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Abstract

Approaching temporal link labelling as a
classification task has already been ex-
plored in several works. However, choos-
ing the right feature vectors to build the
classification model is still an open is-
sue, especially for event-event classifica-
tion, whose accuracy is still under 50%.
We find that using a simple feature set re-
sults in a better performance than using
more sophisticated features based on se-
mantic role labelling and deep semantic
parsing. We also investigate the impact of
extracting new training instances using in-
verse relations and transitive closure, and
gain insight into the impact of this boot-
strapping methodology on classifying the
full set of TempEval-3 relations.

1 Introduction

In recent years, temporal processing has gained in-
creasing attention within the NLP community, in
particular since TempEval evaluation campaigns
have been organized on this topic (Verhagen et
al., 2007; Verhagen et al., 2010; UzZaman et al.,
2013). In particular, the classification of tem-
poral relations holding between entities such as
events and temporal expressions (timex) is crucial
to build event timelines and to reconstruct the plot
of a story. This could be exploited in decision sup-
port systems and document archiving applications,
among others.

In this work we focus on the problem of clas-
sifying temporal relation types, assuming that the
links between events and time expressions are al-
ready established. This task is part of Tempeval-3
evaluation campaign, hence we follow the guide-
lines and the dataset provided by the organizers,
so that we can compare our system with other
systems participating in the challenge. Recent

works have tried to address this complex classifi-
cation task by using sophisticated features, based
on deep parsing, semantic role labelling and dis-
course parsing (D’Souza and Ng, 2013; Laokulrat
et al., 2013). We argue that a simpler approach,
based on lexico-syntactic features, achieves com-
parable results, while reducing the processing time
needed to extract the features. Besides, the perfor-
mance of complex NLP tools may strongly vary
when moving to new domains, affecting in turn the
classification performance, while our approach is
likely to be more stable across different domains.

Our features include some basic information on
the position, the attributes and the PoS tags of
events and timexes, as well as other information
obtained from external lexical resources such as a
list of typical event durations and a list of temporal
signals. The few processing steps required include
PoS-tagging, dependency parsing and the seman-
tic tagging of connectives (based on the parser out-
put).

We also investigate the impact of extending the
number of training instances through inverse rela-
tions and transitive closure, which is a ‘simplified’
version of temporal closure covering only entities
connected via the same relation type.

2 Related Work

The task we deal with in this paper was proposed
as part of the TempEval-3 shared task (UzZaman
et al., 2012). Compared to previous TempEval
campaigns, the TempEval-3 task involved recog-
nizing the full set of temporal relations in TimeML
(14 types) instead of a reduced set, increasing the
task complexity. This specific temporal relation
classification task becomes the main focus of this
paper.

Supervised classification of temporal relation
types has already been explored in some earlier
works. Mani et al. (2006) built a MaxEnt classi-
fier to label the temporal links using training data
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which were bootstrapped by applying temporal
closure. Chambers et al. (2007) focused on clas-
sifying the temporal relation type of event-event
pairs using previously learned event attributes as
features. However, both works use a reduced set
of temporal relations, obtained by collapsing the
relation types that inverse each other into a single
type.

Our work is most similar to the recent work
by D’Souza and Ng (2013). The authors perform
the same task on the full set of temporal rela-
tions, but adopt a much more complex approach.
They utilize lexical relations extracted from the
Merriam-Webster dictionary and WordNet (Fell-
baum, 1998), as well as semantic and discourse
features. They also introduce 437 hand-coded
rules to build a hybrid classification model.

Since we conduct our experiments based on
TempEval-3 task setup, this work is also compa-
rable with the systems participating in the task.
UzZaman et al. (2013) report that three groups
submitted at least one system run to the task.
The best performing one (Laokulrat et al., 2013)
uses, among others, sentence-level semantic in-
formation from a deep syntactic parser, namely
predicate-argument structure features. Another
system (Chambers, 2013) is composed of four
MaxEnt classifiers, two of which have been
trained for event-event links (inter- and intra-
sentence) and two for event-time links. The third-
ranked system (Kolya et al., 2013), instead, im-
plements a much simpler set of features account-
ing for event tense, modality and aspect, event and
timex context, etc.

3 Temporal Link Labelling

In this section we detail the task of temporal re-
lation labelling, the features implemented in our
classification system and the strategy adopted to
bootstrap new training data.

3.1 Task description

The full set of temporal relations specified in
TimeML version 1.2.1 (Saurı́ et al., 2006) con-
tains 14 types of relations, as illustrated in Table 1.
Among them there are six pairs of relations that in-
verse each other.

Note that according to TimeML 1.2.1 annota-
tion guidelines, the difference between DURING
and IS INCLUDED (also their inverses) is that
DURING relation is specified when an event per-

sists throughout a temporal duration (e.g. John
drove for 5 hours), while IS INCLUDED relation
is specified when an event happens within a tem-
poral expression (e.g. John arrived on Tuesday).

a |———| a is BEFORE b
b |———| b is AFTER a

a |———| a is IBEFORE b
b |———| b is IAFTER a

a |——| a BEGINS b
b |————| b is BEGUN BY a

a |——| a ENDS b
b |————| b is ENDED BY a

a |——| a is DURING b
b |——————| b is DURING INV a
a |——————| a INCLUDES b

b |——| b IS INCLUDED in a
a |———|

a is SIMULTANEOUS with b
b |———|
a |———| b a is IDENTITY with b

Table 1: Temporal relations in TimeML annota-
tion

In TimeML annotation, temporal links are used
to (i) establish the temporal order of two events
(event-event pair), (ii) anchor an event to a time
expression (event-timex pair) and (iii) establish the
temporal order of two time expressions (timex-
timex pair).

The problem of determining the label of a given
temporal link can be regarded as a classification
problem. Given an ordered pair of entities (e1,
e2) that could be either event-event, event-timex
or timex-timex pair, the classifier has to assign a
certain label, namely one of the 14 temporal rela-
tion types. We train a classification model for each
category of entity pair, as suggested in several pre-
vious works (Mani et al., 2006; Chambers, 2013).

However, because there are very few examples
of timex-timex pairs in the training corpus, it is not
possible to train the classification model for these
particular pairs. Moreover, they only add up to
3.2% of the total number of extracted entity pairs;
therefore, we decided to disregard these pairs.

3.2 Feature set

We implement a number of features for tempo-
ral relation classification. Some of them are ba-
sic ones which take into account morpho-syntactic
information on events and time expressions, their
textual context and their attributes. Others rely
on semantic information such as typical event du-
rations and connective type. However, we avoid
complex processing of data. Such semantic infor-
mation is based on external lists of lexical items
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and on the output of the addDiscourse tagger
(Pitler and Nenkova, 2009).

Some features are computed independently
based on either e1 or e2, while some others are
pairwise features, which are computed based on
both elements. Some pairwise features are only
relevant for event-event pairs, for example, the
information on discourse connectives and the
binary features representing whether two events
have the same event attributes or not. Similarly,
the features related to time expression attributes
are only relevant for event-timex pairs, since
this information can only be obtained if e2 is a
time expression. The selection of features that
contribute to the improvement of event-event
and event-timex classification will be detailed in
Section 4.3.

String features. The tokens and lemmas of
e1 and e2.

Grammatical features. The part of speech
(PoS) tags of e1 and e2, and a binary feature
indicating whether e1 and e2 have the same
PoS tag. The binary feature only applies to
event-event pairs since we do not include the
PoS tag of a time expression in the feature set
of event-timex pairs. The grammatical informa-
tion is obtained using the Stanford CoreNLP tool.1

Textual context. The textual order, sentence
distance and entity distance of e1 and e2. Textual
order is the appearance order of e1 and e2 in the
text, while sentence distance measures how far e1

and e2 are from each other in terms of sentences,
i.e. 0 if they are in the same sentence. The entity
distance is only measured if e1 and e2 are in the
same sentence, and corresponds to the number of
entities occurring between e1 and e2 (i.e. if they
are adjacent, the distance is 0).

Entity attributes. Event attributes and time
expression attributes of e1 and e2 as specified
in TimeML annotation. Event attributes consist
of class, tense, aspect and polarity, while the
attributes of a time expression are its type, value
and dct (indicating whether a time expression
is the document creation time or not). Events
falling under the category of noun, adjective and

1http://nlp.stanford.edu/software/
corenlp.shtml

preposition do not have tense and aspect attributes
in TimeML. We retrieve this information by
extracting the tense and aspect of the verbs that
govern them, based on their dependency relation.
For event-event pairs we also include four binary
features representing whether e1 and e2 have the
same event attributes or not.

Dependency relations. Similar to D’Souza
and Ng (2013), we use the information related to
the dependency relation between e1 and e2. We
include as features (i) the type of the dependency
relation that exists between them, (ii) the depen-
dency order which is either governor-dependent
or dependent-governor and (iii) binary features
indicating whether e1/e2 is the root of the sen-
tence. This information is based on the collapsed
representation of dependency relations provided
by the parsing module of Stanford CoreNLP.
Consider the sentence “John left the office and
drove back home for 20 minutes”. Using the
collapsed typed dependencies we could get the di-
rect relations between the existing entities, which
are conj and(left, drove) and prep for(drove,
minutes).

Event durations. To our knowledge, we are
the first to exploit event duration information
as features for temporal relation classification.
In fact, duration can be expressed not only by
a predicate’s tense and aspect but also by its
aktionsart, i.e. the inherent temporal information
connected to the meaning of a predicate. The
typical event duration allows us to infer, for
instance, that a punctual event is more likely to
be contained in a durative one. If we consider the
sentence “State-run television broadcast footage
of Cuban exiles protesting in Miami”, this feature
would tell us that broadcast lasts for hours while
protesting lasts for days, thus contributing in
determining the direction of DURING relation
between the events.

The approximate duration for an event is
obtained from the list of 1000 most frequent
verbs and their duration distributions compiled
by Gusev et al. (2011).2 The types of duration
include seconds, minutes, hours, days, weeks,
months, years and decades. We also add the
duration difference between e1 and e2 as a feature

2The list is available at http://cs.stanford.edu/
people/agusev/durations/
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with the value varied between same, less or more.
Similar to tense and aspect attributes for events,
the duration of events under the category of noun,
adjective and preposition are estimated by the
governing verb. As for time expressions, their
durations are estimated from their type and value
attributes using a set of simple rules, e.g. the
duration of Thursday morning (with the type of
TIME and the value of xxxx-xx-xxTMO) is hours.

Temporal signals. Derczynski and Gaizauskas
(2012) show the importance of temporal signals
in temporal link labelling. We take this into
account by integrating in our features the list of
signals extracted from TimeBank 1.2 corpus3. We
believe that the system performance will benefit
from distinguishing between event-related signals
and timex-related signals, therefore we manually
split the signals into two separate lists. Signals
such as when, as and then are commonly used
to temporally connect events, while signals such
as at, for and within more likely occur with time
expressions. There are also signals that are used
in both cases such as before, after and until, and
those kind of signals are added to both lists.

Besides the signal token, the position of the sig-
nal with respect to the events or time expressions
is also an important feature. Consider the position
of a signal in the sentences (i) “John taught high
school before he worked at a bank” and (ii)
“Before John taught high school, he worked at a
bank”, which is crucial to determine the order of
John’s occupations. We also include in the feature
set whether a signal occurs at the beginning of a
sentence, as it is usually used to temporally relate
events in different sentences, e.g. “John taught
high school. Previously, he worked at a bank.”

Temporal discourse connectives. Consider
the following sentences:

(i) “John has been taking that driving course
since the accident that took place last week.”

(ii) “John has been taking that driving course
since he wants to drive better.”

In order to label the temporal link holding be-
tween two events, it is important to know whether
there are temporal connectives in the surrounding

3The list is available at http://www.timeml.org/
site/timebank/browser_1.2/displayTags.
php?treshold=1&tagtype=signal&sort=alpha

context, because they may contribute in identify-
ing the relation type. For instance, it may be rele-
vant to distinguish whether since is used as a tem-
poral or a causal cue (example (i) and (ii) resp.).
This information about discourse connectives is
acquired using the addDiscourse tool (Pitler and
Nenkova, 2009), which identifies connectives and
assigns them to one of four semantic classes: Tem-
poral, Expansion, Contingency and Comparison.
Note that this is a much shallower approach than
the one proposed by D’Souza and Ng (2013), who
perform full discourse parsing.

We include as feature whether a discourse con-
nective belonging to the Temporal class occurs in
the textual context of e1 and e2. Similar to tem-
poral signals, we also include in the feature set the
position of the discourse connective with respect
to the events.

3.3 Inverse Relations and Transitive Closure

Since Mani et al. (2006) demonstrate that boot-
strapping training data through temporal closure
results in quite significant improvements, we try
to provide the classifier with more data to learn
from using the inverse relations and closure-based
inferred relations.

There are six pairs of relation types in TimeML
that inverse each other (see Table 1). By switch-
ing the order of the entities in a given pair and la-
belling the pair with the inverse relation type, we
basically multiply the number of training data.

As for temporal closure, there have been at-
tempts to apply it to improve temporal relation
classification. Mani et al. (2006) use SputLink
(Verhagen, 2005), which was developed based on
Allen’s closure inference (Allen, 1983), to infer
the relations based on temporal closure. UzZaman
and Allen (2011b) employ Timegraph (Gerevini et
al., 1995) to implement the scorer for TempEval-3
evaluation, since precision and recall for temporal
relation classification are computed based on the
closure graph.

We use a simpler approach to obtain the closure
graph of temporal relations, by applying the tran-
sitive closure only within the same relation type,
e.g. e1 BEFORE e2 ∧ e2 BEFORE e3 → e1 BE-
FORE e3. It can be seen as partial temporal clo-
sure since it produces only a subset of the rela-
tions produced by temporal closure, which covers
more complex cases, e.g. e1 BEFORE e2 ∧ e2 IN-
CLUDES e3→ e1 BEFORE e3.
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As shown in Fischer and Meyer (1971), the
problem of finding the transitive closure of a di-
rected acyclic graph can be reduced to a boolean
matrix multiplication. For each temporal relation
type, we build its boolean matrix with the size of
n × n, n being the number of entities in a text.
Given a temporal relation type R and its boolean
matrix M , the transitive closure-based relations of
R can be inferred from the matrix M2 by extract-
ing its non-zero elements.

4 Experiment Description

4.1 Dataset

Since we want to compare our work with ex-
isting approaches to temporal relation classifica-
tion, we use the same training and test data as
in Tempeval-3 challenge4. Two types of train-
ing data were made available in the challenge:
TBAQ-cleaned and TE3-Silver-data. The former
includes a cleaned and improved version of the
AQUAINT TimeML corpus, containing 73 news
report documents, and the TimeBank corpus, with
183 news articles. TE3-Silver-data, instead, is a
600K word corpus annotated by the best perform-
ing systems at Tempeval-2, which we do not use
in our experiments.

Our test data is the newly created TempEval-
3-platinum evaluation corpus that was anno-
tated/reviewed by the Tempeval-3 task organizers.
The distribution of the relation types in all previ-
ously mentioned datasets is shown in Table 2. We
report also the statistics obtained after applying in-
verse relations and transitive closure, that increase
the number of training instances.

It is worth noticing that DURING INV relation
does not exist in the training data but appears in the
test data. In this case, inverse relations help in au-
tomatically acquiring training instances. The BE-
FORE relation corresponds to the majority class
and makes the instance distribution quite unbal-
anced, especially in the TBAQ corpus. Finally,
five event-timex instances in the TBAQ training
data are labeled with IDENTITY relation and can
be assumed to be falsely annotated.

4.2 Experimental Setup

We build our classification models using the Sup-
port Vector Machine (SVM) implementation pro-

4http://www.cs.york.ac.uk/
semeval-2013/task1/index.php?id=data

vided by YamCha5. The experiment involves con-
ducting 5-fold cross validation on the TimeBank
corpus to find the best combination of features for
the event-event and event-timex classifiers. We
first run our experiments using YamCha default
parameters (pairwise method for multi-class clas-
sification and polynomial kernel of degree 2). Af-
ter identifying the best feature sets for the two
classifiers, we evaluate them using different ker-
nel degrees (from 1 to 4).

4.3 Feature Engineering

In order to select from our initial set of features
only those that improve the accuracy of the event-
event and event-timex classifiers, we incremen-
tally add them to the baseline (the model with
string feature only), and compute their contribu-
tion. Table 3 shows the results of this selection
process, by including the average accuracy from
the 5-fold cross validation.

In Table 3, we report the feature contributions of
the entity attributes and dependency relations sets
in more details, because within those categories
only some of the features have a positive impact on
accuracy. Instead, for features within textual con-
text, signal and discourse categories, incremen-
tally adding each feature results in increasing ac-
curacy, therefore we report only the overall accu-
racy of the feature group. Similarly, for duration
features, adding each feature incrementally results
in decreasing accuracy.

Regarding entity attributes, it can be seen that
aspect and class features have no positive im-
pact on the accuracy of event-event classifica-
tion, along with pairwise features same class and
same polarity. As for event-timex classification,
all event attributes except for polarity contribute
to accuracy improvements. Among time expres-
sion attributes, only the information about whether
a time expression is a document creation time or
not (dct feature) helps improving the classifier.

The dependency order feature does not give
positive contribution to the accuracy in both cases.
Besides, information on whether an event is the
root of the sentence (dependency is root feature)
is not relevant for event-timex classification.

Adding the temporal signal feature very slightly
improves the accuracy of event-event classifica-
tion, not as much as its contribution to event-timex

5http://chasen.org/˜taku/software/
yamcha/
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Relation
event-event event-timex

train test train test
TB TBAQ TBAQ-I TBAQ-IC TE3-P TB TBAQ TBAQ-I TBAQ-IC TE3-P

BEFORE 490 2,115 2,938 5,685 226 661 1,417 1,925 2,474 96
AFTER 458 823 2,938 5,685 167 205 509 1,925 2,474 29
IBEFORE 22 60 103 105 1 2 3 8 8 5
IAFTER 27 43 103 105 2 4 5 8 8 6
BEGINS 24 44 86 85 0 20 65 89 89 1
BEGUN BY 24 42 86 85 1 22 24 89 89 1
ENDS 12 17 79 79 1 47 59 120 120 2
ENDED BY 44 62 79 79 0 57 61 120 120 2
DURING 46 80 80 84 1 197 200 200 201 1
DURING INV 0 0 80 84 0 0 0 200 201 1
INCLUDES 170 308 724 7,246 40 288 1,104 2,945 3,404 42
IS INCLUDED 212 416 724 7,246 47 897 1,841 2,945 3,404 125
SIMULTANEOUS 456 519 519 518 81 58 58 58 58 6
IDENTITY 534 742 742 742 15 4 5 5 5 0
Total 2,519 5,271 9,281 27,828 582 2,462 5,351 10,637 12,655 317

Table 2: The distribution of each relation type in the datasets for both event-event and event-timex pairs.
TB stands for TimeBank corpus, TBAQ denotes the combination of TimeBank and AQUAINT corpora,
TBAQ-I denotes the TBAQ corpus augmented with inverse relations, TBAQ-IC is the TBAQ corpus
with both inverse relations and transitive closure, and TE3-P is the TempEval-3-platinum evaluation
corpus.

classification. However, together with the tem-
poral discourse feature, they positively affect ac-
curacy, confirming previous findings (Derczynski
and Gaizauskas, 2012).

Surprisingly, adding event duration feature de-
creases the accuracy in both cases. This might be
caused by the insufficient coverage of the event
duration resource, since around 20% of the train-
ing pairs contain at least an event whose duration
is unknown. Moreover, we employ the approxi-
mate duration of a verb event as a feature without
considering the context and discourse. For exam-
ple, according to the distributions in the duration
resource, the event attack has two likely durations,
minutes and decades, with decades being slightly
more probable than minutes. In the sentence “Is-
rael has publicly declared that it will respond to
an Iraqi attack on Jordan.”, the classifier fails to
recognize the IBEFORE relation between attack
and respond (attack happens immediately before
respond), because the duration feature of attack is
recognized as decades, while in this context the
attack most probably occurs within seconds.

According to the analysis of the different fea-
ture contributions, we define the best classification
models for both event-event pairs and event-timex
pairs as the models using combinations of features
that have positive impacts on the accuracy, based
on Table 3. Given the best performing sets of fea-
tures, we further experiment with different kernel
degrees in the same 5-fold cross validation sce-

nario.

The best classifier performances are achieved
with the polynomial kernel of degree 4, both for
event-event and event-timex classification. The
accuracy for event-event classification is 43.69%,
while for event-timex classification it is 66.62%.
However, using a high polynomial kernel degree
introduces more complexity in training the classi-
fication model, thus more time is required to train
such models.

D’Souza and Ng (2013) evaluate their system
on the same corpus, but with a slightly different
setting. They also split TimeBank into 5 folds,
but they only use two of them to perform 2-fold
cross validation, while they use another part of the
corpus to develop rules for their hybrid system.
Their best configuration gives 46.8% accuracy for
event-event classification and 65.4% accuracy for
event-timex classification. Although the two ap-
proaches are not directly comparable, we can as-
sume that the systems’ performance are likely to
be very similar, with a better accuracy on event-
event classification by D’Souza and Ng (2013) and
a better performance on event-timex pairs by our
system. Probably, the hybrid system by D’Souza
and Ng, which integrates supervised classification
and manual rules, performs better on event-event
classification because it is a more complex task
than event-timex classification, where simple lex-
ical and syntactic features are still very effective.
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event-event event-timex
Feature Accuracy Feature Accuracy
majority class 22.17% - majority class 36.42% -
string 31.07% - string 58.27% -

+grammatical 36.15% 5.08% +grammatical 61.30% 3.03%
+textual context 39.44% 3.29% +textual context 61.71% 0.41%
+tense 41.10% 1.66% +tense 63.10% 1.39%
+aspect 41.10% 0.00% +aspect 64.51% 1.41%
+class 39.96% -1.14% +class 65.30% 0.79%
+polarity 40.44% 0.48% +polarity 64.88% -0.42%
+same tense 40.55% 0.11% +dct 65.21% 0.33%
+same aspect 40.63% 0.08% +type 64.99% -0.22%
+same class 40.63% 0.00% +value 64.60% -0.39%
+same polarity 40.47% -0.16%
+ dependency 42.15% 1.68% +dependecy 65.60% 1.00%
+dependency order 41.99% -0.16% +dependency order 65.47% -0.13%
+dependency is root 42.63% 0.64% +dependency is root 65.22% -0.25%
+temporal signal 42.66% 0.03% +temporal signal 65.43% 0.21%
+temporal discourse 42.82% 0.16%
+duration 41.47% -1.35% +duration 64.19% -1.24%

Table 3: Feature contributions for event-event and event-timex classification. Features in italics have a
negative impact on accuracy and are not included in the final feature set.

5 Evaluation

We perform two types of evaluation. In the first
one, we evaluate the system performance with the
best feature sets and the best parameter configu-
ration using the four training sets presented in Ta-
ble 2. Our test set is the TempEval-3-platinum cor-
pus. The goal of this first evaluation is to specifi-
cally investigate the effect of enriching the training
data with inverse relations and transitive closure.
We compute the system accuracy as the percent-
age of the correct labels out of all annotated links.

In the second evaluation, we compare our sys-
tem to the systems participating in the task on tem-
poral relation classification at TempEval-3. The
test set is again TempEval-3-platinum, i.e. the
same one used in the competition. The task or-
ganizers introduced an evaluation metric (UzZa-
man and Allen, 2011a) capturing temporal aware-
ness in terms of precision, recall and F1-score. To
compute precision and recall, they verify the cor-
rectness of annotated temporal links using tempo-
ral closure, by checking the existence of the iden-
tified relations in the closure graph. In order to
replicate this type of evaluation, we use the scorer
made available to the task participants.

5.1 Evaluation of the Effects of Inverse
Relations and Transitive Closure

Table 4 shows the classifiers’ accuracies achieved
using different training sets. After performing a
randomization test between the best performing
classifier and the others, we notice that on event-

event classification the improvement is significant
(p < 0.005) only between TBAQ and TimeBank.
This shows that only extending the TimeBank cor-
pus by adding AQUAINT is beneficial. In all other
cases, the differences are not significant. Applying
inverse relations and transitive closure extends the
number of training instances but makes the dataset
more unbalanced, thus it does not result in a sig-
nificant improvement.

Training data event-event event-timex
TimeBank 42.61% 71.92%

TBAQ 48.28% 73.82%
TBAQ-I 47.77% 74.45%

TBAQ-IC 46.39% 74.45%

Table 4: Classifier accuracies with different train-
ing data

This result is in contrast with the improvement
brought about by temporal closure reported in
Mani et al. (2006). The difference between our
approach and Mani et al.’s is that (i) we apply only
the transitive closure instead of the full temporal
one, and (ii) our classification task includes 14 re-
lations, while the other authors classify 6 relations.
In our future work, we will investigate whether the
benefits of closure are affected by the number of
relations, or whether our simplified version is ac-
tually outperformed by the full one.

Furthermore, we plan to investigate the effect of
over-sampling to handle highly skewed datasets,
for instance by applying inverse relations and tran-
sitive closure only to minority classes.
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5.2 Evaluation of the System Performance in
TempEval-3 task

We train our classifiers for event-event pairs and
event-timex pairs by exploiting the best feature
combination and best configuration acquired from
the experiment, and using the best reported dataset
for each classifier as the training data. Even
though it has been shown that inverse relations and
transitive closure do not bring significantly posi-
tive impact to the accuracy, using the TBAQ-IC
corpus as the training set for event-timex classifi-
cation is still the best option. The two classifiers
are part of a temporal classification system called
TRelPro.

We compare in Table 5 the performance of
TRelPro to the other systems participating in
Tempeval-3 task, according to the figures reported
in (UzZaman et al., 2013). TRelPro is the best per-
forming system both in terms of precision and of
recall.

System F1 Precision Recall
TRelPro 58.48% 58.80% 58.17%
UTTime-1, 4 56.45% 55.58% 57.35%
UTTime-3, 5 54.70% 53.85% 55.58%
UTTime-2 54.26% 53.20% 55.36%
NavyTime-1 46.83% 46.59% 47.07%
NavyTime-2 43.92% 43.65% 44.20%
JU-CSE 34.77% 35.07% 34.48%

Table 5: Tempeval-3 evaluation on temporal rela-
tion classification

In order to analyze which are the most com-
mon errors made by TRelPro, we report in Table 6
the number of true positives (tp), false positives
(fp) and false negatives (fn) scored by the system
on each temporal relation. The system generally
fails to recognize IBEFORE, BEGINS, ENDS and
DURING relations, along with their inverse rela-
tions, primarily because of the skewed distribution
of instances in the training data, especially in com-
parison with the majority classes. This explains
also the large number of false positives labelled for
the BEFORE class (event-event pairs) and for the
IS INCLUDED class (event-timex pairs), which
are the majority classes for the two pairs respec-
tively.

6 Conclusion

We have described an approach to temporal link
labelling using simple features based on lexico-
syntactic information, as well as external lexical
resources listing temporal signals and event dura-

Relation event-event event-timex
tp fp fn tp fp fn

BEFORE 186 186 40 82 17 14
AFTER 63 40 104 14 7 15
IBEFORE 0 0 1 0 0 5
IAFTER 0 0 2 0 0 6
BEGINS 0 0 0 0 0 1
BEGUN BY 0 0 0 0 0 1
ENDS 0 0 1 0 0 2
ENDED BY 1 1 0 0 0 2
DURING 0 0 1 0 2 1
DURING INV 0 0 0 0 0 1
INCLUDES 1 2 39 27 13 15
IS INCLUDED 2 4 45 114 40 11
SIMULTANEOUS 20 33 61 0 0 6
IDENTITY 9 35 6 0 1 0

Table 6: Relation type distribution for TempEval-
3-platinum test data, annotated with TRelPro. The
tp fields indicate the numbers of correctly anno-
tated instances, while the fp/fn fields correspond
to false positives/negatives.

tions. We find that by using a simple feature set we
can build a system that outperforms the systems
built using more sophisticated features, based on
semantic role labelling and deep semantic parsing.
This may depend on the fact that more complex
features are usually extracted from the output of
NLP systems, whose performance impacts on the
quality of such features.

We find that bootstrapping the training data with
inverse relations and transitive closure does not
help improving the classifiers’ performances sig-
nificantly as it was reported in previous works, es-
pecially in event-event classification where the ac-
curacy decreases instead. In the future, we will
further investigate the reason of this difference.
We will also explore other variants of closure, as
well as over-sampling techniques to handle the
highly skewed dataset introduced by closure.

Finally, the overall performance of our system,
using the best models for both event-event and
event-timex classification, outperforms the other
systems participating in the TempEval-3 task. This
confirms our intuition that using simple features
and reducing the amount of complex semantic and
discourse information is a valuable alternative to
more sophisticated approaches.
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