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Abstract

Probabilistic Latent Semantic Analysis

(PLSA) models have been shown to pro-

vide a better model for capturing poly-

semy and synonymy than Latent Seman-

tic Analysis (LSA). However, the param-

eters of a PLSA model are trained using

the Expectation Maximization (EM) algo-

rithm, and as a result, the trained model

is dependent on the initialization values so

that performance can be highly variable.

In this paper we present a method for using

LSA analysis to initialize a PLSA model.

We also investigated the performance of

our method for the tasks of text segmenta-

tion and retrieval on personal-size corpora,

and present results demonstrating the effi-

cacy of our proposed approach.

1 Introduction

In modeling a collection of documents for infor-

mation access applications, the documents are of-

ten represented as a “bag of words”, i.e., as term

vectors composed of the terms and corresponding

counts for each document. The term vectors for a

document collection can be organized into a term

by document co-occurrence matrix. When di-

rectly using these representations, synonyms and

polysemous terms, that is, terms with multiple

senses or meanings, are not handled well. Meth-

ods for smoothing the term distributions through

the use of latent classes have been shown to im-

prove the performance of a number of information

access tasks, including retrieval over smaller col-

lections (Deerwester et al., 1990), text segmenta-

tion (Brants et al., 2002), and text classification

(Wu and Gunopulos, 2002).

The Probabilistic Latent Semantic Analysis

model (PLSA) (Hofmann, 1999) provides a prob-

abilistic framework that attempts to capture poly-

semy and synonymy in text for applications such

as retrieval and segmentation. It uses a mixture

decomposition to model the co-occurrence data,

and the probabilities of words and documents are

obtained by a convex combination of the aspects.

The mixture approximation has a well defined

probability distribution and the factors have a clear

probabilistic meaning in terms of the mixture com-

ponent distributions.

The PLSA model computes the relevant proba-

bility distributions by selecting the model parame-

ter values that maximize the probability of the ob-

served data, i.e., the likelihood function. The stan-

dard method for maximum likelihood estimation

is the Expectation Maximization (EM) algorithm.

For a given initialization, the likelihood function

increases with EM iterations until a local maxi-

mum is reached, rather than a global maximum,

so that the quality of the solution depends on the

initialization of the model. Additionally, the likeli-

hood values across different initializations are not

comparable, as we will show. Thus, the likelihood

function computed over the training data cannot be

used as a predictor of model performance across

different models.

Rather than trying to predict the best perform-

ing model from a set of models, in this paper we

focus on finding a good way to initialize the PLSA

model. We will present a framework for using La-

tent Semantic Analysis (LSA) (Deerwester et al.,

1990) to better initialize the parameters of a cor-

responding PLSA model. The EM algorithm is

then used to further refine the initial estimate. This

combination of LSA and PLSA leverages the ad-

vantages of both.
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This paper is organized as follows: in section

2, we review related work in the area. In sec-

tion 3, we summarize related work on LSA and

its probabilistic interpretation. In section 4 we re-

view the PLSA model and in section 5 we present

our method for initializing a PLSA model using

LSA model parameters. In section 6, we evaluate

the performance of our framework on a text seg-

mentation task and several smaller information re-

trieval tasks. And in section 7, we summarize our

results and give directions for future work.

2 Background

A number of different methods have been pro-

posed for handling the non-globally optimal so-

lution when using EM. These include the use of

Tempered EM (Hofmann, 1999), combining mod-

els from different initializations in postprocessing

(Hofmann, 1999; Brants et al., 2002), and try-

ing to find good initial values. For their segmen-

tation task, Brants et al. (2002) found overfit-

ting, which Tempered EM helps address, was not

a problem and that early stopping of EM provided

good performance and faster learning. Comput-

ing and combining different models is computa-

tionally expensive, so a method that reduces this

cost is desirable. Different methods for initializ-

ing EM include the use of random initialization

e.g., (Hofmann, 1999), k-means clustering, and an

initial cluster refinement algorithm (Fayyad et al.,

1998). K-means clustering is not a good fit to the

PLSA model in several ways: it is sensitive to out-

liers, it is a hard clustering, and the relation of the

identified clusters to the PLSA parameters is not

well defined. In contrast to these other initializa-

tion methods, we know that the LSA reduces noise

in the data and handles synonymy, and so should

be a good initialization. The trick is in trying to re-

late the LSA parameters to the PLSA parameters.

LSA is based on singular value decomposition

(SVD) of a term by document matrix and retain-

ing the top K singular values, mapping documents

and terms to a new representation in a latent se-

mantic space. It has been successfully applied in

different domains including automatic indexing.

Text similarity is better estimated in this low di-

mension space because synonyms are mapped to

nearby locations and noise is reduced, although

handling of polysemy is weak. In contrast, the

PLSA model distributes the probability mass of a

term over the different latent classes correspond-

ing to different senses of a word, and thus bet-

ter handles polysemy (Hofmann, 1999). The LSA

model has two additional desirable features. First,

the word document co-occurrence matrix can be

weighted by any weight function that reflects the

relative importance of individual words (e.g., tf-

idf). The weighting can therefore incorporate ex-

ternal knowledge into the model. Second, the

SVD algorithm is guaranteed to produce the ma-

trix of rank
�

that minimizes the distance to the

original word document co-occurrence matrix.

As noted in Hofmann (1999), an important dif-

ference between PLSA and LSA is the type of ob-

jective function utilized. In LSA, this is the L2

or Frobenius norm on the word document counts.

In contrast, PLSA relies on maximizing the likeli-

hood function, which is equivalent to minimizing

the cross-entropy or Kullback-Leibler divergence

between the empirical distribution and the pre-

dicted model distribution of terms in documents.

A number of methods for deriving probabil-

ities from LSA have been suggested. For ex-

ample, Coccaro and Jurafsky (1998) proposed a

method based on the cosine distance, and Tipping

and Bishop (1999) give a probabilistic interpreta-

tion of principal component analysis that is for-

mulated within a maximum-likelihood framework

based on a specific form of Gaussian latent vari-

able model. In contrast, we relate the LSA param-

eters to the PLSA model using a probabilistic in-

terpretation of dimensionality reduction proposed

by Ding (1999) that uses an exponential distribu-

tion to model the term and document distribution

conditioned on the latent class.

3 LSA

We briefly review the LSA model, as presented

in Deerwester et al. (1990), and then outline the

LSA-based probability model presented in Ding

(1999).

The term to document association is presented

as a term-document matrix

��� ��
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(1)

containing the frequency of the  index terms oc-

curring in ! documents. The frequency counts can

also be weighted to reflect the relative importance

of individual terms (e.g., Guo et al., (2003)).
�#"

is an  dimensional column vector representing
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document � and
���

is an ! dimensional row vec-

tor representing term � . LSA represents terms and

documents in a new vector space with smaller di-

mensions that minimize the distance between the

projected terms and the original terms. This is

done through the truncated (to rank
�

) singular

value decomposition
� � ��� ���	��
������

or

explicitly

��� � ��� � 
�
�
 ��� � � �� � 	 . . . � �
���
�

��
� �

�
...� �

���
���
(2)

Among all  �� ! matrices of rank
�

,
���

is the one

that minimizes the Frobenius norm ��� ��� � � ��� !" �
3.1 LSA-based Probability Model

The LSA model based on SVD is a dimensional-

ity reduction algorithm and as such does not have

a probabilistic interpretation. However, under cer-

tain assumptions on the distribution of the input

data, the SVD can be used to define a probability

model. In this section, we summarize the results

presented in Ding (1999) of a dual probability rep-

resentation of LSA.

Assuming the probability distribution of a doc-

ument
��"

is governed by
�

characteristic (nor-

malized) document vectors, # � 
�
�
 # � , and that

the # � 
�
�
 # � are statistically independent fac-

tors, Ding (1999) shows that using maximum

likelihood estimation, the optimal solution for# �%$ 
�
�
 # � are the left eigenvectors
� � 
�
�
 �&� in the

SVD of
�

used in LSA:

' ��� � � � � 
�
�
 ��� ����(�)+*-,�. /%0-13254�.6.6. 4�)+*-,7. /98:1;2< ����� �=�=� �&� � (3)

where
< ��� � 
�
�
 ��� � is a normalization constant.

The dual formulation for the probability of term
�

in terms of the tight eigenvectors (i.e., the docu-

ment representations � � 
�
�
 � � � of the matrix
�	�

is:

' � � " � � � 
�
�
 � � ��� (�)?>A@B. C%0-1 2 4�.6.6. 4�)?>A@;. C 8 1 2< � � � 
�
�
 � � � (4)

where
< � � � 
�
�
 � � � is a normalization constant.

Ding also shows that
� �

is related to � � by:

� � � D�FE � � � � � � � � D $ 
�
�
 $ � (5)

We will use Equations 3-5 in relating LSA to

PLSA in section 5.

4 PLSA

The PLSA model (Hofmann, 1999) is a generative

statistical latent class model: (1) select a documentG
with probability ' � G � (2) pick a latent class H

with probability ' � HI� G � and (3) generate a word J
with probability ' � JK� H � , where

' � JL� G �#��MON ' � JK� H � ' � HI� G � � (6)

The joint probability between a word and docu-

ment, ' � G $ J � , is given by

' � G $ J � � ' � G � ' � JL� G �� ' � G � M N ' � JL� H � ' � HI� G �
and using Bayes’ rule can be written as:

' � G $ J � � M=N ' � JL� H � ' � G � H � ' � H � � (7)

The likelihood function is given by

P � M=QRMTS ! � G $ J �FU�V�W ' � G $ J � � (8)

Hofmann (1999) uses the EM algorithm to com-

pute optimal parameters. The E-step is given by

' � HI� G $ J � � ' � H � ' � G � H � ' � JK� H �X N5Y ' � H�Z � ' � G � H%Z � ' � JK� H�Z � (9)

and the M-step is given by

' � JL� H � � X Q ! � G $ J � ' � HI� G $ J �X Q [
S Y ! � G $ J\Z � ' � HI� G $ J\Z � (10)

' � G � H � � X S ! � G $ J � ' � HI� G $ J �X Q Y [
S ! � G Z $ J � ' � HI� G Z $ J � (11)

' � H � � X Q [
S ! � G $ J � ' � H]� G $ J �X Q [

S ! � G $ J � � (12)

4.1 Model Initialization and Performance

An important consideration in PLSA modeling is

that the performance of the model is strongly af-

fected by the initialization of the model prior to

training. Thus a method for identifying a good ini-

tialization, or alternatively a good trained model,

is needed. If the final likelihood value obtained

after training was well correlated with accuracy,

then one could train several PLSA models, each

with a different initialization, and select the model

with the largest likelihood as the best model. Al-

though, for a given initialization, the likelihood
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Table 1: Correlation between the negative log-

likelihood and Average or BreakEven Precision

Data # Factors Average BreakEven
Precision Precision

Med 64 -0.47 -0.41

Med 256 -0.15 0.25

CISI 64 -0.20 -0.20

CISI 256 -0.12 -0.16

CRAN 64 0.03 0.16

CRAN 256 -0.15 0.14

CACM 64 -0.64 0.08

CACM 256 -0.22 -0.12

increases to a locally optimal value with each it-

eration of EM, the final likelihoods obtained from

different initializations after training do not corre-

late well with the accuracy of the corresponding

models. This is shown in Table 1, which presents

correlation coefficients between likelihood values

and either average or breakeven precision for sev-

eral datasets with 64 or 256 latent classes, i.e.,

factors. Twenty random initializations were used

per evaluation. Fifty iterations of EM per initial-

ization were run, which empirically is more than

enough to approach the optimal likelihood. The

coefficients range from -0.64 to 0.25. The poor

correlation indicates the need for a method to han-

dle the variation in performance due to the influ-

ence of different initialization values, for example

through better initialization methods.

Hofmann (1999) and Brants (2002) averaged re-

sults from five and four random initializations, re-

spectively, and empirically found this to improve

performance. The combination of models enables

redundancies in the models to minimize the ex-

pression of errors. We extend this approach by re-

placing one random initialization with one reason-

ably good initialization in the averaged models.

We will empirically show that having at least one

reasonably good initialization improves the perfor-

mance over simply using a number of different ini-

tializations.

5 LSA-based Initialization of PLSA

The EM algorithm for estimating the parameters

of the PLSA model is initialized with estimates of

the model parameters ' � H � $ ' � JL� H � $ ' � G � H � . Hof-

mann (1999) relates the parameters of the PLSA

model to an LSA model as follows:

� � ���������
	��������  ��������
(13)�������� � ��� � G�� � H � � � � [ � (14)

������� � ��� � J E � H � � � E [ � (15)	 � G ����� ��� � H � � � � � (16)

Comparing with Equation 2, the
�

LSA factors,� "
and � � correspond to the factors ' � JK� H � and' � G � H � of the PLSA model and the mixing propor-

tions of the latent classes in PLSA, ' � H � , corre-

spond to the singular values of the SVD in LSA.

Note that we can not directly identify the matrix� �
with

���������
and

 �
with

��������
since both

���
and

	�
contain negative values and are not prob-

ability distributions. However, using equations 3

and 4, we can attach a probabilistic interpretation

to LSA, and then relate
���������

and
��������

with the

corresponding LSA matrices. We now outline this

relation.

Equation 4 represents the probability of occur-

rence of term
���

in the different documents condi-

tioned on the SVD right eigenvectors. The � $ �����
element in equation 15 represent the probability

of term J E conditioned on the latent class H � . As

in the analysis above, we assume that the latent

classes in the LSA model correspond to the latent

classes of the PLSA model. Making the simplify-

ing assumption that the latent classes of the LSA

model are conditionally independent on term
� �

,

we can express the ' � ��� � � � �=�=� � � � as:

' � �5� � � � �=�=� � � � � ' � � � �=�=� � � � �5� � ' � �5� �' � � � �=�=� � � �� ' � �5� � ' � � � � �7� � 
�
�
 ' � � � � �7� �' � � ��� 
�
�
 ' � � � �� ' 	�� � � �5� � �
���� 	 ' � �5� � �! � � (17)

And using Equation (4) we get:

' 	�� � � �5� � �
�
�
� 	 ' � �5� � �  �#�#"

���� 	 ( )?> , . C%$ 1 2< � � � �=�=� � � � (18)

Thus, other than a constant that is based on ' � � � �
and

< � � � , we can relate each ' � ��� � �! � to a cor-

responding (�)+>A@;. C , 1 2 . We make the simplifying as-

sumption that ' � ��� � is constant across terms and

normalize the exponential term to a probability:

' � � " � � � ��� ( )?> @ . C�, 1 2X Q� � 	 ( )?> 8 . C , 1 2
Relating the term J � in the PLSA model to the

distribution of the LSA term over documents, & � ,
and relating the latent class H E in the PLSA model
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to the LSA right eigenvector � E , we then estimate' � J � � H E �
from ' � � " � � � �

, so that:

' � J � � H E � � ( )?> @3. C , 1 2X Q� � 	 ( )?> 8 . C , 1 2 (19)

Similarly, relating the document
G E in the PLSA

model to the distribution of LSA document over

terms, � E , and using Equation 5 to show that � � is

related to
� �

we get:

' � G�� � H E � � ( )+* @;. / , 1 2X Q� � 	 ( )+* 8 . / , 1 2 (20)

The singular values, � � in Equation 2, are by

definition positive. Relating these values to the

mixing proportions, ' � H � �
, we generalize the re-

lation using a function
� � �

, where
� � �

is any non-

negative function over the range of all � � , and nor-

malize so that the estimated ' � H � �
is a probability:

' � H � � � � � � � �X �� � 	 � � � � � (21)

We have experimented with different forms of
� � �

including the identity function and the logarithmic

function. For our experiments, we used
� � � � �U�V�W � � �

.

In our LSA-initialized PLSA model, we ini-

tialize the PLSA model parameters using Equa-

tions 19-21. The EM algorithm is then used be-

ginning with the E-step as outlined in Equations

9-12.

6 Results

In this section we evaluate the performance of

LSA-initialized PLSA (LSA-PLSA). We compare

the performance of LSA-PLSA to LSA only and

PLSA only, and also compare its use in combi-

nation with other models. We give results for a

smaller information retrieval application and a text

segmentation application, tasks where the reduced

dimensional representation has been successfully

used to improve performance over simpler word

count models such as tf-idf.

6.1 System Description

To test our approach for PLSA initializa-

tion we developed an LSA implemen-

tation based on the SVDLIBC package

(http://tedlab.mit.edu/ � dr/SVDLIBC/) for com-

puting the singular values of sparse matrices. The

PLSA implementation was based on an earlier

implementation by Brants et al. (2002). For each

of the corpora, we tokenized the documents and

used the LinguistX morphological analyzer to

stem the terms. We used entropy weights (Guo

et al., 2003) to weight the terms in the document

matrix.

6.2 Information Retrieval

We compared the performance of the LSA-PLSA

model against randomly-initialized PLSA and

against LSA for four different retrieval tasks. In

these tasks, the retrieval is over a smaller cor-

pus, on the order of a personal document collec-

tion. We used the following four standard doc-

ument collections: (i) MED (1033 document ab-

stracts from the National Library of Medicine), (ii)

CRAN (1400 documents from the Cranfield Insti-

tute of Technology), (iii) CISI (1460 abstracts in

library science from the Institute for Scientific In-

formation) and (iv) CACM (3204 documents from

the association for computing machinery). For

each of these document collections, we computed

the LSA, PLSA, and LSA-PLSA representations

of both the document collection and the queries

for a range of latent classes, or factors.

For each data set, we used the computed repre-

sentations to estimate the similarity of each query

to all the documents in the original collection. For

the LSA model, we estimated the similarity using

the cosine distance between the reduced dimen-

sional representations of the query and the can-

didate document. For the PLSA and LSA-PLSA

models, we first computed the probability of each

word occurring in the document, ' � JL� G � � � )
S
[
Q
1� )

Q
1 ,

using Equation 7 and assuming that ' � G �
is uni-

form. This gives us a PLSA-smoothed term repre-

sentation of each document. We then computed

the Hellinger similarity (Basu et al., 1997) be-

tween the term distributions of the candidate doc-

ument, ' � JK� G �
, and query, ' � JK� �

�
. In all of the

evaluations, the results for the PLSA model were

averaged over four different runs to account for the

dependence on the initial conditions.

6.2.1 Single Models

In addition to LSA-based initialization of the

PLSA model, we also investigated initializing the

PLSA model by first running the “k-means” al-

gorithm to cluster the documents into
�

classes,

where
�

is the number of latent classes and then

initializing ' � JK� H �
based on the statistics of word

occurrences in each cluster. We iterated over the
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number of latent classes starting from 10 classes

up to 540 classes in increments of 10 classes.
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Figure 1: Average Precision on CACM Data set

We evaluated the retrieval results (at the 11 stan-

dard recall levels as well as the average precision

and break-even precision) using manually tagged

relevance. Figure 1 shows the average precision

as a function of the number of latent classes for

the CACM collection, the largest of the datasets.

The LSA-PLSA model performance was better

than both the LSA performance and the PLSA per-

formance at all class sizes. This same general

trend was observed for the CISI dataset. For the

two smallest datasets, the LSA-PLSA model per-

formed better than the randomly-initialized PLSA

model at all class sizes; it performed better than

the LSA model at the larger classes sizes where

the best performance is obtained.

Table 2: Retrieval Evaluation with Single Models.

Best performing model for each dataset/metric is

in bold.

Data Met. LSA PLSA LSA- kmeans-
PLSA PLSA

Med Avg. 0.55 0.38 0.52 0.37

Med Brk. 0.53 0.39 0.54 0.39

CISI Avg. 0.09 0.12 0.14 0.12

CISI Brk. 0.11 0.15 0.17 0.15

CACM Avg. 0.13 0.21 0.25 0.19

CACM Brk. 0.15 0.24 0.28 0.22

CRAN Avg. 0.28 0.30 0.32 0.23

CRAN Brk. 0.28 0.29 0.31 0.23

In Table 2 the performance for each model using

the optimal number of latent classes is shown. The

results show that LSA-PLSA outperforms LSA on

7 out of 8 evaluations. LSA-PLSA outperforms

both random and k-means initialization of PLSA

in all evaluations. In addition, performance us-

ing random initialization was never worse than k-

means initialization, which itself is sensitive to ini-

tialization values. Thus in the rest of our experi-

ments we initialized PLSA models using the sim-

pler random-initialization instead of k-means ini-

tialization.

0 100 200 300 400 500 600
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0.135

0.14

0.145
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0.165
Avg Precision on CISI with Multiple Models

Number of factors

A
v
g

. 
P
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c
is

io
n

LSA−PLSA−LSAPLSA
4PLSA

Figure 2: Average Precision on CISI using Multi-

ple Models

6.2.2 Multiple Models

We explored the use of an LSA-PLSA model

when averaging the similarity scores from multi-

ple models for ranking in retrieval. We compared

a baseline of 4 randomly-initialized PLSA models

against 2 averaged models that contain an LSA-

PLSA model: 1) 1 LSA, 1 PLSA, and 1 LSA-

PLSA model and 2) 1 LSA-PLSA with 3 PLSA

models. We also compared these models against

the performance of an averaged model without an

LSA-PLSA model: 1 LSA and 1 PLSA model. In

each case, the PLSA models were randomly ini-

tialized. Figure 2 shows the average precision as

a function of the number of latent classes for the

CISI collection using multiple models. In all class

sizes, a combined model that included the LSA-

initialized PLSA model had performance that was

at least as good as using 4 PLSA models. This was

also true for the CRAN dataset. For the other two

datasets, the performance of the combined model

was always better than the performance of 4 PLSA

models when the number of factors was no more

than 200-300, the region where the best perfor-

mance was observed.

Table 3 summarizes the results and gives the

best performing model for each task. Comparing
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Table 3: Retrieval Evaluation with Multiple Mod-

els. Best performing model for each dataset and

metric are in bold. L-PLSA corresponds to LSA-

PLSA

Data Met 4PLSA LSA LSA L-PLSA
Set PLSA PLSA 3PLSA

L-PLSA

Med Avg 0.55 0.620 0.567 0.584

Med Brk 0.53 0.575 0.545 0.561

CISI Avg 0.152 0.163 0.152 0.155

CISI Brk 0.18 0.197 0.187 0.182

CACM Avg 0.278 0.279 0.249 0.276

CACM Brk 0.299 0.296 0.275 0.31

CRAN Avg 0.377 0.39 0.365 0.39

CRAN Brk 0.358 0.368 0.34 0.37

Tables 2 and 3, note that the use of multiple mod-

els improved retrieval results. Table 3 also indi-

cates that combining 1 LSA, 1 PLSA and 1 LSA-

PLSA models outperformed the combination of 4

PLSA models in 7 out of 8 evaluations.

For our data, the time to compute the LSA

model is approximately 60% of the time to com-

pute a PLSA model. The running time of the “LSA

PLSA LSA-PLSA” model requires computing 1

LSA and 2 PLSA models, in contrast to 4 mod-

els for the 4PLSA model, therefore requiring less

than 75% of the running time of the 4PLSA model.

6.3 Text Segmentation

A number of researchers, (e.g., Li and Yamanishi

(2000); Hearst (1997)), have developed text seg-

mentation systems. Brants et. al. (2002) devel-

oped a system for text segmentation based on a

PLSA model of similarity. The text is divided into

overlapping blocks of sentences and the PLSA

representation of the terms in each block, ' � JK� � �
,

is computed. The similarity between pairs of ad-

jacent blocks � � $ ��� is computed using ' � JK� � � �
and' � JL� � � �

and the Hellinger similarity measure. The

positions of the largest local minima, or dips, in

the sequence of block pair similarity values are

emitted as segmentation points.

We compared the use of different initializations

on 500 documents created from Reuters-21578,

in a manner similar to Li and Yamanishi (2000).

The performance is measured using error proba-

bility at the word and sentence level (Beeferman

et al., 1997),
�
S�

and
� ��

, respectively. This mea-

sure allows for close matches in segment bound-

aries. Specifically, the boundaries must be within�
words/sentences, where

�
is set to be half the av-

Table 4: Single Model Segmentation Word and

Sentence Error Rates (%). PLSA error rate at the

optimal number of classes in terms of
�
S�

is in

italic. Best performing model is in bold without

italic.

Num Classes LSA-PLSA PLSA���� ���� ���� ����
64 2.14 2.54 3.19 3.51

100 2.31 2.65 2.94 3.35

128 2.05 2.57 2.73 3.13

140 2.40 2.69 2.72 3.18

150 2.35 2.73 2.91 3.27

256 2.99 3.56 2.87 3.24

1024 3.72 4.11 3.19 3.51

2048 2.72 2.99 3.23 3.64

erage segment length in the test data. In order to

account for the random initial values of the PLSA

models, we performed the whole set of experi-

ments for each parameter setting four times and

averaged the results.

6.3.1 Single Models for Segmentation

We compared the segmentation performance

using an LSA-PLSA model against the randomly-

initialized PLSA models used by Brants et al.

(2002). Table 4 presents the performance over dif-

ferent classes sizes for the two models. Compar-

ing performance at the optimum class size for each

model, the results in Table 4 show that the LSA-

PLSA model outperforms PLSA on both word and

sentence error rate.

Table 5: Multiple Model Segmentation Word and

Sentence Error Rates (%). Performance at the op-

timal number of classes in terms of
�
S�

is in italic.

Best performing model is in bold without italic.

Num 4PLSA LSA-PLSA LSA-PLSA
Class 2PLSA 3PLSA� �� � �� � �� � �� � �� � ��

64 2.67 2.93 2.01 2.24 1.59 1.78

100 2.35 2.65 1.59 1.83 1.37 1.62

128 2.43 2.85 1.99 2.37 1.57 1.88

140 2.04 2.39 1.66 1.90 1.77 2.07

150 2.41 2.73 1.96 2.21 1.86 2.12

256 2.32 2.62 1.78 1.98 1.82 1.98

1024 1.85 2.25 2.51 2.95 2.36 2.77

2048 2.88 3.27 2.73 3.06 2.61 2.86

6.3.2 Multiple Models for Segmentation

We explored the use of an LSA-PLSA model

when averaging multiple PLSA models to reduce

the effect of poor model initialization. In partic-

ular, the adjacent block similarity from multiple
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models was averaged and used in the dip compu-

tations. For simplicity, we fixed the class size of

the individual models to be the same for a partic-

ular combined model and then computed perfor-

mance over a range of class sizes. We compared a

baseline of four randomly initialized PLSA mod-

els against two averaged models that contain an

LSA-PLSA model: 1) one LSA-PLSA with two

PLSA models and 2) one LSA-PLSA with three

PLSA models. The best results were achieved us-

ing a combination of PLSA and LSA-PLSA mod-

els (see Table 5). And all multiple model combina-

tions performed better than a single model (com-

pare Tables 4 and 5), as expected.

In terms of computational costs, it is less costly

to compute one LSA-PLSA model and two PLSA

models than to compute four PLSA models. In

addition, the LSA-initialized models tend to per-

form best with a smaller number of latent vari-

ables than the number of latent variables needed

for the four PLSA model, also reducing the com-

putational cost.

7 Conclusions

We have presented LSA-PLSA, an approach for

improving the performance of PLSA by lever-

aging the best features of PLSA and LSA. Our

approach uses LSA to initialize a PLSA model,

allowing for arbitrary weighting schemes to be

incorporated into a PLSA model while leverag-

ing the optimization used to improve the esti-

mate of the PLSA parameters. We have evaluated

the proposed framework on two tasks: personal-

size information retrieval and text segmentation.

The LSA-PLSA model outperformed PLSA on all

tasks. And in all cases, combining PLSA-based

models outperformed a single model.

The best performance was obtained with com-

bined models when one of the models was the

LSA-PLSA model. When combining multiple

PLSA models, the use of LSA-PLSA in combi-

nation with either two PLSA models or one PLSA

and one LSA model improved performance while

reducing the running time over the combination of

four or more PLSA models as used by others.

Future areas of investigation include quanti-

fying the expected performance of the LSA-

initialized PLSA model by comparing perfor-

mance to that of the empirically best performing

model and examining whether tempered EM could

further improve performance.
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