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Abstract

Spoken dialogue systems would be more
acceptable if they were able to produce
backchannel continuers such as mm-hmm in
naturalistic locations during the user's utter-
ances. Using the HCRC Map Task Cor-
pus as our data source, we describe mod-
els for predicting these locations using only
limited processing and features of the user's
speech that are commonly available, and
which therefore could be used as a low-
cost improvement for current systems. The
baseline model inserts continuers after a pre-
determined number of words. One fur-
ther model correlates back-channel contin-
uers with pause duration, while a second pre-
dicts their occurrence using trigram POS fre-
quencies. Combining these two models gives
the best results.

1 Introduction

In a spoken dialogue between people, the participants
use simple utterances such as yeah, a totty wee bit aye
and mm-hnint to signal that communication is work-
ing. Without this feedback, the partner may assume
that he has not been understood and reformulate his ut-
terance. Following Yngve (1970), we will use the term
backchannel for such utterances. Although these can
be substantive because they can repeat material from
the partner's utterance (Clark and Schaefer, 1991), e.g.,
Right, okay, I'm below the fiat rocks, we will adopt (Jo-
rafsky et al., 1998)'s terminology of continuer. We
will take this to refer to the class of backchannel ut-
terances, with minimal content, used to clearly signal
that the speaker should continue with her current turn.
(Yankelovich et al., 1995) point out that users of speech
interface systems need feedback, too, especially since

the system's silence could mean either of two very dif-
ferent things: that it is waiting for user input, in which
case the user should speak, or that it is still processing
information, in which case the user should not. How-
ever, any feedback must come at the right time or else
it risks disrupting the speaker and ultimately, delaying
task completion (Hirasawa et al., 1999).

Most of our data, including the examples given
above, are drawn from the HCRC Map Task Corpus,
described in more detail in Section 3. Clearly these di-
alogues are significantly more complex than the kind of
interactions supported by current commercial spoken
dialogue systems, where the length of user utterances
is severely constrained. What kind of system would in-
volve potentially lengthy user instructions comparable
to those found in the Map Task? Lauria et al. (2001),
Lemon et al. (2002), and Theobalt et al. (2002) describe
work on building spoken dialogue systems for convers-
ing with mobile robots, and this is a setting where com-
plex instructions naturally arise. For example, in one
scenario, 1 users attempt to teach routes and route seg-
ments to a robot. (1) is a portion of such an instruction.

(1) okay go to the end of the road and turn left and
erm ... and then carry on down that road

and then turn ... take your second left where
the trees are on the corner

We describe a shallow model, based on human dia-
logue data, for predicting where to place backchannel
feedback. The model deliberately requires only simple
processing on information that spoken dialogue sys-
tems already keep as history, and is intended to support
a low-cost improvement to existing technology.

'For details, see the description of the IBL Project pre-
sented on http: //www. ltg. ed. ac . uk/dsea/.
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2 Where are backchannels thought to	 speech n-grams, pitch, and FO contour in the immedi-
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ately preceding context, and pauses at the location it-
self.

There are two literatures we can draw on to inspire our
model: linguistic theory that predicts where backchan-
nels will occur because of the purpose they serve, and
past corpus-based attempts to model backchannel loca-
tions.

Theoretically, backchannel continuers will be most
interpretable by the speaker if they occur at or before
an utterance reaches a pragmatic completion— that is,
where a segment is "interpretable as a complete con-
versational action within its specific context" (Du Bois
et al., 1993)(p. 147) — but not too early in the utter-
ance. This is because planning the content of an ut-
terance, formulating it, articulating it, and monitoring
the partner's understanding are all parallel processes,
with monitoring kicking in when planning ends (Lev-
elt, 1998).

Classically, pragmatic completions yield transition
relevance places, or TRPs for short, where the current
hearer can take over the main channel of communica-
tion by taking a turn (Sacks et al., 1974), for instance,
to clear up something that he does not understand. If
the current hearer chooses to take over, then a "turn ex-
change" is said to occur. If the current hearer chooses
not to take over, instead remaining passive or giving
feedback through, e.g., a nod, grimace, or backchan-
nel continuer, then the speaker must decide whether
to go back or go on. Of course, it is possible for the
hearer first to give feedback and subsequently to de-
cide to take a turn. So we would expect speakers to be
able to receive backchannel continuers at TRPs, espe-
cially when they do not lead to turn exchange, or be-
fore TRPs in, say, the second half of their utterance. In
their updating of the classic model, Ford and Thomp-
son (1996)(p. 144) describe "complex transition rele-
vance points (cTRPs)" as confluences where intention,
intonation, and grammatical structure are all complete.
For them, an utterance is grammatically complete if it
"could be interpreted as a complete clause ... with an
overt or directly recoverable predicate".

Since speakers can always add phrases after the
predicate, grammatical completion is necessary but not
sufficient to make a cTRP. Thus linguistic theory sug-
gests that knowing where to find TRPs will help one
know where to place backchannel continuers, and that
pragmatics, grammar and intonation are all useful cues.

In addition to this theorizing, there have been a
number of previous corpus-based studies that have at-
tempted to describe or model the location of backchan-
nel continuers, TRPs, and turn exchanges, by reference
to the preceding context. These have tended to concen-
trate on easy-to-measure phenomena that clearly relate
to grammatical and intonational completion: part-of-

Denny (1985) was concerned with describing the pre-
ceding context of only those turn exchanges at
which there were pauses of over 65ms, and partic-
ularly those at which backchannel continuers oc-
curred. In her description, she considered pitch
rise and fall, speaker and auditor gaze, gesture,
"filled pauses" such as mm-hmm, and grammati-
cal completion.

Koiso et al. (1998), working in a Japanese replication
of the same corpus on which our results are based,
used all pauses over 100ms as an operational
definition of when turn exchange is possible —
that is, of TRPs — and considered predictors of
whether or not turn exchange occurred at a TRP,
and, when it did not, whether or not the hearer
produced a backchannel continuer. 2 They used
as predictors the immediately preceding part-of-
speech plus prosodic features: duration of the fi-
nal phoneme, FO contour, peak FO, energy pat-
tern, and peak energy. They found that the best
single predictor of either phenomena was the pre-
ceding part-of-speech tag, but that combining the
prosodic features gave better results, or, prefer-
ably, augmenting the part-of-speech tag with the
combined prosody features. Turn exchange was
indicated by interjections, sentence-final particles,
and imperative and conclusive verb forms, to-
gether with a rise or fall in intonation. Hearer use
of a backchannel continuer was indicated by con-
junctive and case/adverbial particles and adverbial
verb forms, coupled with the FO contours flat-fall
and rise-fall.

Ward & Tsukahara (2000) modeled the location of
backchannel continuers in Japanese and English
coversation simply by inserting them wherever the
other speaker produced a region of low pitch last-
ing 110ms. This model is motivated by the obser-
vation that such regions often accompany gram-
matical completion. Their model achieved 18%

2 The identification of long pauses with TRPs, although
understandable in the context of informing work on spoken
dialogue systems, is somewhat at odds with previous think-
ing about turn-taking. Although turn-taking behaviour is cul-
turally dependent , human dialogue is generally considered
remarkable for how little silence there can be between turns.
A previous study of Map Task data (Bull and Aylett, 1998),
bears up Sacks, Schegloff and Jefferson's original (1974) ob-
servation that turns often latch, with no perceivable silent gap,
or that they even overlap.
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accuracy for English and 34% for Japanese. 3

Although none of these studies is performing exactly
the same task as we are, they jointly suggest a range
of features that could be included in our model. For
example, FO contour would clearly be useful in pre-
dicting backchannel location. However, the challenge
of extracting appropriate prosodic features from a pitch
tracker lay outside the scope of the research effort re-
ported here. Moreover, the multimodal features con-
sidered by Denny seemed too far from the current state-
of-the-art in speech recognition systems to be of im-
mediate practical interest. Therefore, for this work, we
restrict ourselves to pause duration and part-of-speech
tag sequences as inputs.

3 Corpus Analysis

For our modelling, we use the HCRC Map Task Corpus
(Anderson et al., 1991), 4 a set of 128 task-oriented di-
alogues between human speakers of Scottish English,
lasting six minutes on average. In half of the conver-
sations the participants could see each others' faces; in
the other half, this was prevented by a screen. We ig-
nore this distinction, combining data from the two con-
ditions. Although participants must cooperate to com-
plete the task, their roles are somewhat unbalanced,
with one participant, the "instruction Giver", dominat-
ing their planning For this reason, all of our analysis
considers where the "instruction Follower" produces
backchannel continuers in relation to the instruction
Giver's speech.

At the most basic level, a Map Task dialogue rep-
resents each participant's behaviour separately as a
sequence of time-stamped silences, noises (such as
coughing), and speech tokens, to which part-of-speech
tagging has been applied. The part-of-speech tag set is
based on a version of the Brown Corpus tag set which
was modified slightly to better accommodate the cor-
pus ((McKelvie, 2001)). These together allow us to
calculate our input features.

We identify Giver TRPs using existing dialogue
structure coding. The Map Task Corpus has been seg-
mented by hand into dialogue moves, as described in
(Carletta et al., 1997). With the exception of moves
in the "acknowledge", "ready", and "align" categories,
each move represents one utterance that is either prag-
matically complete or, rarely, abandoned. In this sys-
tem, a ready move is essentially a discourse marker that
pre-initiates some larger move, usually an instruction

3 Their paper does not specify how these figures are to be
interpreted in terms of precision and recall.

4The transcriptions and coding for the Map Task Cor-
pus are available from http: //www.hcrc.ed.ac.uk/
dialogue/maptask.html.

Acknowledgement Frequency % of Total
right 1226 29%
okay 587 14%
mm-hmm 462 11%
uh 332 8%
right okay 267 6%
yeah 155 4%
oh right 42 <1%
mm 39 <1%
oh 29 <1%
okay right 19 <1%
aye 17 <1%

Table 1: Frequency of Acknowledgements

(as in OK, go to the left of the swamp...), and an align
move is usually added to the end of a move to elicit ex-
plicit feedback from the partner (as in, Go to the left of
the swamp, OK?). We treat move boundaries as TRPs
in our processing, ignoring the two exceptions above
which consist predominantly of one-word moves. Fail-
ure to remove them affects only our baseline model.

The acknowledge move was used to locate
backchannel continuers. In this system, all backchan-
nel continuers are acknowledge moves, but not all ac-
knowledge moves are backchannel continuers; follow-
ing Clark and Schaefer (1991), they include some-
what more substantive ways of moving the conversa-
tion forward, such as paraphrasing the speaker's utter-
ance repeating part or all of it verbatim, or accepting
its contents. To identify the instruction Follower's
backchannel continuers, we filtered the list of their ac-
knowledge moves by removing any that contained con-
tent words or words that generally convey acceptance
such as alright. Table 1 gives the most frequent forms
of backchannel continuers resulting from this process,
which differ somewhat from Jurafsky et al.'s (1998)
analysis of American speech.

4 Description of Models

4.1 Baseline Model

For our baseline model, we planned to insert a
backchannel continuer after every n words, for some
plausible value of n. This seemed to be the simplest
choice in its own right. However, the choice can also be
justified as follows. We expect backchannel continuers
to be placed at or before intonational phrase bound-
aries, since these are a primary indicator for TRPs.
Spotting these boundaries requires a pitch tracker, but
in at least one corpus of spoken English, they are
known to occur every five to fifteen syllables (Knowles
et al., 1996). We decided to approximate syllables by
words. Thus, from each of our Follower backchannels,
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we can measure the number of words back to the last
Follower backchannel continuer, or Giver TRP, as de-
termined by move boundaries. Figure 1 shows the re-
sulting frequency distribution for the number of Giver
words between Follower backchannel continuers.

1 111111111111111Ni NM 
1111 	 111111111111.11111.1.1111.1"-1111

0 	 9 12 15 18 21 24 27 30 33 36 39 42 47 56

Number of Words

Figure 1: The Number of Giver Words between a Move
Boundary and a Backchannel Continuer

In addition to the inclusion of the "ready" and
"align" categories (discussed in Section 3), the trigram
< s > <aff> <bc> accounts for a continuer occuring
after one word. The part-of-speech tag <af f> (affir-
mative) refers to interjections such as right, okay, mm-
hmm, uh-huh, yes and no. Affirmative acknowledge-
ments produced in these circumstances are intended to
convey that the Follower has understood the preceding
command and is now ready to move on to the next task.

Several models were built that inserted a continuer
after n words. The value of n was determined by the
frequency of continuers occurring in the data. The vari-
able n increased by one iteration for each model and
ranged from four to ten inclusively. The Precision, Re-
call and F-measure values were found for each model
and can be seen in Figure 2. This graph shows all
three evaluation metrics for each of the seven models.
The smaller the value of n, the more frequently the
continuers are inserted. In the model where n equals
four, there are 7,147 continuers inserted, but only 3,300
where n equals ten. This is reflected in the recall curve.

The highest F-measure score was produced by pre-
dicting a continuer at the mode frequency of every
seven words. The score is only 6%.

4.2 Pause Duration Model

Our next model is based simply on pause duration,
working from the premise that backchannel contin-
uers often occur at TRPs, and that TRPs often contain

Number of Words

Figure 2: Values for Number of Words

Threshold Prec. Recall F-meas.
0.9 22 59 32
1.0 22 55 31
1.1 22 51 31

Table 2: Highest Performing Pause Duration Models

pauses. As we explained in our discussion of (Koiso et
al., 1998), this premise is common, but controversial.
Figure 3 compares the durations of the 12% of instruc-
tion Giver pauses that overlap with Follower backchan-
nel contributes with the durations of the majority that
do not. 5

Of course, a real-time system cannot wait to see ex-
actly how a long a pause turns out to have been be-
fore deciding whether or not to produce a backchan-
nel continuer. In our data, 50% of the pauses lacking
backchannel continuers are less than 500ms; moreover,
only 11% of pauses this short do attract continuers. For
this reason, we apply a threshold; the model works by
producing a backchannel for all pauses once they reach
a certain length. Eleven models were run, starting with
a threshold of below 400ms, and increasing the thresh-
old value in increments of 100ms.

Table 2 shows the values for the highest perform-
ing models. The model that only inserts continuers in
pauses over 900 milliseconds has the highest overall
score. This model was applied to the test set.

4.3 n-gram Part-of-Speech Model

Separating the data into training, validation and test
sets was carried out by generating a random dialogue
ID. The IDs are in the format q [ 1 —8 ] [ e n] c [ 1 — 81 .
A random number was produced for each variable and
the files were moved into the relevant directory. The
division was approximately 50% training, 30% vali-

5 For technical reasons to do with the corpus markup,
we counted noises that occurred between instruction Giver
moves as pauses, but not noises that occurred within moves.
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Figure 3: Comparison of Pause Duration
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Duration in seconds

Trigram Probability Freq./million
P(<bc> NNS <pau>) 0.263 134.42
P(<bc> PPO <pau>) 0.220 82.83
P(<bc> NN <pau>) 0.185 627.64
P(<bc> PD <pau>) 0.170 33.34
P(<bc> AP <pau>) 0.150 3.95
P(<bc> PN <pau>) 0.115 14.66
P(<bc> RP <pau>) 0.010 113.10
P(<bc> JJ <pau>) 0.098 25.44
P(<bc> CC PPG) 0.091 0.74
P(<bc> DO <pau>) 0.091 4.61

Table 3: Discounted Trigram Frequencies in the CMU-
Cambridge Language Model

(a) Duration of Pauses with Continuer

II IIIIIIIIIIIIIIuI 	

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Duration in seconds

(b) Duration of Pauses without Continuers

dation and 20% test data. The validation data was
necessary for building the CMU-Cambridge language
model, but was concatenated with the training set for
the other models.

The model was forced to back-off to a unigram af-
ter seeing the continuer tag <bc>, since we did not
want this tag to be used as a predictor for any other
n-grams. Each move was considered a sentence and
given a context tag of <s> and </ s> for the start and
end of a move respectively, with one move per line.
Within the model design the < s > cue automatically
causes a forced back-off to a bigram so that the in-
formation before the beginning of a sentence is dis-
regarded. This ensured that each sentence was kept
as a separate entity; since Follower moves other than
acknowledge moves were not represented, sentences
were not necessarily in consecutive order.

There are seven occurrences of P(<bc> ) with a
back-off value of one. This shows the result of the
forced back-off after a continuer tag, and is applied to
instances where two continuers appear consecutively.
Twenty-one continuers were predicted by the trigram
<s> <aff> <bc>. This trigram reflects the manoeu-

vre "Follower query + Giver affirmative + Follower
continuer", discussed in Section 4.1, and accounts for
some examples of a continuer occurring after only one
word.

The ten highest trigram probability counts (using
Witten Bell discounting) can be seen in Table 3. The
sequence most likely to predict a continuer is a plural
noun (NNS) followed by a pause, while sequences con-
sisting of singular noun (NN) plus pause come third.
Together, this shows that nouns (either singular or plu-
ral) before a pause are good indicators of a backchannel
continuer. The tags PPO, PD and PN all represent pro-
nouns and before a pause they make up the second most
probable group for predicting a continuer.

A model was built using the three most frequent tri-
grams as predictors. A second model was constructed
using all of the ten most frequent trigrams in Table 3.
The aim of this model was to see if increasing the num-
ber of factors used in prediction would significantly im-
prove the coverage whilst also maintaining a high ac-
curacy. A continuer was inserted after the occurrence
of any of these trigrams in the data.

4.4 Combined Model

The pause duration model was designed to differentiate
between pauses that contained continuers and pauses
that didn't. Combining the models could be used to
filter out the instances where the combination of tags
would be more likely to predict an end of move bound-
ary. More precisely a combination of the two models
would use the language model to predict the syntactic
sequences most likely to determine continuer insertion,
and within these, use the pause duration threshold to
filter out pauses that are more indicative of an end-of-
move boundary.

It is evident from the language model that pause
plays an important role in the prediction of continuers.
A quarter of all relevant trigrams consist of a part-of-
speech tag followed by a pause. This figure includes
the most frequent trigrams and those with the highest

4000

3500

3000

t• 2500

2000

1500

1000

500

0

55



--+—  Three

- - * - - Ten

35 	
<1.)'

▪ 30-

i1 25 -

t 20 -

15

Recall 
65 	

55 -

45 -

35 -

25    

<1.)'

'4)

ei!  
- _ -      

> 0.6s > 0.9s
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precision 27% 20% 29% 23%
recall 38% 60% 33% 51%
F-measure 32% 30% 31% 32%

Table 4: Comparison of Combined Models

probabilities. Moreover the trigrams that predict con-
tinuers are also good predictors of end of move. Us-
ing a specified threshold the pause duration model fil-
ters out the pauses that are most likely to occur before
the end of a move.It could therefore be supposed that
combining both the trigram model and the pause du-
ration model should improve the precision and recall.
Since this would effectively be cutting out a number of
the pauses, a smaller pause duration might be prefer-
able as the higher coverage would compensate for the
more concentrated search area. Another way of coun-
terbalancing this effect could be to use the Ten Trigram
model, which would increase the number of pauses to
which the threshold rule could be applied. A number
of combination models were built using both the Top
Three Trigram and the Top Ten Trigram models and
a pause threshold duration of 500-100ms inclusively.
The graphs in Figure 4 show the precision, recall and
F-measure results for all the boost models. Graphs A
and B demonstrate that the Three Trigram model had
consistently higher precision and lower recall scores.
Graph C shows that the F-measure values for the Three
Trigram models are higher than the Ten Trigram mod-
els for the lower threshold values. The values cross
at a threshold of 0.7 seconds, after which the Ten Tr-
gram model has the highest F-measure. Finding the
ideal compromise between the parameters is difficult
to achieve automatically. The F-measure for the Three
Trigram model at a threshold of 600 milliseconds is
identical to that of the Ten Trigram model at thresholds
of 800, 900 and 1000 milliseconds. Using the Ten Tr-
gram model provides the best precision, but the Three
Trigram model has a higher recall. For both models the
600 ms threshold has the highest recall, and 900ms the
highest precision.

A comparison of these two thresholds can be seen
in Table 4. Without carrying out a human evaluation
of these models it would be hard to decide between a
Three Trigram model with a pause threshold of 600ms
and a Ten Trigram model with a threshold of 900ms.

5 Evaluation

The best possible evaluation method, given our aim of
low-cost technological improvement, would be to test
the acceptability of a dialogue system before and after

Figure 4: Comparison of Parameters for the Combined
Method

Precision

0.5	 0.6	 0.7	 0.8	 0.9	 1.0
Pause Cut-off Point (secs)

- -+— Three

- - * - - Ten

0.5	 0.6	 0.7	 0.8	 0.9	 1.0
Pause Cut-off Point (secs)

F-Measure   

— — Three

- -	 - - Ten  

26

0.5	 0.6	 0.7	 0.8	 0.9	 1.0
Pause Cut-off Point (secs)

our models have been incorporated. A potential sec-
ond best option, having humans judge the naturalness
of the models' results independent from a dialogue sys-
tem, is problematic. Conversational naturalness must
be judged in a reasonable amount of left and right-
hand context. We could doctor a conversation by ex-
cising the real follower's backchannel continuers and
re-inserting randomly selected ones where each model
predicts, but the results would be judged unnatural be-
cause of the knock-on effects on subsequent utterances.
A speaker's timings differ depending on whether or
not his partner produces a backchannel, and it is dif-
ficult to test system insertion of a backchannel where
the follower actually produces a more substantive ut-
terance. Thus we have chosen the less explanatory but
time-honoured evaluation method of comparing the be-
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Precision
	

39%
Recall
	

36%
F-measure 37%

Table 6: Results of the best model on high backchannel
rate data

haviour of our models to what the humans in the corpus
do.

One difficulty with evaluating a model such as
ours is that human speakers differ markedly in their
own backchanneling behaviour. As Ward and Tsuka-
hara (2000) remark, "a rule can predict opportunities,
but respondents do not choose to produce back-channel
feedback at every opportunity". Because we cannot
identify the opportunities that humans pass up, we do
the second best thing: cite results both in general and
for a relatively high level of backchannel in the corpus.
Our reasoning here is that the more backchannels an
individual produces, the fewer opportunities they are
likely to have passed up.

The models were run on previously unseen test data,
the results of which can be seen in Table 5. All models
improved on the training models. The baseline model
was the worst performer with an F-measure of only 7%.
The trigram part-of-speech model and the pause dura-
tion models had very similar results, with the pause du-
ration model proving to be a slightly better predictor.
The combined model improved the F-measure and im-
portantly the precision. The best model was a five-fold
improvement over the baseline.

If we now modify our test set so that it repro-
duces the behaviour of a speaker with a higher rate
of backchannel, we see signficantly improved results.
Thus, running the model on the dialogue containing
eighty backchannel continuers gives a much higher pre-
cision rate, improving upon the best model by 10% as
can be seen in Table 6.

5.1 Error Analysis

A number of cases turn up as errors in this evaluation
which would not affect the performance of a dialogue
system using the model to produce backchannel con-
tinuers.

First, the model sometimes posits a backchannel
continuer when the route follower actually produces
something that has the same effect, but is more sub-
stantive (such as a repetition of some of the giver's con-
tent). Although the follower's actual utterance provides
better evidence of grounding than the system's simple
one, modelling the choice of which type of grounding
response to produce would be rather tricky for what is
likely to be little performance gain.

Second, the model sometimes posits a backchannel

continuer when the route follower produces a more
substantive, content-ful move. This can be when the
follower is not happy for the dialogue to move on, or it
can be when the giver has just asked as a question. Of
course, a dialogue system using our model would be
able to catch these cases because it would know when
it wishes to speak, even though by itself, our simple
model does not.

Third, a pause was said to contain a backchannel
continuer only if the backchannel started or ended
within the pause. Instances where the backchannel
started slightly before the pause would give the trigram
POS <bc> <pau>. This particular trigram would
not have been found by the language model; after a
backchannel backing-off was applied, forcing the lan-
guage model to count the pause as a unigram. However,
after missing this location, the model might well place
a backchannel slightly later, during the pause. Chang-
ing the location of a backchannel by 500ms does not
affect whether or not it was perceived as natural (Ward
and Tsukahara, 2000). Thus our evaluation technique
overrepresents these misses.

Finally, some of the cases that show up as errors
in the evaluation are correct, but the dialogue move
coding from which we derived the actual locations of
backchannel continuers is not. There is a systematic
confusion in our move system between pre-initiating
ready moves and acknowledgments (Carletta et al.,
1997). These moves share the same realizations, so
coders often disagree on which of the two labels to use,
especially for the acknowledgments that lack content
words and therefore which we counted as backchannel
continuers. Even if one accepts the theoretical distinc-
tion, a system's behaviour would be perceived as cor-
rect if it were to produce something that sounds like a
pre-initiator at the same location as a human one, no
matter what the system thinks it is.

6 Conclusion

In general there has been very little work carried out on
building systems that are capable of placing backchan-
nels. In this paper, we investigated various methods
of predicting the placement of backchannel continuers,
using only limited processing and information that is
readily available to current spoken dialogue systems.
Pause duration and a statistical part-of-speech language
model were examined A method combining these two
models achieved the best F-measure of 35% and im-
proved on the baseline five-fold. The best previous sys-
tem (Ward and Tsukahara, 2000) used as its sole pre-
dictor regions of low pitch and produced an accuracy
of 18% for English.

While our results may not be comparable to other
work carried out in the field of natural language pro-
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Baseline Trigram Pause Combined
10 Tri +> .9s	 3 Tri +> .6s

Precision 4% 22% 22% 25% 29%
Recall 13% 50% 58% 51% 43%
F-measure 7% 30% 32% 33% 35%

Table 5: Results of the Models on the Test Data

cessing, where scores of 90% or above are not uncom-
mon for tasks such as part-of-speech tagging and sta-
tistical parsing, this can be at least partly explained by
the fact that humans vary widely in how many of their
opportunities for placing a backchannel continuer they
actually realize. Our model could potentially be im-
proved by adding words to parts-of-speech in the lan-
guage model; Ward and Tsukahara (2000) suggest that
about half the occurrences of backchannel are elicited
by speaker-produced cues. Beyond this, improvements
may well require changes to the history that a dialogue
system keeps, together with the addition of prosodic
information.
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