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Abstract

This paper takes a discourse-oriented per-
spective for disambiguating common and
proper noun mentions with respect to
Wikipedia. Our novel approach mod-
els the relationship between disambigua-
tion and aspects of cohesion using Markov
Logic Networks with latent variables.
Considering cohesive aspects consistently
improves the disambiguation results on
various commonly used data sets.

1 Introduction

“I have to review a paper”, the super-
visor moaned from the office. “Please
don’t disturb me until I’m done with the
review.” His student nodded, went to
the cafeteria, sat down in the sunshine
and started to read yesterday’s paper.

This text snippet illustrates two aspects that have
been neglected by previous disambiguation ap-
proaches. (1) The interpretation of different men-
tions, i.e. common and proper nouns, is deter-
mined by different notions of context: some men-
tions depend more on a local sentence-level con-
text (paper in read yesterday’s paper; the global
context is misleading), some more on a global one
(review in I’m done with the review; the local con-
text is not discriminative), some on both global
and local context (paper in review a paper). (2)
The context relevant to disambiguate a mention
depends on how it is embedded into discourse and
is not bound to the surface form of a mention (pa-
per in the first sentence vs. paper in the last one).

Starting from this observation, we argue that the
context relevant to disambiguate a mention cor-
relates with its cohesive scope, i.e. the text span
within which a mention establishes cohesive re-
lations. Therefore, we propose to disambiguate

mentions differently depending on their cohesive
scopes (Section 2). We distinguish between three
different cohesive scopes of mentions and model
them as latent variables using Markov Logic Net-
works (Section 3). The use of latent variables al-
lows us to learn and predict the cohesive scope
and the disambiguation of a mention jointly. This
comes with the advantage that the learning of the
scope assignment does not need annotated data by
itself but is guided by the annotations available for
the target prediction task, i.e. the disambiguation.

In this paper, we focus on concept and entity
disambiguation1 with respect to an inventory de-
rived from Wikipedia and compare (1) to a state-
of-the-art approach that treats all mentions alike
and uses the same features for disambiguation,
(2) to a pipeline-based approach, and (3) to other
state-of-the-art approaches (Section 4).

While early work disambiguated concepts us-
ing the local context (Csomai and Mihalcea,
2008), current research focuses on exploiting the
global document context (Milne and Witten, 2008;
Kulkarni et al., 2009; Ratinov et al., 2011; Fahrni
and Strube, 2012; Cheng and Roth, 2013). Al-
though such global approaches try to balance be-
tween local and global context, they treat all men-
tions alike, i.e., they apply the same model and the
same weighting of local and global context fea-
tures for disambiguating all mentions (Section 5).

2 Motivation

Halliday and Hasan (1976) define cohesion as “re-
lations of meaning that exist within the text, and
that define it as a text” (p. 4). A tie is one instance
of such a cohesive relation between two items. Co-
hesive ties occur on various linguistic levels, such
as on the entity level (e.g. coreference and bridg-
ing relations) or on the concept level (e.g. lexical

1In the following, we use concept to refer to concepts and
what is usually called entities (e.g. Ji et al. (2011)).
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chains). In this paper, we focus on concept-level
cohesion and assume that each concept referred to
by a mention can exhibit cohesive ties with con-
cepts from other lexical units. The cohesive scope
of a mention is the text span within which a con-
cept referred to by a mention shows such cohesive
ties. We distinguish three broad categories of co-
hesive scopes: (1) Mentions with local cohesive
scope exhibit cohesive ties with lexical units in
the same sentence; (2) mentions with intermedi-
ate cohesive scope show cohesive ties both within
the sentence and beyond; (3) mentions with global
cohesive scope form cohesive ties with mentions
across sentence boundaries.

The notion of scope is a means to define the ap-
propriate context to disambiguate a mention. A
mention of local scope does not exhibit relations
with lexical units outside its sentence. Hence, the
global context does not help to disambiguate it or
can even lead to the wrong disambiguation. For
a mention with global scope, the global context is
crucial, while the local context is not discrimina-
tive or even misleading. For a mention with in-
termediate scope both local and global context are
relevant. Hence, while the scope influences the ap-
propriate disambiguation context, the disambigua-
tion of a mention influences its scope. In the ex-
ample (Section 1), paper in read yesterday’s pa-
per refers to the concept NEWSPAPER. Its scope
is local, as it lacks some cohesive ties with men-
tions in other sentences. If it had been disam-
biguated to SCHOLARLY PAPER, its scope would
be global. This reciprocal relationship between
discourse structure and meaning has also been dis-
cussed by Asher and Lascarides (1995). They
use rhetorical relations for structuring discourse
while we rely on the notion of lexical cohesion
and model scope assignment and disambiguation
jointly.

Our notion of scope is related to work on
lexical chains (Morris and Hirst, 1991; Nelken
and Shieber, 2006; Mihalcea, 2006) and to work
in content modeling, e.g. Haghighi and Vander-
wende (2009) distinguish content vocabulary and
document-specific vocabulary.

3 Approach

Given a set of features for disambiguation, we
aim to weight them differently depending on the
scope. To model the reciprocal relationship be-
tween scope assignment and disambiguation, we

propose a latent variables based approach using
Markov Logic Networks that allows us to learn
the parameters for the scope assignment and the
disambiguation tasks jointly and enables us to per-
form joint inference.

Our approach is joint as we assign the scope s
and predict the concept c for a mention m simulta-
neously. As during learning training data is avail-
able for the disambiguation task but not for the
scope assignment task, we face a problem with
latent variables. Latent variables represent miss-
ing information in the input or a part of the out-
put which is not relevant except for supporting the
prediction of the target (Smith, 2011). In our ap-
proach, the different cohesive scopes are modeled
by latent variables. Each mention to be disam-
biguated is assigned a scope s. All feature weights
are parametrized by scope s. The parameters for
the disambiguation and scope assignment tasks are
learned jointly and are guided by the annotations
available for the disambiguation task.

Markov Logic Networks can be represented as
log-linear models, when grounded, and are there-
fore straightforward to extend with latent variables
(Smith, 2011; Poon and Domingos, 2008). In ad-
dition, global features can be conveniently inte-
grated.

3.1 Markov Logic Networks

Markov Logic (ML) incorporates first-order logic
and probabilities (Domingos and Lowd, 2009).
A Markov Logic Network (MLN) is a first-order
knowledge base and consists of a set of pairs
(Fi, wi), where Fi is a first-order formula and
wi ∈ R is the weight of formula Fi. It is a tem-
plate for constructing a Markov Network. This
Markov Network has a binary node for each pos-
sible grounding for each predicate of the MLN. If
the grounding of the predicate is true, the binary
node’s value is set to 1, otherwise to 0. Further-
more, it contains one feature2 for each ground for-
mula Fi. If a ground formula is true, its feature’s
value is set to 1, otherwise to 0. The feature’s
weight is provided by wi.

The probability distribution in the ground
Markov Network is given by

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)

2In this section feature is used differently than in the rest
of the paper.
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where ni(x) is the number of true groundings of
Fi in x. The normalization factor Z is the partition
function.

To perform MAP inference we use thebeast3

which transforms the inference problem into an
Integer Linear Program and solves it using cutting
plane inference (Riedel, 2008).

3.1.1 Weight Learning with Latent Variables
Since no annotations are available for the scope
distinction, we face a latent variable learning prob-
lem. For learning weights in this situation we fol-
low Poon and Domingos (2008). We split our hid-
den predicates into two parts: V are the ones for
which the ground truth is known (concepts) and
U are the ones for which there is no annotation
(scopes). Let O be the observed predicates. Let
o and v be the values of O and V in the train-
ing data. u denotes values assigned to U . Weight
learning finds a w that maximizes the conditional
log-likelihood

Lw(o, v) = logPw(V = v|O = o)

= log
∑

u

Pw(V = v, U = u|O = o),

where the sum is over all possible values of U .
Although Lw(o, v) is not convex, a local opti-

mum can be found via gradient descent by itera-
tively solving

wt+1 = wt + η∇wLw(o, v),

where the gradient∇wLw(o, v) is given by

∂

∂wi
Lw(o, v) = Ew[ni(o, v, U)]− Ew[ni(o, V, U)].

Ew denotes the expectation according to Pw

and ni(o, v, u) is the number of true ground-
ings of formula Fi under the assignment spec-
ified by (o, v, u). We use a voted perceptron
(Lowd and Domingos, 2007) which approximates
the expectations via computing the MAP solution
with (o, v) fixed (Ew[ni(o, v, U)]) and (o) fixed
(Ew[ni(o, V, U)]) respectively.

3.1.2 Scope-aware Concept Disambiguation
Both the scope assignment and the disambiguation
task are performed jointly using Markov Logic
Networks.

3http://code.google.com/p/thebeast.

Table 1 shows the core of our proposed ap-
proach in terms of predicates and first-order logic
formulas. We build upon our previous approach
for joint concept disambiguation and clustering
(Fahrni and Strube, 2012). For brevity, we only
discuss the scope-aware extension of the disam-
biguation part. The extension for clustering is
done analogously.

The purpose of assigning a scope to each
mention m is to learn scope-specific weights
for disambiguation to account for heteroge-
nous scopes of mentions. The learned weights
are parametrized by scopes. We indicate this
parametrization of learned weights by w(s) (cf.
Table 1, f8, f9).

For each relation to predict, a hidden predicate
is defined. We are interested in predicting two
relations: a relation between a mention m and a
concept c (p1: hasConcept(m, c)) and a relation
between a mention m and a scope s (p3: hasS-
cope(m, s)). To bridge between the disambigua-
tion and the scope assignment task a third hid-
den predicate relatesScopeToConcept(m, c, s) (p2)
models a relation between a mention m, a concept
c and a scope s. This predicate together with For-
mulas f4 − f7 garantuees that the scope assign-
ment and the selection of a concept for a mention
influence each other and that the ground hidden
predicates are in accordance.4 Hard cardinality
constraints (f1, f2, f3) enforce that each mention
m is assigned exactly one scope s and at most one
concept c.

The hidden predicates and formulas form the
core. Features for the disambiguation and the
scope assignment tasks are incorporated using lo-
cal and global formulas with learned weights. The
features are described in Section 3.2. Table 1 gives
formula templates for both tasks (please note that
these are templates not formulas (Section 3.2)):
(1) a template for formulas that add information
for scope assignment (f8) and (2) a template for
formulas that add information for disambigua-
tion (f9). All formulas with scope-parametrized
weights that are relevant for the concept prediction
task are defined for the predicate relatesScopeTo-
Concept. This enables us to activate the relevant

4We also run experiments with just two hidden predi-
cates, i.e. hasConcept(m, c) and hasScope(m, s). All for-
mulas with learned weight were then defined in the fol-
lowing, less efficient way: ∀m ∈ M, c ∈ C, s ∈ S :
featureDisambiguation(m, c, q) → hasConcept(m, c) ∧
hasScope(m, s). q is a score (Table 1).
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Predicates
Hidden predicates
p1 hasConcept(m, c)
p2 relatesScopeToConcept(m, c, s)
p3 hasScope(m, s)
Predicate template for disambiguation features
p4 featureDisambiguation(m, c, q)
Predicate template for scope assignment features
p5 featureScope(m, q)
Formulas
Hard cardinality constraints
f1 ∀m ∈M : |{c ∈ C : hasConcept(m, c)}| ≤ 1
f2 ∀m ∈M : |{c ∈ C, s ∈ S : relatesScopeToConcept(m, c, s)}| ≤ 1
f3 ∀m ∈M : |{s ∈ S : hasScope(m, s)}| = 1
Hard constraints
f4 ∀m ∈M, c ∈ C, s ∈ S : relatesScopeToConcept(m, c, s)→ hasConcept(m, c)
f5 ∀m ∈M, c ∈ C, s ∈ S : relatesScopeToConcept(m, c, s)→ hasScope(m, s)
f6 ∀m ∈M, c ∈ C, s ∈ S : hasConcept(m, c) ∧ hasScope(m, s)

→ relatesScopeToConcept(m, c, s)
f7 ∀m ∈M, c ∈ C : hasConcept(m, c)→ (|{s ∈ S : relatesScopeToConcept(m, c, s)}| = 1)
Formula template with learned weights for scope assignment
f8 q · w(s) ∀m ∈M, s ∈ S : featureScope(m, q)→ hasScope(m, s)
Formula template with learned weights for disambiguation
f9 q · w(s) ∀m ∈M, c ∈ C, s ∈ S : featureDisambiguation(m, c, q)

→ relatesScopeToConcept(m, c, s)

Table 1: Predicates and formulas used for scope distinction and disambiguation (m represents a mention,
M sets of mentions, c a concept, C sets of concepts, s a scope, S sets of scopes, q scores, w weights and
w(s) a weight which is parametrized by s). The two template predicates and formulas are generalized
patterns to integrate the features for the scope assignment and disambiguation task (Section 3.2).

scope-specific weights w(s) which depend on the
chosen scope s. The final weight for a formula
can also include a score q defined by the observed
predicate.

3.2 Features

For disambiguation and clustering we build upon
our previous work (Fahrni and Strube, 2012). We
use the same features and formulas and adopt the
latter to learn scope-specific weights. Given for
example the local context similarity feature (pred-
icate hasContextSimilarity(m, c, q) where q is the
similarity score) and the corresponding formula

∀m ∈M, c ∈ Cm : hasContextSimilarity(m, c, q)

→ hasConcept(m, c)

with weight (q · w) we adopt it in the following
way (cf. Table 1, template f9):

∀m ∈M, s ∈ S, c ∈ Cm :

hasContextSimilarity(m, c, q)

→ relatesScopeToConcept(m, c, s)

with weight (q · w(s)).
In order to distinguish between the three pro-

posed scopes, we use the features described in Ta-
ble 2. The first column shows the predicate which
can be used for template f8 in Table 1.

4 Experiments

We compare our novel scope-aware approach to
our previous scope-ignorant approach (Fahrni and
Strube, 2012) – which has achieved good results
in the English monolingual and Chinese and Span-
ish cross-lingual entity linking tasks at TAC 2012
and 2013 (Fahrni et al., 2014) – and a scope-aware
pipeline-based approach using the same features
and preprocessing to ensure a fair comparison.
This allows us to identify the differences in the
results that are due to scope-awareness and differ-
ences in the results that are due to different learn-
ing strategies (joint vs. pipeline-based). In addi-
tion, we compare our joint scope-aware approach
to state-of-the-art approaches using various data
sets.

4.1 Data

Table 3 summarizes our test sets (ACE 2005, ACE
2004, MSNBC and TAC 2011) and our train-
ing and development sets derived from Wikipedia
(WP Training, WP Dev). For each data set we re-
port the total number of annotated mentions, the
number of mentions with a corresponding concept
in Wikipedia (non-NILs) and the number of NILs
(i.e. mentions that do not refer to a Wikipedia con-
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Predicates Description
Mention-based Features

idfHead(m, q) The more frequent a mention is, the more likely it is to exert a local scope. This is inspired by
work on indexing for IR. We use the idf score of the head of a mention according the English
Gigaword Corpus (Parker et al., 2011).

propernoun(m) Proper nouns are usually more prominent than common nouns and are more likely to have an
intermediate or global scope than common nouns.

singlewordNoun(m) Single word NPs are often less prominent than multi-word NPs and are more likely to be of local
scope.

abbrev(m) Abbreviations with a terminal dot such as Mr. or Ltd. tend to have a local scope as they are usually
local modifiers or specifications.

Features Based on Modification
isPreModified(m) If a mention is pre-modified, it tends to be more prominent than unmodified mentions. If a mention

is more prominent, it is more likely to have a larger scope.
headOfRelClause(m) Mentions that are the head of a relative clause are usually more prominent and are more likely to

have an intermediate or global scope.
Features Based on the Text Structure

inSubjPosition(m) Mentions in theme position, which is in English often the subject, tend to pick up what has already
been mentioned before (Daneš, 1974). Since this is not just the case on the reference-level, but
also on the concept-level, the mention in theme position tends to be related to other mentions in
the text and tends to have an intermediate or global scope.

posInSentence(m, q) The earlier a mention appears in the sentence in English, the more thematic it is, and the more
likely it has an intermediate or global scope.

focusingAdverb(m) Focusing adverbs in the text pattern <focusing adverb> <mention> – e.g. “particularly Jack” –
indicate that the mention is thematic and therefore has larger scope.

modifiesArgument(m) A premodifier of a verbal argument is usually more likely to be of local scope.
passiveBy(m) A passive construction – e.g. “the thief was catched by the police” – is a way to reduce the

prominency of the agent (e.g. police). The agent tends to be of local scope.
inConjunction(m) Conjunctions are often used for exemplifications. Therefore mentions in conjunctions are often

less prominent.
inDepRelPP(m1 ,m2 )
inDepRelGen(m1 ,m2 )

In NPs with prepositional or genitive modifiers usually at most one part – either the modifying NP
or the head – has intermediate or global scope.

morphoTiesHead(m, q) The more frequent the head of a mention appears in the text – also as a derivation, e.g. a verb,
according to CatVar (Habash and Dorr, 2003) –, the more prominent it is.

positionInText(m, q) The earlier a mention appears in text, the more likely it is to exhibit global cohesive scope (cf. the
hard-to-be-beat lead baseline in summarization (Radev et al., 2003)).

Table 2: Features for cohesive scope distinction. m, m1, m2 denote mentions, q a score. The predicates
are plugged in the template formula f8 in Table 1.

Data set No. of
Men-
tions

Non-
NILs

NILs Avg.
Ambi-
guity

WP Training 56,372 53,097 3,275 2.31
WP Dev 9,992 9,375 617 2.28
ACE 2005 29,300 27,184 2,116 6.52
ACE 2004 306 257 49 5.04
TAC 2011 2,250 1,124 1,126 6.32
MSNBC 756 629 127 5.29

Table 3: Statistics for data sets.

cept). The average ambiguity of mentions is given
by our lexicon (see Section 4.2).

Our system is exclusively trained on the internal
hyperlinks in Wikipedia with the advantage that no
manual annotation effort is needed. We use 500 ar-
ticles for training and 100 articles for development
(Fahrni and Strube, 2012). Each internal hyper-
link is considered as an annotated mention. The
pointer to the Wikipedia article serves as the cor-
rect concept for this mention and all other candi-

date concepts we obtain from our lexicon as wrong
concepts for this mention.

For the detailed analysis of our approach, we
use a version of the ACE 2005 corpus which con-
tains Wikipedia link annotations (Bentivogli et al.,
2010). All ACE mentions, both common and
proper nouns, are annotated with one or more links
to the English Wikipedia or as NILs. If a men-
tion is annotated with more than one link, we con-
sider it as correctly disambiguated if one of the an-
notated concepts has been chosen by our system.
ACE 2005 consists of 597 texts from newswire re-
ports, broadcast news, internet sources and tran-
scribed audio data and contains more annotations
than the other data sets we use for comparison.

While ACE 2005 and ACE 2004 (Ratinov et
al., 2011) fit our target scenario most (both com-
mon and proper nouns are annotated), MSNBC
(Cucerzan, 2007) and TAC 2011 (Ji et al., 2011)
are only annotated for proper nouns.
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4.2 Preprocessing

The training, development and testing data are all
preprocessed in the same way. We perform POS
tagging, syntactic parsing and named entity recog-
nition using the Stanford CoreNLP pipeline5. For
identifying mentions we extract all noun phrases
(excluding discontinuous phrases and determin-
ers) and look them up in our lexicon. Our lex-
icon and also all other information we obtained
from Wikipedia are extracted from the same En-
glish Wikipedia dump.6 The lexicon consists of
anchor texts, article titles and redirects.

4.3 Settings

Upper bound: The upper bound shows the maxi-
mum performance we can reach given our lexicon
and preprocessing. If the correct concept is among
the candidate concepts of a mention, it is consid-
ered as correct.
First Concept: The first concept baseline is a
strong baseline in disambiguation. It chooses for
each mention its most frequent concept.
Scope-ignorant (Disambig.): Our previous
MLN-based approach for concept disambiguation
(Fahrni and Strube, 2012).
Scope-ignorant (Disambig. & Clust.): Our pre-
vious MLN-based approach for joint disambigua-
tion and clustering of concepts (Fahrni and Strube,
2012).
Pipeline-based Scope-aware (Disambig.): We
compare our joint approach to a pipeline-based
one in which the assignment of the cohesive scope
is done before disambiguation. The features for
the scope assignment and the disambiguation task
are exactly the same as in the joint setting and
implemented in Markov Logic. The weights for
the scope assignment and disambiguation task are
learned in a cascaded way. In contrast to the
joint approach, the hasScope(m, s) predicate is ob-
served during disambiguation.
Joint Scope-aware (Disambig.): This is our ap-
proach as described in Section 3 for concept dis-
ambiguation. As only local optimization is possi-
ble, initialization is crucial. We use the same ini-
tialization strategy as for the cascaded approach.
Joint Scope-aware (Disambig. & Clust.): This is
our approach as described in Section 3 for disam-
biguation and clustering of concepts.

5http://nlp.stanford.edu/software/
corenlp.shtml

6We use the English Wikipedia dump from Jan. 4, 2012.

4.4 Analysis of Scope-awareness on
ACE 2005

In Table 4 we report precision (P), recall (R) and
F-measure (F) for non-NILs and NILs for the ACE
2005 data. We also report overall accuracy (Acc)
(aka micro-average) and calculate significance us-
ing a paired t-test.

Differences in the results can be exclusively
traced back to differences in the modeling (scope-
ignorant vs. scope-aware) and learning (pipeline-
based vs. joint). Learning scope-specific models
(pipeline-based or joint) significantly improves the
result with p < 0.01 while using the same features
for disambiguation. Scope-aware joint approaches
significantly outperform the other corresponding
approaches (pipeline-based and scope-ignorant)
that use the same features for disambiguation (and
clustering) with p < 0.01. While the pipeline-
based approach suffers from error propagation,
the joint approach also benefits from the learn-
ing strategy: learning weights for scope distinction
can be guided by the training data available for
the disambiguation task. Joint disambiguation and
clustering of mentions improves the disambigua-
tion results for both the scope-ignorant (Fahrni and
Strube, 2012) and the scope-aware approach.

As Table 4 indicates, the gain of the joint scope-
aware approach with respect to non-NILs is sub-
stantial in both precision and recall. For NILs
the recall improves while the precision decreases.
This leads to a slightly worse F-Measure for the
NILs. As NILs are much rarer than non-NILs in
the corpus, the overall accurracy for which we op-
timize is significantly higher for the scope-aware
approaches.

As no gold annotations for cohesive scopes are
available, we present statistics on the distribution
of induced scopes. Table 5 shows the distribu-
tion of the mentions across induced scopes. Men-
tions with local scope are more frequent than men-
tions with intermediate scope followed by men-
tions with global scope. Table 5 compares the
overall accurracy of the scope-ignorant joint dis-
ambiguation and clustering approach (Fahrni and
Strube, 2012) with the accurracy of the corre-
sponding joint scope-aware approach. The joint
scope-aware approach improves the disambigua-
tion results for mentions of all three scopes. The
biggest gain (2.79) is achieved for mentions with
induced global scope. The gain for mentions with
local and intermediate scope is 1.27 and 0.3 re-
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Non-NILs NILs
P R F P R F Acc

Upper bound 94.8 91.8 93.3 71.3 100.0 83.3 92.4
First Concept 68.6 70.0 69.3 55.3 40.3 46.6 67.9
Scope-ignorant (Disambig.) (Fahrni & Strube 2012) 77.3 76.0 76.6 44.7 54.2 49.0 74.4
Scope-ignorant (Disambig. & Clust.) (Fahrni & Strube 2012) 76.8 76.9 76.9 50.2 50.0 50.1 74.9
Pipeline-based Scope-aware (Disambig.) 80.1 75.8 77.9 37.3 63.4 47.0 74.9
Joint Scope-aware (Disambig.) 80.1 76.6 78.3 39.2 61.5 47.9 75.5
Joint Scope-aware (Disambig. & Clust.) 80.3 77.1 78.6 40.8 62.1 49.3 76.0

Table 4: Evaluation on ACE 2005 data

Scope-ignorant Approach
(Disambig. & Clust.)
(Fahrni & Strube 2012) (Acc)

Joint Scope-aware Approach
(Disambig. & Clust.) (Acc)

Scope Distribution (%)

Global Scope 73.20 75.99 8.54
Intermediate Scope 76.34 76.64 31.05
Local Scope 75.57 76.84 60.40
Total 75.61 76.71 100.00

Table 5: Evaluation on ACE 2005 data across induced scopes. The accurracy of the two compared
systems is slightly higher than in Table 4 as we consider here only mentions that have been recognized by
our mention identification strategy. In the evaluation in Table 4 mentions that have not been recognized
are considered as wrong.

spectively. A comparison of the learned weights
for the different scope-specific models shows that
for mentions with local scope the local context has
relatively more weight than for mentions with in-
termediate scope. For mentions with global scope,
it is striking that candidiate concepts that are not
related to the global context are relatively higher
punished than in the other two models.

To obtain some insights on the behaviour of the
joint scope-aware approach, we investigate some
examples. In a text on the 2004 US elections, the
mention Kerry in “Kerry was the clear winner, but
victory was snatched from him” is wrongly disam-
biguated to KERRY GAA, a branch of the Gaelic
football association, by the scope-ignorant ap-
proach, because the local context strongly prefers
an interpretation in the domain of sports. In
the joint scope-aware approach, Kerry is assigned
global scope, and it is correctly disambiguated
to JOHN KERRY, an American politician, as the
global relatedness overrules the local context in
this model. In another text on U.S. troops in
Iraq, the scope-ignorant approach disambiguates
south in “Monday’s advances came one day af-
ter British forces in the south made their deepest
push into Iraq’s second largest city” to SOUTHERN

UNITED STATES as concepts related to the USA
are quite prominent in the text. In the scope-aware
approach south is considered as being of local
scope and is correctly disambiguated as SOUTH.
In “we happen to be at a very nice spot by the

beach where this is a chance for people to get
away from cnn coverage” spot is disambiguated
as SPOT (SATELLITE) in the scope-ignorant ap-
proach (misled by CNN), while it has been cor-
rectly recognized as NIL by the scope-aware ap-
proach in which it is considered as being of inter-
mediate scope. The remaining disambiguation er-
rors can be traced back to (1) scope assignment er-
rors and (2) disambiguation errors (e.g. Palmisano
(global scope) is disambiguated as SAMUEL J.
PALMISANO, but the text refers to a different un-
known Palmisano).

4.5 Comparison to State-of-the-art
Approaches

Compared to the state-of-the-art for concept and
entity disambiguation our approach performs fa-
vorably (Table 6). On ACE 2004 (Ratinov et
al., 2011) – which contains annotations for com-
mon and proper nouns and fits our target scenario
most – our scope-aware approach outperforms re-
cent state-of-the-art approaches for concept and
entity disambiguation, i.e. Ratinov et al. (2011)
and Cheng and Roth (2013). We also ran Rati-
nov et al.’s (2011) sytem on ACE 2005, but it
seems that its mention recognition is not designed
for ACE 2005.

We also evaluate our system on the task of en-
tity linking, i.e. the disambiguation of (selected)
proper nouns (MSNBC and TAC 2011). Our
system fails to beat the best systems, but still
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System ACE 2004 MSNBC TAC 2011
BOC BOC Acc B3 P B3 R B3 F1

Ratinov et al. 2011; Cogcomp 77.3 74.9 78.7 75.7 76.5 76.1
Cheng & Roth 2013 85.3 81.2 86.1 82.9 84.5 83.7
Monahan et al. 2011 (Best System at TAC 2011) 86.1 84.4 84.7 84.6
Scope-ignorant (Disambig. & Clust.) (Fahrni & Strube 2012) 83.4 76.5 84.8 82.5 83.0 82.8
Joint Scope-aware (Disambig. & Clust.) 86.3 79.0 85.5 83.6 82.7 83.1

Table 6: Evaluation on various data sets using the respective standard evaluation metrics. BOC stands
for Bag-of-Concepts. We use the code of Ratinov et al. (2011) to evaluate on ACE 2004 and MSNBC.
For TAC 2011, we use the offical evaluation script and report the micro-average (Acc) and B3 scores.
Note that for TAC we use three additional disambiguation features – they measure the similarity of the
article name to the context – both in the scope-ignorant and the scope-aware approach.

achieves competitive performance without train-
ing on TAC data. On all data sets, the joint
scope-aware approach consistently outperforms
the scope-ignorant approach ceteris paribus.

5 Related Work

Joint approaches have been successful in the past
in NLP (e.g. Meza-Ruiz and Riedel (2009)). The
idea of augmenting a model with additional latent
variables to increase its expressiveness is known as
hidden or latent variable learning (Smith, 2011)
and is a promising research direction with success-
ful applications in e.g. syntactic parsing (Petrov
et al., 2006), statistical machine translation (Blun-
som et al., 2008) and sentiment analysis (Yesse-
nalina et al., 2010; Trivedi and Eisenstein, 2013).
For latent variable learning generative approaches
(Petrov et al., 2006), large margin methods (Smith,
2011) and conditional log-linear models have been
proposed. We focus here on conditional log-linear
models due to their flexibility and their previous
success for many tasks. Blunsom et al. (2008)
for instance use latent variables in the context of
discriminative machine translation and model the
derivation as a latent variable. Chang et al. (2010)
is close to our approach, as their latent variable ap-
proach also uses ILP. Poon and Domingos (2008)
also use latent variables with Markov Logic, al-
though with a completely different aim, i.e. for un-
supervised coreference resolution.

Most approaches that use Wikipedia as a re-
source for disambiguation focus on named enti-
ties (Bunescu and Paşca, 2006; Cucerzan, 2007;
Dredze et al., 2010; Ji and Grishman, 2011;
Hachey et al., 2013; Hoffart et al., 2011), while
only a few disambiguate common and proper
nouns like us (Csomai and Mihalcea, 2008; Milne
and Witten, 2008; Zhou et al., 2010; Ratinov et al.,
2011; Cheng and Roth, 2013). We build upon our

previous Markov Logic based approach for joint
concept disambiguation and clustering (Fahrni and
Strube, 2012). In contrast to us, most approaches
for lexical disambiguation use either one model
for all mentions (Milne and Witten, 2008; Rati-
nov et al., 2011) or a separate model for each men-
tion or concept which requires a lot of training data
(e.g. Bryl et al. (2010)). Only a few approaches try
to learn specific models for groups of mentions,
although none of them is discourse-motivated as
ours: Mihalcea and Csomai (2005) learn a specific
model for each POS, Ando (2006) uses alternating
structure optimization to simultantanously learn a
number of WSD problems and Dhillon and Ungar
(2009) improve feature selection for WSD by in-
tegrating knowledge from similar words.

6 Conclusions

In this paper, we discuss the relationship between
cohesion and concept disambiguation and pro-
pose a cohesive scope-aware disambiguation ap-
proach. We distinguish between three different co-
hesive scopes (local, intermediate and global) and
model the scope assignment and the disambigua-
tion jointly using latent variables in the framework
of MLN. The joint scope-aware approach signifi-
cantly improves over both a state-of-the-art and a
pipeline-based approach using the same features
for the disambiguation task.

For future work, we are planning to investigate
the relation between discourse structure and co-
hesive scope more deeply and to integrate scope-
specific disambiguation features.
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