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Abstract

We present neural machine translation mod-
els for translating a sentence in a text by us-
ing a graph-based encoder which can consider
coreference relations provided within the text
explicitly. The graph-based encoder can dy-
namically encode the source text without at-
tending to all tokens in the text. In experi-
ments, our proposed models provide statisti-
cally significant improvement to the previous
approach of at most 0.9 points in the BLEU
score on the OpenSubtitle2018 English-to-
Japanese data set. Experimental results also
show that the graph-based encoder can handle
a longer text well, compared with the previous
approach.

1 Introduction

The quality of machine translators has re-
cently dramatically improved with Sequence-to-
Sequence (Seq2Seq) models (Bahdanau et al.,
2014). Most Seq2Seq models are used based on
the premise that each sentence is independently
translated one by one. In contrast to this premise,
real sentences are often an element of a larger unit,
such as a document. This means that a sentence
is not always semantically self-contained in itself.
To correctly interpret a sentence which is a part of
a document, it is important to consider its context,
preceding and/or succeeding sentences.

In order to tackle the problem, Seq2Seq mod-
els that can receive two sentences (Tiedemann
and Scherrer, 2017; Bawden et al., 2018; Voita
et al., 2018; Wang et al., 2017) have been uti-
lized. For capturing multiple-sentence informa-
tion more effectively, Miculicich et al. (2018);
Zhang et al. (2018) incorporated document-level
attention modules into Seq2Seq models. Sto-
janovski and Fraser (2018) proposed a Seq2Seq
model which can capture antecedents of pronouns

in the previous source sentence by using a coref-
erence resolution toolkit. To capture the entire
source text information, these models strongly de-
pend on attention distributions.

However, the space complexity of the attention
mechanism in the Seq2Seq model increases in pro-
portion to the square of the input sequence length,
because it tries to attend to all the words in the
source text. This characteristic prevents the model
from translating a long text. Furthermore, in trans-
lating into a pro-drop language such as Japanese,
longer contexts are required to generate accurate
and naturally concise sentences.

To avoid the problem, we propose a model
that can effectively capture contextual informa-
tion, preceding and succeeding sentences of the
source sentence to be translated, by constructing
an encoder that is based on explicit coreference
relations. The proposed model can directly take
into account relationships between sentences via a
graph structured encoder constructed with a coref-
erence resolution toolkit. Therefore, it does not
need to attend to all input tokens. This character-
istic enables our proposed model to handle more
sentences in a step, compared with the previous
models, and it may improve translation quality
when a source text has many sentences.

Experimental results on English-to-Japanese
translation pairs in OpenSubtitles2018 (Lison
et al., 2018) show that our proposed model can
significantly improve the previous model in terms
of BLEU scores. In addition, we observe that our
model is especially effective in translating a sen-
tence which is a part of a long text, compared to
the previous model.

2 Sequence-to-Sequence Model

In this section, we explain the standard Seq2Seq
model proposed by Bahdanau et al. (2014), which
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Figure 1: Network structure of the proposed model. Blue arrows indicate a forward hidden state merge operation
and green arrows indicate a backward hidden state merge operation. Both operations are based on a coreference
relation represented as red arrows. Attention distributions are calculated only on a currently translating sentence.

our proposed model is based on. We use LSTM
(Hochreiter and Schmidhuber, 1997) as recur-
rent neural network (RNN) structures in the en-
coder and the decoder. In the Seq2Seq model,
a probability of translating an input sentence
x = (x1, · · · , xTx) into an output sentence y =
(y1, · · · , yn) is represented as follows:

p (yi|y1, . . . , yi−1,x) = softmax(g (si, di)),

si = dec (si−1, emb(yi−1), di) ,

di =

Tx∑
j=1

a (si−1, hj)hj ,

ht = enc (emb(xt), ht−1, ht+1) ,

(1)

where i is the position of an output token, t is
the position of an input token, emb(·) is a func-
tion that returns the embedding of an input word,
g is a 2-layer feedforward neural network (FFNN),
dec is a decoder forward-LSTM, enc is an encoder
bidirectional-LSTM (Bi-LSTM), and a is a dot at-
tention (Luong et al., 2015) for calculating the at-
tention weight.

3 Graph-based Encoder with
Coreference Relations

Our proposed model can encode not only the sen-
tence to be translated but also its preceding and
succeeding sentences together, based on the re-
sults of coreference resolution. Therefore, infor-
mation about sentence relationships can be effec-
tively utilized. Figure1 shows the network struc-
ture of our proposed model. At first, input sen-
tences are analyzed by using a coreference resolu-
tion system. After that, the encoder part is struc-
tured based on the coreference resolution results,
and the input text is encoded into hidden states.
Then, the hidden states are converted to a trans-
lated text via attention distributions and the de-
coder. During the translation, the attention distri-

butions are only calculated for the currently trans-
lated sentence. In the next subsections, we explain
the details of each step. We denote a sequence of
N sentences as (X1, · · · , XN ), and j-th word in
Xi as xij hereafter.

3.1 Coreference Resolution
Multiple sentences in a source text (X1, · · · , XN )
are concatenated and then input to a coreference
resolution system. We use NeuralCoref1 as the
coreference resolution system. Let the length of
Xi be Ti. The concatenated token sequence is rep-
resented as:

(x11, · · · , x1T1
, x21, · · · , x2T2

, · · · , xN1 , · · · , xNTN
). (2)

The coreference resolution system extracts Nc

clusters of coreferring mentions (c1, · · · , cNc),
which are defined as:

ck = (maink, subk), (3)

where maink is a span of the representative men-
tion in a cluster of coreferring mentions, and subk
is a span of another mention in the cluster.2 In gen-
eral, because many mentions are in a single clus-
ter, the same maink is sometimes paired to differ-
ent mentions.

To use coreference relations in our graph-based
encoder, we need to consider word-based coref-
erence relations. Let head(·) be a function that
returns the first word of an input span and tail(·)
be a function that returns the last word of the input
span. When xij refers to xi

′
j′ , x

i
j and xi

′
j′ satisfy the

following conditions:

xi
′
j′ = tail(maink),

xij = head(subk).
(4)

1https://github.com/huggingface/neuralcoref. This code
is based on the work by Clark and Manning (2016).

2 We treat a nominal noun which is the antecedent of a
pronoun or a proper noun as a representative mention.
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I have two daughters . They are · · ·
main1 sub1

head(sub1)tail(main1)refers to a word

refers to a span

Figure 2: An example of a word-based coreference re-
lation.

Figure 2 shows an example of a word-based coref-
erence relation.

Furthermore, we denote a set of words which
are referred by word xij as ref(xij). Because the
number of words referred by a word is at most one,
the number of elements in ref(xij) is either 1 or
0. ref(xij) can be divided into either anaphora,
reff (x

i
j), or cataphora, refb(xij), as follows:

reff (x
i
j)= {(i′, j′)∈ref(xij)|i′<i ∨ (i′ = i ∧ j′<j)},

refb(x
i
j)= {(i′, j′)∈ref(xij)|i′>i ∨ (i′ = i ∧ j′>j)},

(5)

where (i′, j′) ∈ ref(xij) represents a reference
from xij to xi

′
j′ . The reff and refb are used to

decide the network structure of the encoder part in
the proposed model.

3.2 Graph-based Encoder
In this section, we explain how to use the co-
reference relations in the encoder. Similar to the
standard Seq2Seq model, the encoder of the pro-
posed model is based on Bi-LSTM. For each input
sentence Xi = (xi1, · · · ), the forward encoder cal-
culates the current hidden state

−→
h i

t at the position
of a word xit as follows:

−→
h i

t =
−−−−→
LSTM

(
emb(xit),m(

−→
h i

t−1, reff (x
i
t))
)
, (6)

where
−→
h i

t−1 is the previous hidden state, reff (xit)
is a set of words which are referred by xit and
m(·, ·) is a function which merges hidden state
vectors. In this paper, we propose the following
two functions as m(·, ·):
Coref-mean treats averaged hidden state vectors
as the merged vector, as follows:

m(
−→
h i

t−1, reff (x
i
t)) =

1

|reff (xit)|+ 1
(
−→
h i

t−1 +
∑

(i′,j′)∈reff (xi
t)

−→
h i′

j′). (7)

Coref-gate treats weighted sum of the hidden state
vectors as the merged vector, as follows:

m(
−→
h i

t−1, reff (x
i
t)) =

−→
h i

t−1 +
∑

(i′,j′)∈reff (xi
t)

βi
′
j′ �
−→
h i′

j′ , (8)

where � represents the element product for each
dimension and βi

′
j′ represents the importance of

−→
h i′

j′ . β
i′
j′ is calculated as follows:

βi
′
j′ = sigmoid(Wt

−→
h i′

j′ +Ws
−→
h i

t−1), (9)

where Wt and Ws are weight matrices.
The backward encoding is similarly processed

by replacing reff with refb. Finally, the forward
and backward hidden states are concatenated to
hit = [

−→
h i

t;
←−
h i

t] for each t. After that, hit is used
for translation, in place of ht in equation (1), with
attending only to the target sentence to be trans-
lated.

4 Experiments

4.1 Experimental Setting

We evaluated the proposed models on the English-
to-Japanese translation data set in OpenSubti-
tles2018 (Lison et al., 2018). We cut out consec-
utive n (= 1, 2, 3, 5, 7) sentences from the orig-
inal data set as a unit. After that, we randomly
selected 2000 units as test data, and the remaining
about 1.87 million units were used as training data.
All Japanese texts were tokenized by MeCab3 with
NEologd (Sato et al., 2017).

We set the vocabulary size for both source and
target sides as 32,000. Both the encoder and
the decoder were composed of 2-layer LSTMs.
The dimension size of word embeddings for both
source and target sides was set to 500. The dimen-
sion size of the encoder LSTM layers, the decoder
LSTM layers, and an attention layer were set to
500, 1000, and 500, respectively. Initial values for
weights were randomly sampled from a uniform
distribution within the range of -1 to 1 (Glorot and
Bengio, 2010).

Adam (Kingma and Ba, 2014) was used to up-
date weight parameters, and the learning rate was
set to 0.001. Learning was carried out for 200,000
steps for the entire training data. The mini-batch
size was set to 32, and the gradients were averaged
by the number of examples in each mini-batch.
The order of mini-batches was randomly shuffled
at the start of the training. Pytorch was used to
implement the models. All models were run on a
single GPU NVIDIA Tesla P1004 independently.

We changed the number of input sentences, n,
in the range of {1, 2, 3, 5, 7} to observe the rela-
tionships between translation quality and the num-
ber of input sentences. We input a sentence to be

3http://taku910.github.io/mecab/
4This device has a 16GB memory.
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Number of sentences (n)

1 2 3 5 7

Cor-m 7.84 8.06 8.33 8.65 8.68
Cor-g 7.96 8.46 8.60 8.75 8.79
Cor-g-c - - 8.58 8.73 8.70

Concat 7.69 7.90 7.91 7.81 ×

Table 1: BLEU scores for each model. The bold indi-
cates the best score. The underlined indicates that these
scores are statistically significantly improved from the
score of the baseline Concat at the same setting (p <
0.05). × represents that the model did not run due to
the shortage of GPU memories.

n = 1 n = 2 n = 3 n = 5 n = 7

12.8% 13.2% 13.8% 14.6% 15.4%

Table 2: The percentage of sentences containing coref-
erences in the test set.

translated and n− 1 sentences that precede the in-
put sentence.

As a baseline model, we used a method concate-
nating multiple input sentences and generating a
single sentence, proposed by Bawden et al. (2018)
(Concat)5. We compared our proposed mod-
els, Coref-mean (Cor-m) and Coref-gate (Cor-g),
with the baseline. In order to evaluate the ef-
fectiveness of succeeding sentences, we also ex-
perimented with the cases of inputting the same
number of preceding and succeeding sentences for
the target sentence to be translated at the center,
for Cor-g. We denote this setting as Coref-gate-
centered (Cor-g-c). The number of weight param-
eters for each model is 111,057k for the baseline
and Cor-m, and 111,558k for Cor-g.

We used BLEU scores (Papineni et al., 2002)
to evaluate the translation performance for each
model. All reported BLEU scores in the experi-
ments are averages for three times and are based
on MeCab tokenization. Significance tests were
conducted by paired bootstrap resampling (Koehn,
2004) with multevel (Clark et al., 2011)6.

5In our preliminary comparison, there are no statistically
significant differences in translation performances between
Concat and the method of inputting and outputting concate-
nated multiple sentences, also proposed by Bawden et al.
(2018). From the computational efficiency perspective, there-
fore, we chose Concat as our baseline.

6https://github.com/jhclark/multeval
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Figure 3: The ratio of token numbers in generated
translations to those in reference translations.

n=1 n=2 n=3 n=5 n=796
97
98
99

100
101
102
103
104

Ge
n 

ty
pe

 / 
Go

ld
 ty

pe
 (%

)

Concat
Cor-m
Cor-g

Figure 4: The ratio of token types in generated transla-
tions to those in reference translations.

4.2 Results and Analysis
Table 1 shows the results7. In this table, we can
observe that our proposed models, Cor-m and
Cor-g, outperformed the baseline Concat in terms
of BLEU scores at every unit length. Interestingly,
at the setting of n = 1, Cor-g also outperformed
Concat. As shown in Table 2, this is because
our proposed models can also use inter-sentential
coreference information for translation. In the set-
ting of n = 2, all the results improved from those
for n = 1. This is consistent to the reported results
in Bawden et al. (2018). In the setting of n > 2,
improvement of BLEU scores for Concat stopped
at n = 3, in contrast to the proposed models. This
indicates that the proposed model can handle more
sentences well by using their graph-based encoder
and provided coreference information.

The scores for Cor-g is always better than those
for Cor-m. From this result, we can say that the
gating mechanism in Cor-g works well. In ad-
dition, as shown in Figure 3, the translation of
Cor-g has a closer token length to the reference,
while Concat and Cor-m encounter severe under-
generation problems. The results in Figure 4 show
that in n > 2, Cor-g can maintain word coher-
ence without increasing word types in generated
sentences. Taking into account the gain of the
BLEU scores, these results support our estimation
that Cor-g can capture contexts well, compared to
Cor-m and Concat.

However, the scores for Cor-g-c degraded com-
pared to Cor-g at the same sentence numbers. This
result reflects a tendency that most coreferences

7These results are close to the reported BLEU scores of
the Ja-En caption translations in Pryzant et al. (2018)
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are anaphora, and cataphora is rarely observed in
the test set. Ignoring the succeeding sentences,
Cor-g-c at n = 3, 5, 7 is similar to the setting of
Cor-g with n = 2, 3, 4. Interestingly, Cor-g-c at
n = 3, 5 achieved better BLEU scores, compared
to Cor-g with n = 2, 3. This indicates that cat-
aphora information is also useful to translate many
sentences in a text.

5 Conclusion

In this paper, we proposed a Seq2Seq model that
can incorporate information in preceding and suc-
ceeding sentences of the translating sentence ef-
fectively, by taking into account provided coref-
erence relations explicitly. Experimental results
showed that the proposed models can improve
the translation quality in the setting of inputting
multiple sentences jointly, compared to the pre-
vious model. From these results, we could con-
clude that considering explicit coreference rela-
tions in the Seq2Seq model actually contributes
to improve the performances on the English-to-
Japanese translation.
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