bi-directional
RNNs as encoders (Bahdanau et al., 2014), but this
is not suitable for simultaneous processing as us-
ing a reverse-order encoder requires knowing the
final word of the sentence before beginning pro-
cessing. Thus, we utilize a simple left-to-right uni-
directional RNN as our encoder:

hη = φUNI-ENC (hη−1, xη) (1)

Decoder: WRITE Similar with standard MT, we
use an attention-based decoder. In contrast, we
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only reference the words that have been read from
the input when generating each target word:

cητ = φATT (zτ−1, yτ−1, H
η)

zητ = φDEC (zτ−1, yτ−1, c
η
τ )

p (y|y<τ , Hη) ∝ exp [φOUT (zητ )] ,
(2)

where for τ , zτ−1 and yτ−1 represent the previous
decoder state and output word, respectively. Hη

is used to represent the incomplete input states,
where Hη is a prefix of H . As the WRITE action
calculates the probability of the next word on the
fly, we need greedy decoding for each step:

yητ = arg maxy p (y|y<τ , Hη) (3)

Note that yητ , z
η
τ corresponds to Hη and is the can-

didate for yτ , zτ . The agent described in the next
section decides whether to take this candidate or
wait for better predictions.

3.2 Agent

A trainable agent is designed to make decisions
A = {a1, .., aT }, at ∈ A sequentially based on
observations O = {o1, ..., oT }, ot ∈ O, and then
control the translation environment properly.

Observation As shown in Fig 2, we concatenate
the current context vector cητ , the current decoder
state zητ and the embedding vector of the candidate
word yητ as the continuous observation, oτ+η =
[cητ ; zητ ;E(yητ )] to represent the current state.

Action Similarly to prior work (Grissom II et al.,
2014), we define the following set of actions:

• READ: the agent rejects the candidate and waits
to encode the next word from input buffer;
• WRITE: the agent accepts the candidate and

emits it as the prediction into output buffer;

Policy How the agent chooses the actions based
on the observation defines the policy. In our set-
ting, we utilize a stochastic policy πθ parameter-
ized by a recurrent neural network, that is:

st = fθ (st−1, ot)
πθ(at|a<t, o≤t) ∝ gθ (st) ,

(4)

where st is the internal state of the agent, and is
updated recurrently yielding the distribution of the
action at. Based on the policy of our agent, the
overall algorithm of greedy decoding is shown in
Algorithm 1, The algorithm outputs the translation
result and a sequence of observation-action pairs.

Algorithm 1 Simultaneous Greedy Decoding

Require: NMT system φ, policy πθ, τMAX, input
buffer X , output buffer Y , state buffer S.

1: Init x1 ⇐ X,h1 ← φENC (x1) , H1 ← {h1}
2: z0 ← φINIT

(
H1
)
, y0 ← 〈s〉

3: τ ← 0, η ← 1
4: while τ < τMAX do
5: t← τ + η
6: yητ , z

η
τ , ot ← φ (zτ−1, yτ−1, H

η)
7: at ∼ πθ (at; a<t, o<t) , S ⇐ (ot, at)
8: if at = READ and xη 6= 〈/s〉 then
9: xη+1 ⇐ X,hη+1 ← φENC (hη, xη+1)

10: Hη+1 ← Hη ∪ {hη+1}, η ← η + 1
11: if |Y | = 0 then z0 ← φINIT (Hη)
12: else if at = WRITE then
13: zτ ← zητ , yτ ← yητ
14: Y ⇐ yτ , τ ← τ + 1
15: if yτ = 〈/s〉 then break

4 Learning

The proposed framework can be trained using re-
inforcement learning. More precisely, we use pol-
icy gradient algorithm together with variance re-
duction and regularization techniques.

4.1 Pre-training
We need an NMT environment for the agent to ex-
plore and use to generate translations. Here, we
simply pre-train the NMT encoder-decoder on full
sentence pairs with maximum likelihood, and as-
sume the pre-trained model is still able to generate
reasonable translations even on incomplete source
sentences. Although this is likely sub-optimal, our
NMT environment based on uni-directional RNNs
can treat incomplete source sentences in a manner
similar to shorter source sentences and has the po-
tential to translate them more-or-less correctly.

4.2 Reward Function
The policy is learned in order to increase a reward
for the translation. At each step the agent will re-
ceive a reward signal rt based on (ot, at). To eval-
uate a good simultaneous machine translation, a
reward must consider both quality and delay.

Quality We evaluate the translation quality us-
ing metrics such as BLEU (Papineni et al., 2002).
The BLEU score is defined as the weighted geo-
metric average of the modified n-gram precision
BLEU0, multiplied by the brevity penalty BP to
punish a short translation. In practice, the vanilla
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BLEU score is not a good metric at sentence level
because being a geometric average, the score will
reduce to zero if one of the precisions is zero. To
avoid this, we used a smoothed version of BLEU
for our implementation (Lin and Och, 2004).

BLEU(Y, Y ∗) = BP · BLEU0(Y, Y ∗), (5)

where Y ∗ is the reference and Y is the output. We
decompose BLEU and use the difference of par-
tial BLEU scores as the reward, that is:

rQt =
{

∆BLEU0(Y, Y ∗, t) t < T
BLEU(Y, Y ∗) t = T

(6)

where Y t is the cumulative output at t (Y 0 = ∅),
and ∆BLEU0(Y, Y ∗, t) = BLEU0(Y t, Y ∗) −
BLEU0(Y t−1, Y ∗). Obviously, if at = READ, no
new words are written into Y , yielding rQt = 0.
Note that we do not multiply BP until the end of
the sentence, as it would heavily penalize partial
translation results.

Delay As another critical feature, delay judges
how much time is wasted waiting for the transla-
tion. Ideally we would directly measure the actual
time delay incurred by waiting for the next word.
For simplicity, however, we suppose it consumes
the same amount of time listening for one more
word. We define two measurements, global and
local, respectively:

• Average Proportion (AP): following the def-
inition in (Cho and Esipova, 2016), X , Y are
the source and decoded sequences respectively,
and we use s(τ) to denote the number of source
words been waited when decoding word yτ ,

0 < d (X,Y ) =
1

|X||Y |
∑
τ

s(τ) ≤ 1

dt =
{

0 t < T
d(X,Y ) t = T

(7)

d is a global delay metric, which defines the av-
erage waiting proportion of the source sentence
when translating each word.

• Consecutive Wait length (CW): in speech
translation, listeners are also concerned with
long silences during which no translation oc-
curs. To capture this, we also consider on how
many words were waited for (READ) consecu-
tively between translating two words. For each
action, where we initially define c0 = 0,

ct =
{
ct−1 + 1 at = READ

0 at = WRITE
(8)

• Target Delay: We further define “target delay”
for both d and c as d∗ and c∗, respectively, as
different simultaneous translation applications
may have different requirements on delay. In
our implementation, the reward function for de-
lay is written as:

rDt = α·[sgn(ct − c∗) + 1]+β ·bdt−d∗c+ (9)

where α ≤ 0, β ≤ 0.

Trade-off between quality and delay A good
simultaneous translation system requires balanc-
ing the trade-off of translation quality and time
delay. Obviously, achieving the best translation
quality and the shortest translation delays are in
a sense contradictory. In this paper, the trade-off
is achieved by balancing the rewards rt = rQt +rDt
provided to the system, that is, by adjusting the co-
efficients α, β and the target delay d∗, c∗ in Eq. 9.

4.3 Reinforcement Learning
Policy Gradient We freeze the pre-trained pa-
rameters of an NMT model, and train the agent
using the policy gradient (Williams, 1992). The
policy gradient maximizes the following expected
cumulative future rewards, J = Eπθ

[∑T
t=1 rt

]
,

whose gradient is

∇θJ = Eπθ

[
T∑
t′=1

∇θ log πθ(at′ |·)Rt
]

(10)

Rt =
∑T

k=t

[
rQk + rDk

]
is the cumulative future

rewards for current observation and action. In
practice, Eq. 10 is estimated by sampling multi-
ple action trajectories from the current policy πθ,
collecting the corresponding rewards.

Variance Reduction Directly using the policy
gradient suffers from high variance, which makes
learning unstable and inefficient. We thus em-
ploy the variance reduction techniques suggested
by Mnih and Gregor (2014). We subtract from
Rt the output of a baseline network bϕ to obtain
R̂t = Rt − bϕ (ot), and centered re-scale the re-
ward as R̃t = R̂t−b√

σ2+ε
with a running average b

and standard deviation σ. The baseline network is
trained to minimize the squared loss as follows:

Lϕ = Eπθ

[
T∑
t=1

‖Rt − bϕ (ot) ‖2
]

(11)

We also regularize the negative entropy of the
policy to facilitate exploration.
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Algorithm 2 Learning with Policy Gradient

Require: NMT system φ, agent θ, baseline ϕ
1: Pretrain the NMT system φ using MLE;
2: Initialize the agent θ;
3: while stopping criterion fails do
4: Obtain a translation pairs: {(X,Y ∗)};
5: for (Y, S) ∼ Simultaneous Decoding do
6: for (ot, at) in S do
7: Compute the quality: rQt ;
8: Compute the delay: rDt ;
9: Compute the baseline: bϕ (ot);

10: Collect the future rewards: {Rt};
11: Perform variance reduction: {R̃t};
12: Update: θ ← θ + λ1∇θ [J − κH(πθ)]
13: Update: ϕ← ϕ− λ2∇ϕL

The overall learning algorithm is summarized
in Algorithm 2. For efficiency, instead of updating
with stochastic gradient descent (SGD) on a single
sentence, both the agent and the baseline are opti-
mized using a minibatch of multiple sentences.

5 Simultaneous Beam Search
In previous sections we described a simultaneous
greedy decoding algorithm. In standard NMT it
has been shown that beam search, where the de-
coder keeps a beam of k translation trajectories,
greatly improves translation quality (Sutskever et
al., 2014), as shown in Fig. 3 (A).

It is non-trivial to directly apply beam-search in
simultaneous machine translation, as beam search
waits until the last word to write down translation.
Based on our assumption WRITE does not cost de-
lay, we can perform a simultaneous beam-search
when the agent chooses to consecutively WRITE:
keep multiple beams of translation trajectories in
temporary buffer and output the best path when
the agent switches to READ. As shown in Fig. 3
(B) & (C), it tries to search for a relatively better
path while keeping the delay unchanged.

Note that we do not re-train the agent for simul-
taneous beam-search. At each step we simply in-
put the observation of the current best trajectory
into the agent for making next decision.

6 Experiments

6.1 Settings

Dataset To extensively study the proposed si-
multaneous translation model, we train and evalu-
ate it on two different language pairs: “English-

Figure 3: Illustrations of (A) beam-search, (B) si-
multaneous greedy decoding and (C) simultaneous
beam-search.

German (EN-DE)” and “English-Russian (EN-
RU)” in both directions per pair. We use the par-
allel corpora available from WMT’152 for both
pre-training the NMT environment and learning
the policy. We utilize newstest-2013 as the valida-
tion set to evaluate the proposed algorithm. Both
the training set and the validation set are tokenized
and segmented into sub-word units with byte-pair
encoding (BPE) (Sennrich et al., 2015). We only
use sentence pairs where both sides are less than
50 BPE subword symbols long for training.

Environment & Agent Settings We pre-trained
the NMT environments for both language pairs
and both directions following the same setting
from (Cho and Esipova, 2016). We further built
our agents, using a recurrent policy with 512
GRUs and a softmax function to produce the ac-
tion distribution. All our agents are trained us-
ing policy gradient using Adam (Kingma and Ba,
2014) optimizer, with a mini-batch size of 10. For
each sentence pair in a batch, 5 trajectories are
sampled. For testing, instead of sampling we pick
the action with higher probability each step.

Baselines We compare the proposed methods
against previously proposed baselines. For fair
comparison, we use the same NMT environment:

• Wait-Until-End (WUE): an agent that starts to
WRITE only when the last source word is seen.
In general, we expect this to achieve the best
quality of translation. We perform both greedy
decoding and beam-search with this method.

• Wait-One-Step (WOS): an agent that WRITEs
after each READs. Such a policy is problematic
when the source and target language pairs have
different word orders or lengths (e.g. EN-DE).
2http://www.statmt.org/wmt15/
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Figure 4: Learning progress curves for variant delay targets on the validation dataset for EN → RU.
Every time we only keep one target for one delay measure. For instance when using target AP, the
coefficient of α in Eq. 9 will be set 0.
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Figure 5: Delay (AP) v.s. BLEU for both language pair–
directions. The shown point-pairs are the results of simul-
taneous greedy decoding and beam-search (beam-size = 5)
respectively with models trained for various delay targets:
(J /: CW=8, N4: CW=5, �♦: CW=2, I .: AP=0.3, HO:
AP=0.5, ��: AP=0.7). For each target, we select the model
that maximizes the quality-to-delay ratio ( BLEU

AP ) on the val-
idation set. The baselines are also plotted (F: WOS FI:
WUE, ×: WID, +: WIW).

• Wait-If-Worse/Wait-If-Diff (WIW/WID): as
proposed by Cho and Esipova (2016), the al-
gorithm first pre-READs the next source word,
and accepts this READ when the probability of
the most likely target word decreases (WIW), or
the most likely target word changes (WID).

• Segmentation-based (SEG) (Oda et al., 2014):
a state-of-the-art segmentation-based algorithm
based on optimizing segmentation to achieve
the highest quality score. In this paper, we
tried the simple greedy method (SEG1) and the
greedy method with POS Constraint (SEG2).

6.2 Quantitative Analysis
In order to evaluate the effectiveness of our rein-
forcement learning algorithms with different re-

ward functions, we vary the target delay d∗ ∈
{0.3, 0.5, 0.7} and c∗ ∈ {2, 5, 8} for Eq. 9 sepa-
rately, and trained agents with α and β adjusted to
values that provided stable learning for each lan-
guage pair according to the validation set.

Learning Curves As shown in Fig. 4, we plot
learning progress for EN-RU translation with dif-
ferent target settings. It clearly shows that our
algorithm effectively increases translation quality
for all the models, while pushing the delay close,
if not all of the way, to the target value. It can
also be noted from Fig. 4 (a) and (b) that there ex-
ists strong correlation between the two delay mea-
sures, implying the agent can learn to decrease
both AP and CW simultaneously.
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.: AP=0.3, HO: AP=0.5, ��: AP=0.7), against
the baselines (F: WOS F: WUE, +: SEG1, ×:
SEG2).

Quality v.s. Delay As shown in Fig. 5, it is
clear that the trade-off between translation quality
and delay has very similar behaviors across both
language pairs and directions. The smaller delay
(AP or CW) the learning algorithm is targeting, the
lower quality (BLEU score) the output translation.
It is also interesting to observe that, it is more diffi-
cult for “→EN” translation to achieve a lower AP
target while maintaining good quality, compared
to “EN→”. In addition, the models that are op-
timized on AP tend to perform better than those
optimized on CW, especially in “→EN” transla-
tion. German and Russian sentences tend to be
longer than English, hence require more consecu-
tive waits before being able to emit the next En-
glish symbol.

v.s. Baselines In Fig. 5 and 6, the points closer
to the upper left corner achieve better trade-off
performance. Compared to WUE and WOS which
can ideally achieve the best quality (but the worst
delay) and the best delay (but poor quality) re-
spectively, all of our proposed models find a good
balance between quality and delay. Some of the
proposed models can achieve good BLEU scores
close to WUE, while have much smaller delay.

Compared to the method of Cho and Esipova
(2016) based on two hand-crafted rules (WID,
WIW), in most cases our proposed models find
better trade-off points, while there are a few ex-
ceptions. We also observe that the baseline models
have trouble controlling the delay in a reasonable
area. In contrast, by optimizing towards a given
target delay, our proposed model is stable while
maintaining good translation quality.

We also compared against Oda et al. (2014)’s

state-of-the-art segmentation algorithm (SEG). As
shown in Fig 6, it is clear that although SEG can
work with variant segmentation lengths (CW), the
proposed model outputs high quality translations
at a much smaller CW. We conjecture that this is
due to the independence assumption in SEG, while
the RNNs and attention mechanism in our model
makes it possible to look at the whole history to
decide each translated word.

w/o Beam-Search We also plot the results of si-
multaneous beam-search instead of using greedy
decoding. It is clear from Fig. 5 and 6 that most
of the proposed models can achieve an visible in-
crease in quality together with a slight increase in
delay. This is because beam-search can help to
avoid bad local minima. We also observe that the
simultaneous beam-search cannot bring as much
improvement as it did in the standard NMT set-
ting. In most cases, the smaller delay the model
achieves, the less beam search can help as it re-
quires longer consecutive WRITE segments for ex-
tensive search to be necessary. One possible so-
lution is to consider the beam uncertainty in the
agent’s READ/WRITE decisions. We leave this to
future work.

6.3 Qualitative Analysis

In this section, we perform a more in-depth analy-
sis using examples from both EN-RU and EN-DE
pairs, in order to have a deeper understanding of
the proposed algorithm and its remaining limita-
tions. We only perform greedy decoding to sim-
plify visualization.

EN→RU As shown in Fig 8, since both En-
glish and Russian are Subject-Verb-Object (SVO)
languages, the corresponding words may share the
same order in both languages, which makes si-
multaneous translation easier. It is clear that the
larger the target delay (AP or CW) is set, the more
words are read before translating the correspond-
ing words, which in turn results in better transla-
tion quality. We also note that very early WRITE

commonly causes bad translation. For example,
for AP=0.3 & CW=2, both the models choose
to WRITE in the very beginning the word “The”,
which is unreasonable since Russian has no arti-
cles, and there is no word corresponding to it. One
good feature of using NMT is that the more words
the decoder READs, the longer history is saved,
rendering simultaneous translation easier.
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(b) Neural Machine Translation

Figure 7: Comparison of DE→EN examples using the proposed framework and usual NMT system
respectively. Both the heatmaps share the same setting with Fig. 1. The verb “gedeckt” is incorrectly
translated in simultaneous translation.

	 Source	 	AP=0.3	 	AP=0.7	 	CW=2	 CW=8	
The		 The	The					 	 The		 	
people		 p--	i--	ent	the	p--	ol--	s							 	 	 	
,	 								,						 	 p--	riv--	 	
as		 	 	 ers	 	
I					 as	I	 	 	 	
heard		 я	слышал	 Люди		 							,	 Люди		
in	 	 ,		как	я	слышал	 	 	
the	 	 	 как		 	
countryside	 						в			 						в			 я	слышал	 	
,	 	 	 	 								,	
want	 сельской	местности						 сельской		 						в			 как	я	
a	 	 местности		 	 слышал		
Government	 	 	 сельской		 	
that	 						,	 	 	 						в				
is	 	 	 местности		 сельской			
not	 	 	 	 	
made	 хочу			 	 						,	 	
up	 правительство	 	 	 местности			
of	 	 	 хочу			 	
thi--	 ,	 ,	 	 	
eves	 	 хотят			 правительство	 	
.	 	 	 	 						,	
<eos>	 которое	не	производится	

во--	ров	.	
,	чтобы	правительство	,	
которое	не	в--	меши--	
вается	в	во--	ры	.	

,	которое	не	является	
состав--	ной	частью	во--	
ров	.	

хотят	,	чтобы	
правительство	,	которое	
не	в--	меши--	вается	в	во--	
ры	.	

Summary	 BLEU=39/	AP=0.46	 BLEU=64/AP=0.77	 BLEU=54/CW=1.76	 BLEU=64/CW=2.55	

Figure 8: Given the example input sentence (leftmost column), we show outputs by models trained for
various delay targets. For these outputs, each row corresponds to one source word and represents the
emitted words (maybe empty) after reading this word. The corresponding source and target words are in
the same color for all model outputs.

DE→EN As shown in Fig 1 and 7 (a), where
we visualize the attention weights as soft align-
ment between the progressive input and output
sentences, the highest weights are basically along
the diagonal line. This indicates that our simul-
taneous translator works by waiting for enough
source words with high alignment weights and
then switching to write them.

DE-EN translation is likely more difficult as
German usually uses Subject-Object-Verb (SOV)
constructions a lot. As shown in Fig 1, when a sen-
tence (or a clause) starts the agent has learned such
policy to READ multiple steps to approach the verb
(e.g. serviert and gestorben in Fig 1). Such a pol-
icy is still limited when the verb is very far from
the subject. For instance in Fig. 7, the simultane-
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ous translator achieves almost the same translation
with standard NMT except for the verb “gedeckt”
which corresponds to “covered” in NMT output.
Since there are too many words between the verb
“gedeckt” and the subject “Kosten für die Kam-
pagne werden”, the agent gives up reading (oth-
erwise it will cause a large delay and a penalty)
and WRITEs “being paid” based on the decoder’s
hypothesis. This is one of the limitations of the
proposed framework, as the NMT environment is
trained on complete source sentences and it may
be difficult to predict the verb that has not been
seen in the source sentence. One possible way is
to fine-tune the NMT model on incomplete sen-
tences to boost its prediction ability. We will leave
this as future work.

7 Related Work

Researchers commonly consider the problem of
simultaneous machine translation in the scenario
of real-time speech interpretation (Fügen et al.,
2007; Bangalore et al., 2012; Fujita et al., 2013;
Rangarajan Sridhar et al., 2013; Yarmohammadi
et al., 2013). In this approach, the incoming
speech stream required to be translated are first
recognized and segmented based on an automatic
speech recognition (ASR) system. The translation
model then works independently based on each of
these segments, potentially limiting the quality of
translation. To avoid using a fixed segmentation
algorithm, Oda et al. (2014) introduced a trainable
segmentation component into their system, so that
the segmentation leads to better translation quality.
Grissom II et al. (2014) proposed a similar frame-
work, however, based on reinforcement learning.
All these methods still rely on translating each seg-
ment independently without previous context.

Recently, two research groups have tried to ap-
ply the NMT framework to the simultaneous trans-
lation task. Cho and Esipova (2016) proposed
a similar waiting process. However, their wait-
ing criterion is manually defined without learning.
Satija and Pineau (2016) proposed a method sim-
ilar to ours in overall concept, but it significantly
differs from our proposed method in many details.
The biggest difference is that they proposed to use
an agent that passively reads a new word at each
step. Because of this, it cannot consecutively de-
code multiple steps, rendering beam search diffi-
cult. In addition, they lack the comparison to any
existing approaches. On the other hand, we per-

form an extensive experimental evaluation against
state-of-the-art baselines, demonstrating the rela-
tive utility both quantitatively and qualitatively.

The proposed framework is also related to some
recent efforts about online sequence-to-sequence
(SEQ2SEQ) learning. Jaitly et al. (2015) pro-
posed a SEQ2SEQ ASR model that takes fixed-
sized segments of the input sequence and outputs
tokens based on each segment in real-time. It is
trained with alignment information using super-
vised learning. A similar idea for online ASR is
proposed by Luo et al. (2016). Similar to Satija
and Pineau (2016), they also used reinforcement
learning to decide whether to emit a token while
reading a new input at each step. Although shar-
ing some similarities, ASR is very different from
simultaneous MT with a more intuitive definition
for segmentation. In addition, Yu et al. (2016)
recently proposed an online alignment model to
help sentence compression and morphological in-
flection. They regarded the alignment between the
input and output sequences as a hidden variable,
and performed transitions over the input and out-
put sequence. By contrast, the proposed READ and
WRITE actions do not necessarily to be performed
on aligned words (e.g. in Fig. 1), and are learned
to balance the trade-off of quality and delay.

8 Conclusion

We propose a unified framework to do neural si-
multaneous machine translation. To trade off qual-
ity and delay, we extensively explore various tar-
gets for delay and design a method for beam-
search applicable in the simultaneous MT setting.
Experiments against state-of-the-art baselines on
two language pairs demonstrate the efficacy both
quantitatively and qualitatively.
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