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Abstract

In this paper, we present a formalization

of grammatical role labeling within the

framework of Integer Linear Programming

(ILP). We focus on the integration of sub-

categorization information into the deci-

sion making process. We present a first

empirical evaluation that achieves compet-

itive precision and recall rates.

1 Introduction

An often stressed point is that the most widely

used classifiers such as Naive Bayes, HMM, and

Memory-based Learners are restricted to local de-

cisions only. With grammatical role labeling, for

example, there is no way to explicitly express

global constraints that, say, the verb “to give” must

have 3 arguments of a particular grammatical role.

Among the approaches to overcome this restric-

tion, i.e. that allow for global, theory based con-

straints, Integer Linear Programming (ILP) has

been applied to NLP (Punyakanok et al., 2004) .

We apply ILP to the problem of grammatical re-

lation labeling, i.e. given two chunks.1 (e.g. a

verb and a np), what is the grammatical relation

between them (if there is any). We have trained a

maximum entropy classifier on vectors with mor-

phological, syntactic and positional information.

Its output is utilized as weights to the ILP com-

ponent which generates equations to solve the fol-

lowing problem: Given subcategorization frames

(expressed in functional roles, e.g. subject), and

given a sentence with verbs,
�

(auxiliary, modal,

finite, non-finite, ..), and chunks, � ( ��� , ��� ), label

all pairs (
��� �	��
�� ��� � ) with a grammatical role2.

In this paper, we are pursuing two empirical sce-

narios. The first is to collapse all subcategoriza-

1Currently, we use perfect chunks, that is, chunks stem-
ming from automatically flattening a treebank.

2Most of these pairs do not stand in a proper grammatical
relation, they get a null class assignment.

tion frames of a verb into a single one, comprising

all subcategorized roles of the verb but not nec-

essarily forming a valid subcategorization frame

of that verb at all. For example, the verb “to be-

lieve” subcategorizes for a subject and a preposi-

tional complement (“He believes in magic”) or for

a subject and a clausal complement (“She believes

that he is dreaming”), but there is no frame that

combines a subject, a prepositional object and a

clausal object. Nevertheless, the set of valid gram-

matical roles of a verb can serve as a filter operat-

ing upon the output of a statistical classifier. The

typical errors being made by classifiers with only

local decisions are: a constituent is assigned to a

grammatical role more than once and a grammat-

ical role (e.g. of a verb) is instantiated more than

once. The worst example in our tests was a verb

that receives from the maxent classifier two sub-

jects and three clausal objects. Here, such a role

filter will help to improve the results.

The second setting is to provide ILP with the

correct subcategorization frame of the verb. The

results of such an oracle setting define the upper

bound of the performance our ILP approach can

achieve. Future work will be to let ILP find the

optimal subcategorization frame given all frames

of a verb.

2 The ILP Specification

Integer Linear Programming (ILP) is the name of

a class of constraint satisfaction algorithms which

are restricted to a numerical representation of the

problem to be solved. The objective is to optimize

(minimize or maximize) the numerical solution of

linear equations (see the objective function in Fig.

1). The general form of an ILP specification is

given in Fig. 1 (here: maximization). The goal is

to maximize a � -ary function  , which is defined

as the sum of the variables ������� .
Assignment decisions (e.g. grammatical role la-

beling) can be modeled in the following way: ���
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Objective Function:�����  � ������	�	�	
� � � ���� ��� ������	�	�	�� � � � �
Constraints:

� ��� ����� � ��� ������	�	�	�� � � � � �
��
���  

!#"
$&% �'�

( �)���	�	�	*�,+
��� are variables, ��� , % � and � �.- are constants.

Figure 1: ILP Specification

are binary class variables that indicate the (non-)

assignment of a constituent / � to the grammatical

function 0 - (e.g. subject) of a verb 132 . To rep-

resent this, three indices are needed. Thus, � is

a complex variable name, e.g. 0 �.- 2 . For the sake

of readability, we add some mnemotechnical sugar

and use 0 �415-
/62 instead or 7�1
-�/82 for a constituent/82 being (or not) the subject 7 of verb 1�- ( 7 thus

is an instantiation of 0 � ) . If the value of such

a class variable 0 � 1 - /82 is set to 1 in the course

of the maximization task, the attachment was suc-

cessful, otherwise ( 0 �915-�/82:<; ) it failed. ��� from

Fig. 1 are weights that represent the impact of an

assignment (or a constraint); they provide an em-

pirically based numerical justification of the as-

signment (we don”t need the � �=- ). For example,

we represent the impact of 0��91�-5/62 =1 by >@?BADCFEHGJI .
These weights are derived from a maximum en-

tropy model trained on a treebank (see section 5).% is used to set up numerical constraints. For ex-

ample that a constituent can only be the filler of

one grammatical role. The decision, which of the

class variables are to be “on” or “off” is based on

the weights and the constraints an overall solution

must obey to. ILP seeks to optimize the solution.

3 Formalization

We restrict our formalization to the following set

of grammatical functions: subject ( 7 ), direct (i.e.

accusative) object ( K ), indirect (i.e. dative) object

(L ), clausal complement ( � ), prepositional com-

plement ( M ), attributive (np or pp) attachment ( N )

and adjunct ( O ). The set of grammatical relations

of a verb (verb complements) is denoted with 0 , it

comprises 7 , K , L , � and M .

The objective function is:+ �QP �ROS�TN<�VUW� � (1)

O represents the weighted sum of all adjunct at-

tachments. N is the weighted sum of all attributiveXYX
(“the book in her hand ..”) and genitive Z X

attachments (“die Frau des [H\ � Professors [#\ � ” [the

wife of the professor]). U represents the weighted

sum of all unassigned objects.3
�

is the weighted

sum of the case frame instantiations of all verbs in

the sentence. It is defined as follows:

� �] C \'^`_Fa ]b
�

b?dc�egf A ]
GJh ��aJijaJk ]b - l ?mC,AjGjEonp0q1 �r/`- (2)

This sums up over all verbs. For each verb,

each grammatical role ( stC`A is the set of such

roles) is instantiated from the stock of all con-

stituents ( /8u �wv
x`v5y , which includes all np and pp

constituents but also the verbs as potential heads

of clausal objects). 0q1��r/,- is a variable that in-

dicates the assignment of a constituent / - to the

grammatical function 0 of verb 1 � . l ?mC,AjGjE is the

weight of such an assignment. The (binary) value

of each 0q1 �r/,- is to be determined in the course

of the constraint satisfaction process, the weight is

taken from the maximum entropy model.N is the function for weighted attributive attach-

ments:

Nz�] GFh ��aFija ]b
�

] GFh ��aJija ]b-�{ �F|} -6~ >d�wGFA�GjEpnpN�/ �9/`- (3)

where >���GFAjGjE is the weight of an assignment

of constituent /�- to constituent / � and N:/ �r/,- is a

binary variable indicating the classification deci-

sion whether /�- actually modifies / � . In contrast to/8u �wv5x,v y , /8u �wv5x,v does not include verbs.

The function for weighted adjunct attachments,O , is:

O��] GFh ��aJija�� ]b - ] C \J^,_Fa ]b
�

>d� C,A�GjE npO�1 � / - (4)

where /8u �wv
x,v�� is the set of
XYX

constituents of

the sentence. > � C,AjG4E is the weight given to a clas-

sification of a
XYX

as an adjunct of a clause with 1��
as verbal head.

The function for the weighted assignment to the

null class, U , is:

U��] GJh ��aJija k ]b
� l GFABnwU:/ � (5)

This represents the impact of assigning a con-

stituent neither to a verb (as a complement) nor

3Not every set of chunks can form a valid dependency tree
- � introduces robustness.
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to another constituent (as an attributive modifier).UY/ �  ) means that the constituent / � has got no

head (e.g. a finite verb as part of a sentential co-

ordination), although it might be the head of other/,- .
The equations from 1 to 5 are devoted to the

maximization task, i.e. which constituent is at-

tached to which grammatical function and with

which impact. Of course, without any further re-

strictions, every constituent would get assigned to

every grammatical role - because there are no co-

occurrence restrictions. Exactly this would lead to

a maximal sum. In order to assure a valid distribu-

tion, restrictions have to be formulated, e.g. that a

grammatical role can have at most one filler object

and that a constituent can be at most the filler of

one grammatical role.

4 Constraints

A constituent / - must either be bound as an at-

tribute, an adjunct, a verb complement or by the

null class. This is to say that all class variables

with /�- sum up to exactly 1; /�- then is consumed.

UY/,-*� b
�
b ? 0q1 ��/,-*� b

�
N�/ �9/`-�� b

�
O�1 �9/,-qS)�� ���

(6)

Here,
�

is an index over all constituents and 0 is

one of the grammatical roles of verb 1 � ( 0�� sqC,A ).
No two constituents can be attached to each

other symmetrically (being head and modifier of

each other at the same time), i.e. N (among oth-

ers) is defined to be asymmetric.N�/ �9/,-p�TN:/,-5/ � � )�� ��� � ( (7)

Finally, we must restrict the number of filler

objects a grammatical role can have. Here, we

have to distinguish among our two settings. In

setting one (all case roles of all frames of a verb

are collapsed into a single set of case roles), we

can’t require all grammatical roles to be instanti-

ated (since we have an artificial case frame, not

necessarily a proper one). This is expressed as � )
in equation 8.GFh ��aJija kb - 0q1 ��/,- � )�� � ( �H0�� sqC,A (8)

In setting two (the actual case frame is given),

we require that every grammatical role 0 of the

verb 1 � ( 0�� sqC,A ) must be instantiated exactly

once: GFh ��aJija kb - 0q1 ��/,- �)�� � ( �H0�� sqC,A (9)

5 The Weighting Scheme

A maximum entropy model was used to fix a prob-

ability model that serves as the basis for the ILP

weights. The model was trained on the Tiger tree-

bank (Brants et al., 2002) with feature vectors

stemming from the following set of features: the

part of speech tags of the two candidate chunks,

the distance between them in phrases, the number

of verbs between them, the number of punctuation

marks between them, the person, case and num-

ber of the candidates, their heads, the direction of

the attachment (left or right) and a passive/active

voice flag.

The output of the maxent model is for each pair

of chunks (represented by their feature vectors) a

probability vector. Each entry in this probability

vector represents the probability (used as a weight)

that the two chunks are in a particular grammat-

ical relation (including the “non-grammatical re-

lation”, ZV0ts ) . For example, the weight for an

adjunct assignment, > � C	�JG�
 , of two chunks 1g) (a

verb) and /� (a ��� or a ��� ) is given by the cor-

responding entry in the probability vector of the

maximum entropy model. The vector also pro-

vides values for a subject assignment of these two

chunks etc.

6 Empirical Results

The overall precision of the maximum entropy

classifier is 87.46%. Since candidate pairs are

generated almost without restrictions, most pairs

do not realize a proper grammatical relation. In

the training set these examples are labeled with

the non-grammatical relation label Z 0 s (which

is the basis of ILPs null class U ). Since maximum

entropy modeling seeks to sharpen the classifier

with respect to the most prominent class, Z 0 s
gets a strong bias. So things are getting worse, if

we focus on the proper grammatical relations. The

precision then is low, namely 62.73%, the recall is

85.76%, the f-measure is 72.46 %. ILP improves

the precision by almost 20% (in the “all frames in

one setting” the precision is 81.31%).

We trained on 40,000 sentences, which gives

about 700,000 vectors (90% training, 10% test, in-

cluding negative and positive pairings). Our first

experiment was devoted to fix an upper bound for

the ILP approach: we selected from the set of sub-

categorization frames of a verb the correct one (ac-

cording to the gold standard). The set of licenced

grammatical relations then is reduced to the cor-
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rect subcategorized GR and the non-governable

GR O (adjunct) and N (attribute). The results are

given in Fig. 2 under F GFh ^`^ (cf. section 3 for GR

shortcuts, e.g. 7 for subject).

F GFh ^`^ F GFh����
Prec Rec F-Mea Prec Rec F-Mea7 91.4 86.1 88.7 89.8 85.7 87.7K 90.4 83.3 86.7 78.6 79.7 79.1L 88.5 76.9 82.3 73.5 62.1 67.3M 79.3 73.7 76.4 75.6 43.6 55.9

� 98.6 94.1 96.3 82.9 96.6 89.3O 76.7 75.6 76.1 74.2 78.9 76.5N 75.7 76.9 76.3 73.6 79.9 76.7

Figure 2: Correct Frame and Collapsed Frames

The results of the governable GR ( 7 down to

� ) are quite good, only the results for preposi-

tional complements ( M ) are low (the f-measure is

76.4%). From the 36509 grammatical relations,

37173 were found and 31680 were correct. Over-

all precision is 85.23%, recall is 86.77% and the

f-measure is 85.99%. The most dominant error

being made here is the coherent but wrong assign-

ment of constituents to grammatical roles (e.g. the

subject is taken to be object). This is not a prob-

lem with ILP or the subcategorization frames, but

one of the statistical model (and the feature vec-

tors). It does not discriminate well among alter-

natives. Any improvement of the statistical model

will push the precision of ILP.

The results of the second setting, i.e. to collapse

all grammatical roles of the verb frames to a sin-

gle role set (cf. Fig. 2, F GFh���� ), are astonishingly

good. The f-measures comes close to the results

of (Buchholz, 1999). Overall precision is 79.99%,

recall 82.67% and f-measure is 81.31%. As ex-

pected, the values of the governable GR decrease

(e.g. recall for prepositional objects by 30.1%).

The third setting will be to let ILP choose

among all subcategorization frames of a verb

(there are up to 20 frames per verb). First experi-

ments have shown that the results are between the
� GFh ^ ^ and

� GFh���� results. The question then is, how

close can we come to the
� GJh ^`^ upper bound.

7 Related Work

ILP has been applied to various NLP problems,

including semantic role labeling (Punyakanok et

al., 2004), extraction of predicates from parse trees

(Klenner, 2005) and discourse ordering in genera-

tion (Althaus et al., 2004). (Roth and Yih, 2005)

discuss how to utilize ILP with Conditional Ran-

dom Fields.

Grammatical relation labeling has been coped

with in a couple of articles, e.g. (Buchholz,

1999). There, a cascaded model (of classifiers)

has been proposed (using various tools around

TIMBL). The f-measure (perfect test data) was

83.5%. However, the set of grammatical relations

differs from the one we use, which makes it diffi-

cult to compare the results.

8 Conclusion and Future Work

In this paper, we argue for the integration of top

down (theory based) information into NLP. One

kind of information that is well known but have

been used only in a data driven manner within

statistical approaches (e.g. the Collins parser) is

subcategorization information (or case frames). If

subcategorization information turns out to be use-

ful at all, it might become so only under the strict

control of a global constraint mechanism. We are

currently testing an ILP formalization where all

subcategorization frames of a verb are competing

with each other. The benefits will be to have the in-

stantiation not only of licensed grammatical roles

of a verb, but of a consistent and coherent instan-

tiation of a single case frame.
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