
Neural Network Probability Estimation
for Broad Coverage Parsing

James Henderson
Departement d'Informatique

Universite de Geneve
James.Henderson@cui.unige.ch

Abstract

We present a neural-network-based sta-
tistical parser, trained and tested on
the Penn Treebank. The neural net-
work is used to estimate the parame-
ters of a generative model of left-corner
parsing, and these parameters are used
to search for the most probable parse.
The parser's performance (88.8% F-
measure) is within 1% of the best cur-
rent parsers for this task, despite using a
small vocabulary size (512 inputs). Cru-
cial to this success is the neural network
architecture's ability to induce a finite
representation of the unbounded parse
history, and the biasing of this induction
in a linguistically appropriate way.

1 Introduction

Many statistical parsers (Ratnaparkhi, 1999;
Collins, 1999; Charniak, 2001) are based on
a history-based probability model (Black et al.,
1993), where the probability of each decision in
a parse is conditioned on the previous decisions
in the parse. A major challenge in this approach is
choosing a representation of the parse history from
which the probability for the next parser decision
can be accurately estimated. Previous approaches
have used a hand-crafted finite set of features
to represent the unbounded parse history (Ratna-
parkhi, 1999; Collins, 1999; Charniak, 2001). In
the work presented here, we automatically induce
a finite set of features to represent the unbounded

parse history. We perform this induction using an
artificial neural network architecture, called Sim-
ple Synchrony Networks (SSNs) (Lane and Hen-
derson, 2001; Henderson, 2000). Because this
architecture is specifically designed for process-
ing structures, it allows us to impose structurally
specified and linguistically appropriate biases on
the search for a good history representation. The
resulting parser achieves performance far greater
than previous approaches to neural network pars-
ing (Ho and Chan, 1999; Costa et al., 2001), and
only marginally below the current state-of-the-art
for parsing the Penn Treebank.

We propose a hybrid parsing system consist-
ing of two components, a neural network which
estimates the parameters of a probability model
for phrase structure trees, and a statistical parser
which searches for the most probable phrase
structure tree given these parameters. We first
present the probability model which is common
to these two components, followed by the estima-
tion method, the search method, and a discussion
of the empirical results.

2 The Generative Probability Model

The probability model we use is generative and
history-based. Generative models are expressed
in terms of a stochastic process which generates
both the phrase structure tree and the input sen-
tence. At each step, the process chooses a char-
acteristic of the tree or predicts a word in the sen-
tence. This sequence of decisions is the derivation
of the tree, which we will denote d1,..., dm . Be-
cause there is a one-to-one mapping from phrase

131



structure trees to our derivations, the probability
of a derivation P(di,..., dm) is equal to the joint
probability of the derivation's tree and the input
sentence. The probability of the input sentence
is a constant across all the candidate derivations,
so we only need to find the most probable deriva-
tion. in history-based models (Black et al., 1993),
the probability estimate for each derivation deci-
sion di is conditioned on the previous derivation
decisions d1,..., d,_1, which is called the deriva-
tion history at step i. This allows us to use the
chain rule for conditional probabilities to derive
the probability of the entire derivation as the mul-
tiplication of the probabilities for each of its deci-
sions.

P (di ,..., = di_i)

The probabilities P(di ld1 ,..., d 1 ) ' are the param-
eters of the parser's probability model.

To define the parameters di_i) we
need to choose the ordering of the decisions in
a derivation, such as a top-down or shift-reduce
ordering. The ordering which we use here is
that of a form of left-corner parser (Rosenkrantz
and Lewis, 1970). A left-corner parser decides
to introduced a node into the parse tree after the
subtree rooted at the node's first child has been
fully parsed. Then the subtrees for the node's re-
maining children are parsed in their left-to-right
order. We use the binarized version of a left-
corner parser, described in (Manning and Carpen-
ter, 1997), where the parse of each non-leftmost
child begins with the parent node predicting the
child's leftmost terminal, and ends with the child's
root nonterminal attaching to the parent. An ex-
ample of this ordering is shown by the numbering
on the left in figure 1. The process which gener-
ates a tree begins with a stack that contains a node
labeled ROOT (step 0) and must end in the same
configuration (step 9), as shown on the right of
the figure. The possible derivation decisions are:
predict the next tag-word pair and push it on the
stack (steps 1, 4, and 6), replace the node on top
of the stack with a new node which is its parent
and choose the label of that node (steps 2, 3, and
5), and pop a node from the stack and attach it as
the child of the node below it on the stack (steps 7,

'When i = 1, P(dIdi,..., di_ 1) =

Stacks:
0: ROOT

1: ROOT, NNP

2: ROOT, NP

3: ROOT, S

4: ROOT, S, VBZ

5: ROOT, S, VP

6: ROOT, S, VP, RB

7: ROOT, S, VP

8: ROOT, S

9: ROOT

Figure 1: The decomposition of a parse tree into
derivation decisions (left) and the stack after each
decision (right).

8, and 9). 2

3 Inducing Features of the Derivation
History

The most important step in designing a statisti-
cal parser with a history-based probability model
is choosing a method for estimating the param-
eters d,_1). The main difficulty with
this estimation is that the history d 1 ,..., di _ 1 is of
unbounded length. Most probability estimation
methods require that there be a finite set of fea-
tures on which the probability is conditioned. The
standard way to handle this problem is to hand-
craft a finite set of features which provides a suf-
ficient summary of the unbounded history (Rat-
naparkhi, 1999; Collins, 1999; Charniak, 2000).
The probabilities are then assumed to be indepen-
dent of all the infoimation about the history which
is not captured by the chosen features. The diffi-
culty with this approach is that the choice of fea-
tures can have a large impact on the performance
of the system, but it is not feasible to search the
space of possible feature sets by hand. One al-
ternative to choosing a finite set of features is to
use kernel methods, which can handle unbounded

2We extended the left-corner parsing model in a few mi-
nor ways using grammar transforms. We replace Chomsky
adjunction structures (i.e. structures of the form [X [X ...]
[Y ...]]) with a special "modifier" link in the tree (becoming
[X ... [mod Y • requiring nodes which are popped from
the stack to choose between attaching with a normal link or
a modifier link. We also compiled some frequent chains of
non-branching nodes (such as [S [VP ...1]) into a single node
with a new label (becoming [S-VP ...]). These transforms
are undone before any evaluation is performed on the output
trees. We do not believe these transforms have a major impact
on performance, but we have not currently run tests without
them.

o ROOT

3

NP	 VP

NNP/Mary 4 VBZ/runs 6 RB/often

132



feature sets, but then efficiency becomes a prob-
lem. Collins and Duffy (2002) define a kernel over
parse trees and apply it to re-ranking the output of
a parser, but the resulting feature space is restricted
by the need to compute the kernel efficiently, and
the results are not as good as Collins' previous
work on re-ranking using a finite set of features
(Collins, 2000).

In this work we use a method for automati-
cally inducing a finite set of features for represent-
ing the derivation history. The method is a form
of multi-layered artificial neural network called
Simple Synchrony Networks (Lane and Hender-
son, 2001; Henderson, 2000). The outputs of
this network are probability estimates computed
with a log-linear model (also known as a maxi-
mum entropy model), as is done in (Ratnaparkhi,
1999). Log-linear models have proved success-
ful in a wide variety of applications, and are the
inspiration behind one of the best current statisti-
cal parsers (Charniak, 2000). The difference from
previous approaches is in the nature of the input
to the log-linear model. We do not use hand-
crafted features, but instead we use a finite vector
of real-valued features which are induced as part
of the neural network training process. These in-
duced features represent the information about the
derivation history which the training process has
decided is relevant to estimating the output prob-
abilities. In neural networks these feature vectors
are called the hidden layer activations, but for con-
tinuity with the previous discussion we will refer
to them as the history features.

We will denote the history feature computa-
tion with the function h, and the output log-linear
model with the function o, whose result is a proba-
bility distribution over the possible derivation op-
erations.

di_1)) P(d, dz_i)

The mapping h from the derivation history to the
history features is computed with the repeated ap-
plication of a function g, which maps previous his-
tory representations plus pre-defined features of
the derivation history to a real-valued vector.

Because the function g is nonlinear, the in-
duction of these features allows the training pro-
cess to explore a much more general set of es-
timators o(h(x)) than would be possible with a

log-linear model alone (i.e. o(x)). 3 This general-
ity makes this estimation method less dependent
on the choice of input representation x. In ad-
dition, because the inputs to g include previous
history representations, the mapping h is defined
recursively. This recursion allows the input to
the system to be unbounded, thereby allowing an
unbounded derivation history to be successively
compressed into a fixed-length vector of history
features.

Training a Simple Synchrony Network (SSN)
is similar to training a log-linear model. First an
appropriate error function is defined for the net-
work's outputs, and then some form of gradient
descent learning is applied to search for a mini-
mum of this error function. 4 This learning simul-
taneously tries to optimize the parameters of the
output computation o and the parameters of the
mapping h from the derivation history to the his-
tory features. With multi-layered networks such as
SSNs, this training is not guaranteed to converge
to a global optimum, but in practice a set of pa-
rameters whose error is close to the optimum can
be found. The reason no global optimum can be
found is that it is intractable to find the optimal
mapping h from the derivation history to the his-
tory features. Given this difficulty, it is important
to impose appropriate biases on the search for a
good set of history features.

The main bias we have exploited in this work
is the recency bias in training recursively defined
neural networks. The only trained parameters of
the mapping h are the parameters of the function
g, which records a subset of the information from
a set of previous history representations in a new
history representation. The training process auto-

3 As is standard, g is the sigmoid activation function ap-
plied to a weighted sum of its inputs. Multi-layered neural
networks of this form can approximate arbitrary mappings
from inputs to outputs (Hornik et al., 1989), whereas a log-
linear model alone can only estimate probabilities where the
category-conditioned probability distributions P(xidi) of the
pre-defined inputs x are in a restricted form of the exponen-
tial family (Bishop, 1995).

4We use the cross-entropy error function, which ensures
that the minimum of the error function converges to the de-
sired probabilities as the amount of training data increases
(Bishop, 1995). This implies that the minimum for any given
dataset is an estimate of the true probabilities. We use the
on-line version of Backpropagation to perform the gradient
descent.

133



matically chooses these parameters based on what
information needs to be recorded. The recorded
information may be needed to compute the output
for the current step, or it may need to be passed
on to future history representations to compute a
future output. However, the more history repre-
sentations intervene between the place where the
information is input and the place where the infor-
mation is needed, the less likely the training is to
learn to record this information. We can exploit
this recency bias in inducing history representa-
tions by ensuring that information which is known
to be important at a given step in the derivation is
input directly to that step's history representation,
and that as information becomes less relevant it
has increasing numbers of history representations
to pass through before reaching the step's history
representation. In the next section we will present
how this inductive bias is exploited in the design
of the SSN parser.

4 Estimating Derivation Probabilities
with a Simple Synchrony Network

Simple Synchrony Networks are an artificial neu-
ral network architecture which is specifically de-
signed for processing structured data. A SSN di-
vides the processing of a structure into a set of
sub-processes, with one sub-process for each node
of the structure. For phrase structure tree deriva-
tions, we divide a derivation into a set of sub-
derivations by assigning a derivation step i to the
sub-derivation for the node top, which is on the top
of the stack prior to that step. The SSN network
then performs the same computation at each posi-
tion in each sub-derivation. The unbounded nature
of phrase structure trees does not pose a problem
for this approach, because increasing the number
of nodes only increases the number of times the
SSN network needs to perform a computation, and
not the number of parameters in the computation
which need to be trained.

Each computation which the network performs
results in two real-valued vectors, namely the re-
sults of the functions o and h. As discussed in
the previous section, the function o is simply a
log-linear model applied to the result of h. When
h is applied to node top, at step i, it computes
the history representation h(d 1 ,...,di _ 1 ) by apply-

ing the function g to a set of pre-defined features
f of the derivation history plus a small
set of previous history representations.

h(di,..., di_i) =

g(f (di,...,d,_1), {rep, i (c)Ic E D(top,)})

where rep i_ i (c) is the most recent previous his-
tory representation for a node c.

rep (c) = h(di,..•,dmax(kk<jAtop k =c))
D(top) is a small set of nodes which are in a
structurally local domain of top,. This domain al-
ways includes top, itself, but the remaining nodes
in D(top) and the features in f (di ,...,e4_ 1 ) need
to be chosen by the system designer. These
choices determine how information flows from
one set of history features to another, and thus de-
termines the inductive bias discussed in the previ-
ous section.

The principle we apply when designing D(top,)
and f is that we want the inductive
bias to reflect structural locality. For this reason,
D(top) includes nodes which are structurally lo-
cal to top,. These nodes are the left-corner an-
cestor of top, (which is below top, on the stack),
top 's left-corner child (its leftmost child, if any),
and top 's most recent child (which was top,_ 1 ,
if any). For right-branching structures, the left-
corner ancestor is the parent, conditioning on
which has been found to be beneficial (Johnson,
1998), as has conditioning on the left-corner child
(Roark and Johnson, 1999). Because these in-
puts include the history features of both the left-
corner ancestor and the most recent child, a deriva-
tion step i always has access to the history fea-
tures from the previous derivation step i — 1, and
thus (by induction) any information from the en-
tire previous derivation history could in principle
be stored in the history features. Thus this model
is making no a priori hard independence assump-
tions, just a priori soft biases.

As mentioned above, D(top) also includes top,
itself, which means that the inputs to g always
include the history features for the most recent
derivation step assigned to top,. This input im-
poses an appropriate bias because the induced his-
tory features which are relevant to previous deriva-
tion decisions involving top, are likely to be rele-
vant to the decision at step i as well. As a sim-
ple example, in figure 1, the prediction of the left

134



corner terminal of the VP node (step 4) and the
decision that the S node is the root of the whole
sentence (step 9) are both dependent on the fact
that the node on the top of the stack in each case
has the label S (chosen in step 3).

The pre-defined features of the derivation his-
tory f (di ,..., di _ i ) which are input to g for node
top, at step i are chosen to reflect the information
which is directly relevant to choosing the next de-
cision di . In the parser presented here, these inputs
are the last decision di _j in the derivation, the la-
bel or tag of the sub-derivation's node top,, the tag-
word pair for the most recently predicted terminal,
and the tag-word pair for top, 's left-corner termi-
nal (the leftmost terminal it dominates). Inputting
the last decision d i _j is sufficient to provide the
SSN with a complete specification of the deriva-
tion history. The remaining features were chosen
so that the inductive bias would emphasize these
pieces of information.

5 Searching for the Best Parse

Once we have trained the SSN to estimate the pa-
rameters of our probability model, we use these
estimates to search the space of possible deriva-
tions to try to find the most probable one. Search-
ing the space of all possible derivations has expo-
nential complexity, so it is important to be able to
prune the search space. Being able to prune ef-
fectively is particularly important for neural net-
work approaches, due to the computational cost of
computing probability estimates. We use a form
of beam search to prune the search space.

The choice of the left-corner ordering for
derivations is crucial to the success of this neural
network parser in that it allows very severe prun-
ing without significant loss in performance. The
most important pruning occurs after each word has
been predicted and pushed on the stack (for exam-
ple, after steps 1, 4, and 6 in figure 1). When a par-
tial derivation reaches this position it is stopped to
see if it is one of a small number of the best partial
derivations which end in predicting that word. The
search only pursues a beam of the best 100 deriva-
tions past each word prediction. Experiments with
a variety of beam widths confirms that little if
any validation performance is gained with larger
beam widths. To search the space of derivations in

between two word predictions we do a best-first
search. This search is not restricted by a beam
width, but a limit is placed on the search's branch-
ing factor. At each point in a partial derivation
which is being pursued by the search, only the 10
best alternative decisions are considered for con-
tinuing that derivation. This was done because we
found that the best-first search tended to pursue
a large number of alternative labels for a nonter-
minal before pursuing subsequent derivation steps,
even though only the most probable labels ended
up being used in the best derivations. We found
that a branching factor of 10 was large enough
that it had virtually no effect on validation perfor-
mance.

The most computationally intensive operation
of the parser is computing the probability esti-
mates for the predictions of the next tag-word pair.
To compute the log-linear model of this prediction,
it is necessary to compute values for all possible
next words, not just the correct next word, because
they are needed for normalizing. Because there are
a very large number of words, this is expensive. To
reduce this burden, the parser computes this pre-
diction in two stages, first predicting the tag in the
tag-word pair, and then predicting the word condi-
tioned on that tag. We implement this condition-
ing as a mixture model (Bishop, 1995), where the
tag predictions are the mixing coefficients. This
means that only estimates for the tag-word pairs
with the correct tag need to be computed, both in
training and testing. We also reduced the compu-
tational cost of word prediction by replacing lower
frequency tag-word pairs with a tag-"unknown-
word" pair. Excluding words below a frequency
threshold can greatly reduce the size of the vocab-
ulary, because there are a very large number of low
frequency words. This method also has the advan-
tages of training an output to be used for words
which were not in the training set, and smoothing
across tag-word pairs whose low frequency would
prevent accurate learning by themselves. We do
not do any morphological analysis of unknown
words, although we would expect some improve-
ment in performance if we did. A variety of fre-
quency thresholds were tried, as reported in sec-
tion 6. The same representation of tag-word pairs
was used in the input as was used for prediction.

135



6 The Experimental Results

The generality and efficiency of the above pars-
ing model makes it possible to test a SSN parser
on the Penn Treebank (Marcus et al., 1993), and
thereby compare its performance directly to other
statistical parsing models in the literature. To test
the effects of varying vocabulary sizes on perfor-
mance and tractability, we trained three different
models. The simplest model ("Tags") includes no
words in the vocabulary, relying completely on the
information provided by the part-of-speech tags of
the words. The second model ("Freq>200") uses
all tag-word pairs which occur at least 200 times
in the training set. The remaining words were all
treated as instances of the unknown-word. This re-
sulted in a vocabulary size of 512 tag-word pairs.
The third model ("Freq>20") thresholds the vo-
cabulary at 20 instances in the training set, result-
ing in 4242 tag-word pairs. 5

As is standard practice, we used sections 2-
22 as the training set (39,832 sentences), sec-
tion 24 as a development/validation set (1346 sen-
tence), and section 23 as a testing set (2416 sen-
tences). We determined appropriate training pa-
rameters and network size based on our previous
experience with networks similar to the models
Tags and Freq>200, which had been trained and
evaluated on the same training and validation sets.
We trained two or three networks for each of the
three models and chose the best one based on their
validation performance. We then tested the best
non-lexicalized and the best lexicalized models
on the testing set. 6 Standard measures of perfor-
mance are shown in table 1. 7

The top panel of table 1 lists the results for the
non-lexicalized model (SSN-Tags) and the avail-
able results for three other models which only use
part-of-speech tags as inputs, another neural net-
work parser (Costa et al., 2001), an earlier statis-

5 In these experiments the tags are included in the input to
the system, but, for compatibility with other parsers, we did
not use the hand-corrected tags which come with the corpus.
We used a publicly available tagger (Ratnaparkhi, 1996) to
tag the words and then used these in the input to the system.

6We found that 80 hidden units produced better perfor-
mance than 60 or 100. Momentum was applied throughout
training. Weight decay regularization was applied at the be-
ginning of training but reduced to zero by the end of training.

7 A11 our results are computed with the evalb program fol-
lowing the now-standard criteria in (Collins, 1999).

Length<40 All
LR LP LR LP

Costa-et-a101 NA NA 57.8 64.9
Manning&Carpenter97 77.6 79.9 NA NA

Charniak97 (PCFG) 71.2 75.3 70.1 74.3
SSN-Tags 83.9 84.9 83.3 84.3

Ratnaparkhi99 NA NA 86.3 87.5
Collins99 88.5 88.7 88.1 88.3
Charniak00 90.1 90.1 89.6 89.5
Collins00 90.1 90.4 89.6 89.9
Bod01 90.8 90.6 89.7 89.7
SSN-Freq>200 88.8 89.6 88.3 89.2

Table 1: Percentage labeled constituent recall and
precision on the testing set.

tical left-corner parser (Manning and Carpenter,
1997), and a PCFG (Charniak, 1997). The Tags
model achieves performance which is better than
any previously published results on parsing with a
non-lexicalized model. The Tags model also does
much better than the only other broad coverage
neural network parser (Costa et al., 2001).

The bottom panel of table 1 lists the results
for the chosen lexicalized model (SSN-Freq>200)
and five recent statistical parsers (Ratnaparkhi,
1999; Collins, 1999; Charniak, 2000; Collins,
2000; Bod, 2001). The performance of the lex-
icalized model falls in the middle of this range,
only being beaten by the three best current parsers,
which all achieve equivalent performance. The
best current model (Collins, 2000) has only 6%
less precision error and only 11% less recall er-
ror than the lexicalized model. The SSN parser
achieves this result using much less lexical knowl-
edge than other approaches, which all minimally
use the words which occur at least 5 times, plus
morphological features of the remaining words. It
is also achieved without any explicit notion of lex-
ical head.

7 Discussion and Further Analysis

Two novel aspects of this SSN parsing model are
the small vocabulary size and the use of induced
features to represent the derivation history. To in-
vestigate these aspects we trained some additional

136



Validation, Length< 100

LR LP

Tags 82.9 84.2 83.6

Freq> 200 88.0 89.5 88.8
Freq> 20 87.9 89.2 88.5
Freq>200, ancestor label 82.6 85.4 84.0
Freq>200, child label 85.1 86.5 85.8
Freq>200, lc—child label 86.1 87.8 86.9
Freq>200, all labels 81.0 83.6 82.3

Table 2: Percentage labeled constituent recall, pre-
cision, and F-measure on the validation set.

models and tested them on the validation set. 8

The first three rows of table 2 show perfor-
mance as the vocabulary size increases from 46
tags (Tags) to 512 tag-word pairs (Freq>200) to
4242 tag-word pairs (Freq>20). There is a 32%
reduction in F-measure error when we add words
with frequency greater than 200, but the perfor-
mance does not increase when we further increase
the vocabulary size. Two explanations for the
lack of improvement with larger vocabularies sug-
gest themselves. The first possible explanation is
that something about the parser design prevents
the SSN from fully exploiting lexical information.
One candidate for such a problem is the lack of any
inductive bias expressing the importance of lexical
heads over non-head words. The second possible
explanation is that the importance of lexical items
in previous models is mainly that they provide in-
formation about the types of contexts in which the
lexical items tend to occur. This indirect repre-
sentation of context is not very important if the
model has a good representation of the actual con-
text. The only lexical items which would then be
necessary are the idiosyncratic ones, which tend
to be high frequency. This argument is supported
by the fact that the non-lexicalized model with in-
duced history features actually does better than the
lexicalized model without them (shown in the last
line of table 2, and discussed below).

The last four rows of table 2 show the effects of
reducing the use of induced history features. If
when computing history representations, we re-

8 The validation set is used to avoid repeated testing on the
standard testing set. The sentence with length greater than
100 was excluded. F-measure is (2 x LP x LR)I (LP LR).

move a node from D (top) and add its label to
f then we are replacing the induced
features of the node's derivation history with the
symbolic label of the node. This removes access
to more distant characteristics of the node's deriva-
tion history. Table 2 shows the performance of
models where this replacement is done for none
(Freq>200), one, or all of the nodes in D(top)
other than top, itself. The biggest decrease in
performance occurs when the left-corner ances-
tor's history representation is removed (ancestor
label). This implies that more distant top-down
constraints and constraints from the left context
are playing a big role in the success of the SSN
parser. Another big decrease in performance oc-
curs when the most recent child's history repre-
sentation is removed (child label). This implies
that more distant bottom-up constraints are also
playing a big role. There is also a decrease in
performance when the left-corner child's history
representation is remove (1c—child label). This
implies that the first child does tend to carry in-
formation which is relevant throughout the sub-
derivation for the node, and suggests that this child
deserves a special status. Finally, not using any of
these sources of induced history features (all la-
bels) results in dramatically worse performance,
with a 58% increase in F-measure error over using
all three.

8 Conclusions

This paper has presented a statistical left-corner
parser which uses a neural network to estimate the
parameters of its generative probability model. A
Simple Synchrony Network is trained to estimate
the probabilities of parse decisions conditioned on
the previous parse history, and these estimates are
used to efficiently search for the most probable
parse. When trained and tested on the standard
Penn Treebank datasets, the parser's performance
(88.8% F-measure) is within 1% of the best cur-
rent parsers for this task, despite using a small vo-
cabulary size (512 inputs).

This level of performance is achieved in large
part due to Simple Synchrony Networks' ability
to induce a finite representation of the unbounded
parse history. By automatically inducing features
of the parse history, this method avoids the need

137



to choose hand-crafted history features and their
associated independence assumptions. Crucial to
the success of this induction of history features
is imposing biases which focus the induction pro-
cess on structurally local aspects of the parse his-
tory. When the induced history features for struc-
turally local aspects of the parse history are re-
placed by hand-crafted features (namely node la-
bels), performance degrades dramatically. In ad-
dition to demonstrating the usefulness of a Sim-
ple Synchrony Network's induced history repre-
sentation, this work also adds to the diversity of
available broad coverage parsing methods (poten-
tially of great interest for ensemble learning) and
demonstrates the ability of neural network proba-
bility estimation to scale up to large datasets, un-
restricted structures, and fairly large vocabularies.

References

Christopher M. Bishop. 1995. Neural Networks for
Pattern Recognition. Oxford University Press, Ox-
ford, UK.

E. Black, F. Jelinek, J. Lafferty, D. Magerman, R. Mer-
cer, and S. Roukos. 1993. Towards history-based
grammars: Using richer models for probabilistic
parsing. In Proc. 31st Meeting of Association for
Computational Linguistics, pages 31-37, Columbus,
Ohio.

Rens Bod. 2001. What is the minimal set of fragments
that achieves maximal parse accuracy? In Proc.
34th Meeting of Association for Computational Lin-
guistics, pages 66-73.

Eugene Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. In Proc.
14th National Conference on Artificial Intelligence,
Providence, RI. AAAI Press/MIT Press.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proc. 1st Meeting of North Amer-
ican Chapter of Association for Computational Lin-
guistics, pages 132-139, Seattle, Washington.

Eugene Charniak. 2001. Immediate-head parsing for
language models. In Proc. 39th Meeting of Associa-
tion for Computational Linguistics, pages 116-223,
Toulouse France.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels
over discrete structures and the voted perceptron.
In Proc. 35th Meeting of Association for Computa-
tional Linguistics, pages 263-270.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia, PA.

Michael Collins. 2000. Discriminative reranking for
natural language parsing. In Proc. 17th Int. Conf on
Machine Learning, pages 175-182, Stanford, CA.

F. Costa, V. Lombardo, P. Frasconi, and G. Soda. 2001.
Wide coverage incremental parsing by learning at-
tachment preferences. In Proc. of the Conf of the
Italian Association for Artificial Intelligence.

James Henderson. 2000. A neural network parser that
handles sparse data. In Proc. 6th Int. Workshop on
Parsing Technologies, pages 123-134, Trento, Italy.

E.K.S. Ho and L.W. Chan. 1999. How to design a
connectionist holistic parser. Neural Computation,
11(8):1995-2016.

K. Hornik, M. Stinchcombe, and H. White. 1989.
Multilayer feedforward networks are universal ap-
proximators. Neural Networks, 2:359-366.

Mark Johnson. 1998. PCFG models of linguis-
tic tree representations. Computational Linguistics,
24(4):613-632.

Peter Lane and James Henderson. 2001. Incremental
syntactic parsing of natural language corpora with
simple synchrony networks. IEEE Transactions on
Knowledge and Data Engineering, 13 (2):219-231.

Christopher D. Manning and Bob Carpenter. 1997.
Probabilistic parsing using left corner language
models. In Proc. Mt. Workshop on Parsing Tech-
nologies, pages 147-158.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Adwait Ratnaparkhi 1996. A maximum entropy
model for part-of-speech tagging. In Proc. Conf on
Empirical Methods in Natural Language Process-
ing, pages 133-142, Univ. of Pennsylvania, PA.

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models. Machine
Learning, 34:151-175.

Brian Roark and Mark Johnson. 1999. Efficient prob-
abilistic top-down and left-corner parsing. In Proc.
37th Meeting of Association for Computational Lin-
guistics, pages 421-428.

D.J. Rosenkrantz and P.M. Lewis. 1970. Determinis-
tic left corner parsing. In Proc. 11th Symposium on
Switching and Automata Theory, pages 139-152.

138


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

