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Abstract

We propose models for semantic orienta-

tions of phrases as well as classification

methods based on the models. Although

each phrase consists of multiple words, the

semantic orientation of the phrase is not a

mere sum of the orientations of the com-

ponent words. Some words can invert the

orientation. In order to capture the prop-

erty of such phrases, we introduce latent

variables into the models. Through exper-

iments, we show that the proposed latent

variable models work well in the classifi-

cation of semantic orientations of phrases

and achieved nearly 82% classification ac-

curacy.

1 Introduction

Technology for affect analysis of texts has recently

gained attention in both academic and industrial

areas. It can be applied to, for example, a survey

of new products or a questionnaire analysis. Au-

tomatic sentiment analysis enables a fast and com-

prehensive investigation.

The most fundamental step for sentiment anal-

ysis is to acquire the semantic orientations of

words: desirable or undesirable (positive or neg-

ative). For example, the word “beautiful” is pos-

itive, while the word “dirty” is negative. Many

researchers have developed several methods for

this purpose and obtained good results (Hatzi-

vassiloglou and McKeown, 1997; Turney and

Littman, 2003; Kamps et al., 2004; Takamura

et al., 2005; Kobayashi et al., 2001). One of

the next problems to be solved is to acquire se-

mantic orientations of phrases, or multi-term ex-

pressions. No computational model for semanti-

cally oriented phrases has been proposed so far al-

though some researchers have used techniques de-

veloped for single words. The purpose of this pa-

per is to propose computational models for phrases

with semantic orientations as well as classification

methods based on the models. Indeed the seman-

tic orientations of phrases depend on context just

as the semantic orientations of words do, but we

would like to obtain the most basic orientations of

phrases. We believe that we can use the obtained

basic orientations of phrases for affect analysis of

higher linguistic units such as sentences and doc-

uments.

The semantic orientation of a phrase is not a

mere sum of its component words. Semantic

orientations can emerge out of combinations of

non-oriented words. For example, “light laptop-

computer” is positively oriented although neither

“light” nor “laptop-computer” has a positive ori-

entation. Besides, some words can invert the ori-

entation of a neighboring word, such as “low”

in “low risk”, where the negative orientation of

“risk” is inverted to a “positive” by the adjective

“low”. This kind of non-compositional operation

has to be incorporated into the model. We focus

on “noun+adjective” in this paper, since this type

of phrase contains most of interesting properties

of phrases, such as emergence or inversion of se-

mantic orientations.

In order to capture the properties of semantic

orientations of phrases, we introduce latent vari-

ables into the models, where one random variable

corresponds to nouns and another random vari-

able corresponds to adjectives. The words that

are similar in terms of semantic orientations, such

as “risk” and “mortality” (i.e., the positive ori-

entation emerges when they are “low”), make a

cluster in these models. Our method is language-
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independent in the sense that it uses only cooccur-

rence data of words and semantic orientations.

2 Related Work

We briefly explain related work from two view-

points: the classification of word pairs and the

identification of semantic orientation.

2.1 Classification of Word Pairs

Torisawa (2001) used a probabilistic model to

identify the appropriate case for a pair of words

constituting a noun and a verb with the case of

the noun-verb pair unknown. Their model is the

same as Probabilistic Latent Semantic Indexing

(PLSI) (Hofmann, 2001), which is a generative

probability model of two random variables. Tori-

sawa’s method is similar to ours in that a latent

variable model is used for word pairs. How-

ever, Torisawa’s objective is different from ours.

In addition, we used not the original PLSI, but

its expanded version, which is more suitable for

this task of semantic orientation classification of

phrases.

Fujita et al. (2004) addressed the task of the de-

tection of incorrect case assignment in automat-

ically paraphrased sentences. They reduced the

task to a problem of classifying pairs of a verb

and a noun with a case into correct or incorrect.

They first obtained a latent semantic space with

PLSI and adopted the nearest-neighbors method,

in which they used latent variables as features. Fu-

jita et al.’s method is different from ours, and also

from Torisawa’s, in that a probabilistic model is

used for feature extraction.

2.2 Identification of Semantic Orientations

The semantic orientation classification of words

has been pursued by several researchers (Hatzi-

vassiloglou and McKeown, 1997; Turney and

Littman, 2003; Kamps et al., 2004; Takamura et

al., 2005). However, no computational model for

semantically oriented phrases has been proposed

to date although research for a similar purpose has

been proposed.

Some researchers used sequences of words as

features in document classification according to

semantic orientation. Pang et al. (2002) used bi-

grams. Matsumoto et al. (2005) used sequential

patterns and tree patterns. Although such patterns

were proved to be effective in document classi-

fication, the semantic orientations of the patterns

themselves are not considered.

Suzuki et al. (2006) used the Expectation-

Maximization algorithm and the naive bayes clas-

sifier to incorporate the unlabeled data in the clas-

sification of 3-term evaluative expressions. They

focused on the utilization of context information

such as neighboring words and emoticons. Tur-

ney (2002) applied an internet-based technique to

the semantic orientation classification of phrases,

which had originally been developed for word sen-

timent classification. In their method, the num-

ber of hits returned by a search-engine, with a

query consisting of a phrase and a seed word (e.g.,

“phrase NEAR good”) is used to determine the

orientation. Baron and Hirst (2004) extracted col-

locations with Xtract (Smadja, 1993) and classi-

fied the collocations using the orientations of the

words in the neighboring sentences. Their method

is similar to Turney’s in the sense that cooccur-

rence with seed words is used. The three methods

above are based on context information. In con-

trast, our method exploits the internal structure of

the semantic orientations of phrases.

Inui (2004) introduced an attribute plus/minus

for each word and proposed several rules that

determine the semantic orientations of phrases

on the basis of the plus/minus attribute val-

ues and the positive/negative attribute values of

the component words. For example, a rule

[negative+minus=positive] determines “low (mi-

nus) risk (negative)” to be positive. Wilson et

al. (2005) worked on phrase-level semantic orien-

tations. They introduced a polarity shifter, which

is almost equivalent to the plus/minus attribute

above. They manually created the list of polarity

shifters. The method that we propose in this paper

is an automatic version of Inui’s or Wilson et al.’s

idea, in the sense that the method automatically

creates word clusters and their polarity shifters.

3 Latent Variable Models for Semantic

Orientations of Phrases

As mentioned in the Introduction, the semantic

orientation of a phrase is not a mere sum of its

component words. If we know that “low risk” is

positive, and that “risk” and “mortality”, in some

sense, belong to the same semantic cluster, we can

infer that “low mortality” is also positive. There-

fore, we propose to use latent variable models to

extract such latent semantic clusters and to real-

ize an accurate classification of phrases (we focus
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Figure 1: Graphical representations:(a) PLSI, (b) naive bayes, (c) 3-PLSI, (d) triangle, (e) U-shaped;

Each node indicates a random variable. Arrows indicate statistical dependency between variables. N , A,

Z and C respectively correspond to nouns, adjectives, latent clusters and semantic orientations.

on two-term phrases in this paper). The models

adopted in this paper are also used for collabora-

tive filtering by Hofmann (2004).

With these models, the nouns (e.g., “risk” and

“mortality”) that become positive by reducing

their degree or amount would make a cluster. On

the other hand, the adjectives or verbs (e.g., “re-

duce” and “decrease”) that are related to reduction

would also make a cluster.

Figure 1 shows graphical representations of sta-

tistical dependencies of models with a latent vari-

able. N , A, Z and C respectively correspond to

nouns, adjectives, latent clusters and semantic ori-

entations. Figure 1-(a) is the PLSI model, which

cannot be used in this task due to the absence of

a variable for semantic orientations. Figure 1-(b)

is the naive bayes model, in which nouns and ad-

jectives are statistically independent of each other

given the semantic orientation. Figure 1-(c) is,

what we call, the 3-PLSI model, which is the 3-

observable variable version of the PLSI. We call

Figure 1-(d) the triangle model, since three of its

four variables make a triangle. We call Figure 1-

(e) the U-shaped model. In the triangle model and

the U-shaped model, adjectives directly influence

semantic orientations (rating categories) through

the probability P (c|az). While nouns and adjec-

tives are associated with the same set of clusters Z

in the 3-PLSI and the triangle models, only nouns

are clustered in the U-shaped model.

In the following, we construct a probability

model for the semantic orientations of phrases us-

ing each model of (b) to (e) in Figure 1. We ex-

plain in detail the triangle model and the U-shaped

model, which we will propose to use for this task.

3.1 Triangle Model

Suppose that a set D of tuples of noun n, adjective

a (predicate, generally) and the rating c is given :

D = {(n1, a1, c1), · · · , (n|D|, a|D|, c|D|)}, (1)

where c ∈ {−1, 0, 1}, for example. This can be

easily expanded to the case of c ∈ {1, · · · , 5}. Our

purpose is to predict the rating c for unknown pairs

of n and a.

According to Figure 1-(d), the generative prob-

ability of n, a, c, z is the following :

P (nacz) = P (z|n)P (a|z)P (c|az)P (n). (2)

Remember that for the original PLSI model,

P (naz) = P (z|n)P (a|z)P (n).
We use the Expectation-Maximization (EM) al-

gorithm (Dempster et al., 1977) to estimate the pa-

rameters of the model. According to the theory of

the EM algorithm, we can increase the likelihood

of the model with latent variables by iteratively in-

creasing the Q-function. The Q-function (i.e., the

expected log-likelihood of the joint probability of

complete data with respect to the conditional pos-

terior of the latent variable) is expressed as :

Q(θ) =
∑

nac

fnac

∑

z

P̄ (z|nac) log P (nazc|θ), (3)

where θ denotes the set of the new parameters.

fnac denotes the frequency of a tuple n, a, c in the

data. P̄ represents the posterior computed using

the current parameters.

The E-step (expectation step) corresponds to

simple posterior computation :

P̄ (z|nac) =
P (z|n)P (a|z)P (c|az)

∑

z
P (z|n)P (a|z)P (c|az)

. (4)

For derivation of update rules in the M-step (max-

imization step), we use a simple Lagrange method

for this optimization problem with constraints :

∀z,
∑

n
P (n|z) = 1, ∀z,

∑

a
P (a|z) = 1, and

∀a, z,
∑

c
P (c|az) = 1. We obtain the following

update rules :

P (z|n) =

∑

ac
fnacP̄ (z|nac)
∑

ac
fnac

, (5)
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P (y|z) =

∑

nc
fnacP̄ (z|nac)

∑

nac
fnacP̄ (z|nac)

, (6)

P (c|az) =

∑

n
fnacP̄ (z|nac)

∑

nc
fnacP̄ (z|nac)

. (7)

These steps are iteratively computed until conver-

gence. If the difference of the values of Q-function

before and after an iteration becomes smaller than

a threshold, we regard it as converged.

For classification of an unknown pair n, a, we

compare the values of

P (c|na) =

∑

z
P (z|n)P (a|z)P (c|az)

∑

cz
P (z|n)P (a|z)P (c|az)

. (8)

Then the rating category c that maximize P (c|na)
is selected.

3.2 U-shaped Model

We suppose that the conditional probability of c

and z given n and a is expressed as :

P (cz|na) = P (c|az)P (z|n). (9)

We compute parameters above using the EM al-

gorithm with the Q-function :

Q(θ) =
∑

nac

fnac

∑

z

P̄ (z|nac) log P (cz|na, θ).(10)

We obtain the following update rules :

E step

P̄ (z|nac) =
P (c|az)P (z|n)

∑

z
P (c|az)P (z|n)

, (11)

M step

P (c|az) =

∑

n
fnacP̄ (z|nac)

∑

nc
fnacP̄ (z|nac)

, (12)

P (z|n) =

∑

ac
fnacP̄ (z|nac)
∑

ac
fnac

. (13)

For classification, we use the formula :

P (c|na) =
∑

z

P (c|az)P (z|n). (14)

3.3 Other Models for Comparison

We will also test the 3-PLSI model corresponding

to Figure 1-(c).

In addition to the latent models, we test a base-

line classifier, which uses the posterior probabil-

ity :

P (c|na) ∝ P (n|c)P (a|c)P (c). (15)

This baseline model is equivalent to the 2-term

naive bayes classifier (Mitchell, 1997). The graph-

ical representation of the naive bayes model is (b)

in Figure 1. The parameters are estimated as :

P (n|c) =
1 + fnc

|N | + fc

, (16)

P (a|c) =
1 + fac

|A| + fc

, (17)

where |N | and |A| are the numbers of the words

for n and a, respectively.

Thus, we have four different models : naive

bayes (baseline), 3-PLSI, triangle, and U-shaped.

3.4 Discussions on the EM computation, the

Models and the Task

In the actual EM computation, we use the tem-

pered EM (Hofmann, 2001) instead of the stan-

dard EM explained above, because the tempered

EM can avoid an inaccurate estimation of the

model caused by “over-confidence” in computing

the posterior probabilities. The tempered EM can

be realized by a slight modification to the E-step,

which results in a new E-step :

P̄ (z|nac) =

(

P (c|az)P (z|n)
)β

∑

z

(

P (c|az)P (z|n)
)β

, (18)

for the U-shaped model, where β is a positive

hyper-parameter, called the inverse temperature.

The new E-steps for the other models are similarly

expressed.

Now we have two hyper-parameters : inverse

temperature β, and the number of possible val-

ues M of latent variables. We determine the

values of these hyper-parameters by splitting the

given training dataset into two datasets (the tempo-

rary training dataset 90% and the held-out dataset

10%), and by obtaining the classification accuracy

for the held-out dataset, which is yielded by the

classifier with the temporary training dataset.

We should also note that Z (or any variable)

should not have incoming arrows simultaneously

from N and A, because the model with such ar-

rows has P (z|na), which usually requires an ex-

cessively large memory.

To work with numerical scales of the rating

variable (i.e., the difference between c = −1 and

c = 1 should be larger than that of c = −1
and c = 0), Hofmann (2004) used also a Gaus-

sian distribution for P (c|az) in collaborative filter-

ing. However, we do not employ a Gaussian, be-

cause in our dataset, the number of rating classes is
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only 3, which is so small that a Gaussian distribu-

tion cannot be a good approximation of the actual

probability density function. We conducted pre-

liminary experiments with the model with Gaus-

sians, but failed to obtain good results. For other

datasets with more classes, Gaussians might be a

good model for P (c|az).

The task we address in this paper is somewhat

similar to the trigram prediction task, in the sense

that both are classification tasks given two words.

However, we should note the difference between

these two tasks. In our task, the actual answer

given two specific words are fixed as illustrated

by the fact ‘high+salary’ is always positive, while

the answer for the trigram prediction task is ran-

domly distributed. We are therefore interested in

the semantic orientations of unseen pairs of words,

while the main purpose of the trigram prediction

is accurately estimate the probability of (possibly

seen) word sequences.

In the proposed models, only the words that ap-

peared in the training dataset can be classified. An

attempt to deal with the unseen words is an in-

teresting task. For example, we could extend our

models to semi-supervised models by regarding C

as a partially observable variable. We could also

use distributional similarity of words (e.g., based

on window-size cooccurrence) to find an observed

word that is most similar to the given unseen word.

However, such methods would not work for the

semantic orientation classification, because those

methods are designed for simple cooccurrence and

cannot distinguish “survival-rate” from “infection-

rate”. In fact, the similarity-based method men-

tioned above failed to work efficiently in our pre-

liminary experiments. To solve the problem of un-

seen words, we would have to use other linguistic

resources such as a thesaurus or a dictionary.

4 Experiments

4.1 Experimental Settings

We extracted pairs of a noun (subject) and an ad-

jective (predicate), from Mainichi newspaper ar-

ticles (1995) written in Japanese, and annotated

the pairs with semantic orientation tags : positive,

neutral or negative. We thus obtained the labeled

dataset consisting of 12066 pair instances (7416

different pairs). The dataset contains 4459 neg-

ative instances, 4252 neutral instances, and 3355

positive instances. The number of distinct nouns is

4770 and the number of distinct adjectives is 384.

To check the inter-annotator agreement between

two annotators, we calculated κ statistics, which

was 0.640. This value is allowable, but not quite

high. However, positive-negative disagreement is

observed for only 0.7% of the data. In other words,

this statistics means that the task of extracting neu-

tral examples, which has hardly been explored, is

intrinsically difficult.

We employ 10-fold cross-validation to obtain

the average value of the classification accuracy.

We split the dataset such that there is no overlap-

ping pair (i.e., any pair in the training dataset does

not appear in the test dataset).

If either of the two words in a pair in the test

dataset does not appear in the training dataset, we

excluded the pair from the test dataset since the

problem of unknown words is not in the scope of

this research. Therefore, we evaluate the pairs that

are not in the training dataset, but whose compo-

nent words appear in the training dataset.

In addition to the original dataset, which we call

the standard dataset, we prepared another dataset

in order to examine the power of the latent variable

model. The new dataset, which we call the hard

dataset, consists only of examples with 17 difficult

adjectives such as “high”, “low”, “large”, “small”,

“heavy”, and “light”. 1 The semantic orientations

of pairs including these difficult words often shift

depending on the noun they modify. Thus, the

hard dataset is a subset of the standard dataset. The

size of the hard dataset is 4787. Please note that

the hard dataset is used only as a test dataset. For

training, we always use the standard dataset in our

experiments.

We performed experiments with all the values

of β in {0.1, 0.2, · · · , 1.0} and with all the values

of M in {10, 30, 50, 70, 100, 200, 300, 500}, and

predicted the best values of the hyper-parameters

with the held-out method in Section 3.4.

4.2 Results

The classification accuracies of the four methods

with β and M predicted by the held-out method

are shown in Table 1. Please note that the naive

bayes method is irrelevant of β and M . The table

shows that the triangle model and the U-shaped

1The complete list of the 17 Japanese adjectives with their
English counterparts are : takai (high), hikui (low), ookii
(large), chiisai (small), omoi (heavy), karui (light), tsuyoi
(strong), yowai (weak), ooi (many), sukunai (few/little), nai
(no), sugoi (terrific), hageshii (terrific), hukai (deep), asai
(shallow), nagai (long), mizikai (short).
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Table 1: Accuracies with predicted β and M

standard hard

accuracy β M accuracy β M

Naive Bayes 73.40 – – 65.93 – –

3-PLSI 67.02 0.73 91.7 60.51 0.80 87.4

Triangle model 81.39 0.60 174.0 77.95 0.60 191.0

U-shaped model 81.94 0.64 60.0 75.86 0.65 48.3

model achieved high accuracies and outperformed

the naive bayes method. This result suggests that

we succeeded in capturing the internal structure

of semantically oriented phrases by way of latent

variables. The more complex structure of the tri-

angle model resulted in the accuracy that is higher

than that of the U-shaped model.

The performance of the 3-PLSI method is even

worse than the baseline method. This result shows

that we should use a model in which adjectives can

directly influence the rating category.

Figures 2, 3, 4 show cross-validated accuracy

values for various values of β, respectively yielded

by the 3-PLSI model, the triangle model and the

U-shaped model with different numbers M of pos-

sible states for the latent variable. As the figures

show, the classification performance is sensitive to

the value of β. M = 100 and M = 300 are mostly

better than M = 10. However, this is a tradeoff

between classification performance and training

time, since large values of M demand heavy com-

putation. In that sense, the U-shaped model is use-

ful in many practical situations, since it achieved a

good accuracy even with a relatively small M .

To observe the overall tendency of errors, we

show the contingency table of classification by the

U-shaped model with the predicted values of hy-

perparameters, in Table 2. As this table shows,

most of the errors are caused by the difficulty of

classifying neutral examples. Only 2.26% of the

errors are mix-ups of the positive orientation and

the negative orientation.

We next investigate the causes of errors by ob-

serving those mix-ups of the positive orientation

and the negative orientation.

One type of frequent errors is illustrated by the

pair “food (’s price) is high”, in which the word

“price” is omitted in the actual example 2. As in

this expression, the attribute (price, in this case) of

an example is sometimes omitted or not correctly

2This kind of ellipsis often occurs in Japanese.
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Figure 4: U-shaped model with standard dataset
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Table 2: Contingency table of classification result by the U-shaped model

U-shaped model

positive neutral negative sum

positive 1856 281 69 2206

Gold standard neutral 202 2021 394 2617

negative 102 321 2335 2758

sum 2160 2623 2798 7581

identified. To tackle these examples, we will need

methods for correctly identifying attributes and

objects. Some researchers are starting to work on

this problem (e.g., Popescu and Etzioni (2005)).

We succeeded in addressing the data-sparseness

problem by introducing a latent variable. How-

ever, this problem still causes some errors. Pre-

cise statistics cannot be obtained for infrequent

words. This problem will be solved by incorporat-

ing other resources such as thesaurus or a dictio-

nary, or combining our method with other methods

using external wider contexts (Suzuki et al., 2006;

Turney, 2002; Baron and Hirst, 2004).

4.3 Examples of Obtained Clusters

Next, we qualitatively evaluate the proposed meth-

ods. For several clusters z, we extract the words

that occur more than twice in the whole dataset

and are in top 50 according to P (z|n). The model

used here as an example is the U-shaped model.

The experimental settings are β = 0.6 and M =
60. Although some elements of clusters are com-

posed of multiple words in English, the original

Japanese counterparts are single words.

Cluster 1 trouble, objection, disease, complaint, anx-
iety, anamnesis, relapse

Cluster 2 risk, mortality, infection rate, onset rate
Cluster 3 bond, opinion, love, meaning, longing, will
Cluster 4 vote, application, topic, supporter
Cluster 5 abuse, deterioration, shock, impact, burden
Cluster 6 deterioration, discrimination, load, abuse
Cluster 7 relative importance, degree of influence,

number, weight, sense of belonging, wave,
reputation

These obtained clusters match our intuition. For

example, in cluster 2 are the nouns that are neg-

ative when combined with “high”, and positive

when combined with “low”. In fact, the posterior

probabilities of semantic orientations for cluster 2

are as follows :

P (negative|high, cluster 2) = 0.995,

P (positive|low, cluster 2) = 0.973.

With conventional clustering methods based on

the cooccurrence of two words, cluster 2 would

include the words resulting in the opposite orien-

tation, such as “success rate”. We succeeded in

obtaining the clusters that are suitable for our task,

by incorporating the new variable c for semantic

orientation in the EM computation.

5 Conclusion

We proposed models for phrases with semantic

orientations as well as a classification method

based on the models. We introduced a latent vari-

able into the models to capture the properties of

phrases. Through experiments, we showed that

the proposed latent variable models work well

in the classification of semantic orientations of

phrases and achieved nearly 82% classification ac-

curacy. We should also note that our method is

language-independent although evaluation was on

a Japanese dataset.

We plan next to adopt a semi-supervised learn-

ing method in order to correctly classify phrases

with infrequent words, as mentioned in Sec-

tion 4.2. We would also like to extend our method

to 3- or more term phrases. We can also use the

obtained latent variables as features for another

classifier, as Fujita et al. (2004) used latent vari-

ables of PLSI for the k-nearest neighbors method.

One important and promising task would be the

use of semantic orientations of words for phrase

level classification.
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