
XMG - An expressive formalism for describing tree-based grammars

Yannick Parmentier

INRIA / LORIA

Université Henri Poincaré

615, Rue du Jardin Botanique

54 600 Villers-Les-Nancy

France

parmenti@loria.fr

Joseph Le Roux

LORIA

Institut National

Polytechnique de Lorraine

615, Rue du Jardin Botanique

54 600 Villers-Les-Nancy

France

leroux@loria.fr

Benoı̂t Crabbé

HCRC / ICCS

University of Edinburgh

2 Buccleuch Place

EH8 9LW,

Edinburgh, Scotland

bcrabbe@inf.ed.ac.uk

Abstract

In this paper1 we introduce eXtensible

MetaGrammar, a system that facilitates

the development of tree based grammars.

This system includes both (1) a formal lan-

guage adapted to the description of lin-

guistic information and (2) a compiler for

this language. It applies techniques of

logic programming (e.g. Warren’s Ab-

stract Machine), thus providing an effi-

cient and theoretically motivated frame-

work for the processing of linguistic meta-

descriptions.

1 Introduction

It is well known that grammar engineering is a

complex task and that factorizing grammar in-

formation is crucial for the rapid development,

the maintenance and the debugging of large scale

grammars. While much work has been deployed

into producing such factorizing environments for

standard unification grammars, less attention has

been paid to the issue of developing such environ-

ments for “tree based grammars” that is, grammars

like Tree Adjoining Grammars (TAG) or Tree De-

scription Grammars where the basic unit of infor-

mation is a tree rather than a category encoded in

a feature structure.

For these grammars, two trends have emerged

to automatize tree-based grammar production:

systems based on lexical rules (see (Becker,

2000)) and systems based on combination of

classes (also called metagrammar systems, see

(Candito, 1999), (Gaiffe et al., 2002)).

1We are grateful to Claire Gardent for useful comments
on this work. This work is partially supported by an INRIA
grant.

In this paper, we present a metagrammar system

for tree-based grammars which differs from com-

parable existing approaches both linguistically and

computationally.

Linguistically, the formalism we introduce is

both expressive and extensible. In particularly, we

show that it supports the description and factor-

ization both of trees and of tree descriptions; that

it allows the synchronized description of several

linguistic dimensions (e.g., syntax and semantics)

and that it includes a sophisticated treatment of

the interaction between inheritance and identifier

naming.

Computationally, the production of a grammar

from a metagrammar is handled using power-

ful and well-understood logic programming tech-

niques. A metagrammar is viewed as an extended

definite clause grammar and compiled using a vir-

tual machine closely resembling the Warren’s Ab-

stract Machine. The generation of the trees satisfy-

ing a given tree description is furthermore handled

using a tree description solver.

The paper is structured as follows. We begin

(section 2) by introducing the linguistic formal-

ism used for describing and factorizing tree based

grammars. We then sketch the logic program-

ming techniques used by the metagrammar com-

piler (section 3). Section 4 presents some evalu-

ation results concerning the use of the system for

implementing different types of tree based gram-

mars. Section 5 concludes with pointers for fur-

ther research and improvements.

2 Linguistic formalism

As mentioned above, the XMG system produces a

grammar from a linguistic meta-description called

a metagrammar. This description is specified us-

ing the XMG metagrammar formalism which sup-

103

ports three main features:

1. the reuse of tree fragments

2. the specialization of fragments via in-

heritance

3. the combination of fragments by

means of conjunctions and disjunctions

These features reflect the idea that a metagrammar

should allow the description of two main axes: (i)

the specification of elementary pieces of informa-

tion (fragments), and (ii) the combination of these

to represent alternative syntactic structures.

Describing syntax In a tree-based metagram-

mar, the basic informational units to be handled

are tree fragments. In the XMG formalism, these

units are put into classes. A class associates a

name with a content. At the syntactic level, a con-

tent is a tree description2 . The tree descriptions

supported by the XMG formalism are defined by

the following tree description language:

Description ::= x → y | x →+ y | x →∗ y |
x ≺ y | x ≺+ y | x ≺∗ y |
x[f :E] (1)

where x, y represent node variables, → immediate

dominance (x is directly above y), →+ strict dom-

inance (x is above y), →∗ large dominance (x is

above or equal to y), ≺ is immediate precedence,

≺+ strict precedence, and ≺∗ large precedence3 .

x[f :E] constrains feature f with associated ex-

pression E on node x (a feature can for instance

refer to the syntactic category of the node)4.

Tree fragments can furthermore be combined

using conjunction and/or disjunction. These

two operators allow the metagrammar designer to

achieve a high degree of factorization. Moreover

the XMG system also supports inheritance be-

tween classes, thus offering more flexibility and

structure sharing by allowing one to reuse and

specialize classes.

Identifiers’ scope When describing a broad-

coverage grammar, dealing with identifiers scope

is a non-trivial issue.

In previous approaches to metagrammar com-

pilation ((Candito, 1999), (Gaiffe et al., 2002)),

2As we shall later see, a content can in fact be multi-
dimensional and integrate for instance both semantic and syn-
tax/semantics interface information.

3We call strict the transitive closure of a relation and large
the reflexive and transitive one.

4
E is an expression, so it can be a feature structure: that’s

how top and bottom are encoded in TAG.

node identifiers had global scope. When design-

ing broad-coverage metagrammars however, such

a strategy quickly reduces modularity and com-

plexifies grammar maintenance. To start with, the

grammar writer must remember each node name

and its interpretation and in a large coverage gram-

mar the number of these node names amounts to

several hundreds. Further it is easy to use twice

the same name erroneously or on the contrary, to

mistype a name identifier, in both cases introduc-

ing errors in the metagrammar

In XMG, identifiers are local to a class and can

thus be reused freely. Global and semi-global (i.e.,

global to a subbranch in the inheritance hierar-

chy) naming is also supported however through a

system of import / export inspired from Object

Oriented Programming. When defining a class as

being a sub-class of another one, the XMG user

can specify which are the viewable identifiers (i.e.

which identifiers have been exported in the super-

class).

Extension to semantics The XMG formalism

further supports the integration in the grammar of

semantic information. More generally, the lan-

guage manages dimensions of descriptions so that

the content of a class can consists of several ele-

ments belonging to different dimensions. Each di-

mension is then processed differently according to

the output that is expected (trees, set of predicates,

etc).

Currently, XMG includes a semantic represen-

tation language based on Flat Semantics (see (Gar-

dent and Kallmeyer, 2003)):

Description ::= `:p(E1, ..., En) |
¬`:p(E1, ..., En) | Ei � Ej (2)

where `:p(E1, ..., En) represents the predicate p

with parameters E1, .., En, and labeled `. ¬ is the

logical negation, and Ei � Ej is the scope be-

tween Ei and Ej (used to deal with quantifiers).

Thus, one can write classes whose content con-

sists of tree description and/or of semantic formu-

las. The XMG formalism furthermore supports the

sharing of identifiers across dimension hence al-

lowing for a straightforward encoding of the syn-

tax/semantics interface (see figure 1).

3 Compiling a MetaGrammar into a

Grammar

We now focus on the compilation process and on

the constraint logic programming techniques we

104

Figure 1: Tree with syntax/semantics interface

draw upon.

As we have seen, an XMG metagrammar con-

sists of classes that are combined. Provided these

classes can be referred to by means of names, we

can view a class as a Clause associating a name

with a content or Goal to borrow vocabulary from

Logic Programming. In XMG, this Goal will be

either a tree Description, a semantic Description,

a Name (class call) or a combination of classes

(conjunction or disjunction). Finally, the valua-

tion of a specific class can be seen as being trig-

gered by a query.

Clause ::= Name → Goal (3)

Goal ::= Description | Name

| Goal ∨ Goal | Goal ∧ Goal (4)

Query ::= Name (5)

In other words, we view our metagrammar lan-

guage as a specific kind of Logic Program namely,

a Definite Clause Grammar (or DCG). In this

DCG, the terminal symbols are descriptions.

To extend the approach to the representation of

semantic information as introduced in 2, clause (4)

is modified as follows:

Goal ::= Dimension+=Description |
Name |
Goal ∨ Goal | Goal ∧ Goal

Note that, with this modification, the XMG lan-

guage no longer correspond to a Definite Clause

Grammar but to an Extended Definite Clause

Grammar (see (Van Roy, 1990)) where the sym-

bol += represents the accumulation of information

for each dimension.

Virtual Machine The evaluation of a query is

done by a specific Virtual Machine inspired by

the Warren’s Abstract Machine (see (Ait-Kaci,

1991)). First, it computes the derivations con-

tained in the description, i.e. in the Extended Def-

inite Clause Grammar, and secondly it performs

unification of non standard data-types (nodes,

node features for TAG). Eventually it produces

as an output a description, more precisely one de-

scription per dimension (syntax, semantics).

In the case of TAG, the virtual machine produces

a tree description. We still need to solve this de-

scription in order to obtain trees (i.e. the items of

the resulting grammar).

Constraint-based tree description solver The

tree description solver we use is inspired by

(Duchier and Niehren, 2000). The idea is to:

1. associate to each node x in the description an

integer,

2. then refer to x by means of the tuple

(Eqx, Upx, Downx, Leftx, Rightx) where Eqx

(respectively Upx, Downx, Leftx, Rightx) de-

notes the set of nodes in the description which

are equal, (respectively above, below, left, and

right) of x (see picture 2). Note that these sets

are set of integers.

Eq

Up

Down

Left

Right

Figure 2: node regions

The operations supported by the XMG language

(i.e. dominance, precedence, etc) are then con-

verted into constraints on these sets. For instance,

let us consider 2 nodes x and y of the description.

Assuming we associate x with the integer i and

y with j, we can translate the dominance relation

x → y the following way5:

N i → N j ≡ [N i
EqUp ⊆ N

j
Up ∧

N i
Down ⊇ N

j
EqDown ∧

N i
Left ⊆ N

j
Left ∧

N i
Right ⊆ N

j
Right]

This means that if x dominates y, then in a model,

(1) the set of integers representing nodes that are

equal or above x is included in the set of inte-

gers representing nodes that are strictly above y,

5
N

i
EqUp corresponds to the disjoint union of N

i
Eq and

N
i
Up, similarly for N

j

EqDown with N
i
Eq and N

i
Down.

105

(2) the dual holds, i.e. the set of integers repre-

senting nodes that are below x contains the set of

integers representing nodes that are equal or be-

low y, (3) the set of integers representing nodes

that are on the left of x is included in the set of

integers representing those on the left of y, and (4)

symmetrically for the nodes on the right6.

Parameterized constraint solver To recap 3

from a grammar-designer’s point of view, a

queried class needs not define complete trees but

rather a set of tree descriptions. The solver is then

called to generate all the matching valid minimal

trees from those descriptions. This feature pro-

vides the users with a way to concentrate on what

is relevant in the grammar, thus taking advantage

of underspecification, and to delegate the tiresome

work to the solver.

Actually, the solver can be parameterized to per-

form various checks or constraints on the tree de-

scriptions besides tree-shaping them. These pa-

rameters are called principles in the XMG termi-

nology. Some are specific to a target formalism

(e.g. TAG trees must have at most one foot node)

while others are independent. The most interesting

one is a resources/needs mechanism for node uni-

fication called color principle, see (Crabb´e and

Duchier, 2004).

At the end of this tree description solving pro-

cess we obtain the trees of the grammar. Note that

the use of constraint programming techniques to

solve tree descriptions allows us to compute gram-

mars faster than the previous approaches (see sec-

tion 4).

4 Evaluation

The XMG system has been successfully used by

linguists to develop a core TAG for French contain-

ing more than 6.000 trees. This grammar has been

evaluated on the TSNLP test-suite, with a cover-

age rate of 75 % (see (Crabb´e, 2005)). The meta-

grammar used to produce that grammar consists of

290 classes and is compiled by the XMG system

in about 16 minutes with a Pentium 4, 2.6 GHz

and 1 GB of RAM.7

XMG has also been used to produce a core

size Interaction Grammar for French (see (Perrier,

2003)).

6See (Duchier and Niehren, 2000) for details .
7Because this metagrammar is highly unspecifi ed, con-

straint solving takes about 12 min. Of course, subsets of the
grammar may be rebuilt separately.

Finally, XMG is currently used to develop a

TAG that includes a semantic dimension along the

line described in (Gardent and Kallmeyer, 2003).

5 Conclusion and Future Work

We have presented a system, XMG8, for produc-

ing broad-coverage grammars, system that offers

an expressive description language along with an

efficient compiler taking advantages from logic

and constraint programming techniques.

Besides, we aim at extending XMG to a generic

tool. That is to say, we now would like to obtain

a compiler which would propose a library of lan-

guages (each associated with a specific process-

ing) that the user would load dynamically accord-

ing to his/her target formalism (not only tree-based

formalisms, but others such as HPSG or LFG).

References

H. Ait-Kaci. 1991. Warren’s abstract machine: A tu-
torial reconstruction. In Proc. of the Eighth Interna-
tional Conference of Logic Programming.

T. Becker. 2000. Patterns in metarules. In A. Abeille
and O. Rambow, editors, Tree Adjoining Grammars:
formal, computational and linguistic aspects. CSLI
publications, Stanford.

M.H. Candito. 1999. Représentation modulaire
et paramétrable de grammaires électroniques lex-
icalisées : application au français et à l’italien.
Ph.D. thesis, Universit´e Paris 7.

B. Crabb´e and D. Duchier. 2004. Metagrammar redux.
In CSLP 2004, Copenhagen.

B. Crabb´e. 2005. Repŕesentation informatique de
grammaires fortement lexicalisées : Application à
la grammaire d’arbres adjoints. Ph.D. thesis, Uni-
versit´e Nancy 2.

D. Duchier and J. Niehren. 2000. Dominance
constraints with set operators. In Proceedings of
CL2000.

B. Gaiffe, B. Crabb´e, and A. Roussanaly. 2002. A new
metagrammar compiler. In Proceedings of TAG+6.

C. Gardent and L. Kallmeyer. 2003. Semantic con-
struction in ftag. In Proceedings of EACL’03.

Guy Perrier. 2003. Les grammaires d’interaction.
HDR en informatique, Universit´e Nancy 2.

P. Van Roy. 1990. Extended dcg notation: A tool for
applicative programming in prolog. Technical re-
port, Technical Report UCB/CSD 90/583, Computer
Science Division, UC Berkeley.

8XMG is freely available at http://sourcesup.

cru.fr/xmg .

106

