
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing, pages 99–103
Hongkong, China, November 3, 2019. c©2019 Association for Computational Linguistics

99

BLCU-NLP at COIN - Shared Task: Stagewise Fine-tuning BERT for
Commonsense Inference in Everyday Narrations
Chunhua Liu * Shike Wang * Bohan Li * Dong Yu †*�

* Beijing Language and Culture University
† Key Laboratory of Intelligent Information Processing,

Institute of Computing Technology, Chinese Academy of Sciences

{chunhualiu596, shikewang98, bohanli.lavida}@gmail.com
yudong blcu@126.com

Abstract

This paper describes our system for COIN
Shared Task 1: Commonsense Inference in
Everyday Narrations. To inject more exter-
nal knowledge to better reason over the narra-
tive passage, question and answer, the system
adopts a stagewise fine-tuning method based
on pre-trained BERT model. More specifi-
cally, the first stage is to fine-tune on addi-
tional machine reading comprehension dataset
to learn more commonsense knowledge. The
second stage is to fine-tune on target-task
(MCScript2.0) with MCScript (2018) dataset
assisted. Experimental results show that
our system achieves significant improvements
over the baseline systems with 84.2% accuracy
on the official test dataset.

1 Introduction

The COIN Shared Task1 aims to evaluate a sys-
tem’s commonsense inference ability in everyday
narrations by selecting an appropriate answer from
two candidates for each question, which also can
be seen as a multiple-choice reading comprehen-
sion (MCRC) task. The most difficult part of this
task lies in about 50% of the questions cannot be
answered directly from the passage, because com-
monsense knowledge required to answer questions
is not missing. Commonsense knowledge is essen-
tial but challenging to acquire and represent be-
cause of its invisible and implicit proprieties. Ac-
cordingly, the key solution to this problem is how
to introduce world knowledge contained in addi-
tional databases or datasets into the system.

Neural networks have gained amazing results
in various machine reading comprehension tasks.
Typical strategy adapts neural encoder such as
LSTM (Long Short-Term Memory) (Hochreiter
and Schmidhuber, 1997) or CNN (Convolutional
Neural Network)(LeCun and Bengio, 1998) to en-
code a passage, a question and a candidate an-

swer separately and then employs attention mech-
anism to model interactions among them. This
kind of method performs well on questions that
can be answered from given passage texts but
shows limited performance on questions demand-
ing external knowledge to answer. Recently, the
approach of the pre-training language model on
large-scale free-texts to acquire external knowl-
edge and then transferring learned background
knowledge to a downstream task has displayed
promising improvements in a variety of natural
language processing tasks.

Compared with existing pre-trained language
models, like ELMo (Peters et al., 2018) and GPT
(Alec Radford, 2018), BERT stands out in lan-
guage representation and understanding by intro-
ducing masked language model and next sentence
prediction task. Hence, we choose BERT as the
basic model to explore how much a pre-trained
language model can help to solve the common-
sense inference problem. In this process, two pri-
mary questions are guiding this work:

• How much gains can a pre-trained language
model bring for the commonsense inference
task?

• How to add more commonsense knowledge
to a pre-trained language model to assist
commonsense inference?

For the first question, we designed several
groups of experiments to compare the perfor-
mance of BERTbase and BERTlarge on three
types of questions provided in the target task,
including text-based, script-based (also called
commonsense-based), and text-or-script.

For another question, we present a two-staged
fine-tuning approach to add more commonsense
knowledge to the model. This first stage is to
fine-tune on pre-trained encoder with additional



100

corpus beyond English Wikipedia and BooksCor-
pus Some other genre corpus, like news-wire texts,
English examine texts, and everyday narrations are
considered in this phase. This way empowers the
encoder to learn and store more knowledge about
the world and thus improve its commonsense in-
ference ability. The second stage is to fine-tune
the updated encoder with a top classification layer
on target-task with the support of additional com-
monsense datasets.

2 BERT for COIN-Everyday Narrations

2.1 How to Fine-tune BERT?

BERT is a bidirectional transformer encoder
trained on the task of masked language model and
next sentence prediction, equipping with powerful
language encoding capacity. Devlin et al. (2018)
provides two pre-trained model sizes: BERTbase

and BERTlarge with the different parameters, such
as layers {12, 24}, self-attention heads {12, 16},
and hidden size {768, 1024}. BERT can encode
any sequence less than 512 tokens, like a sentence
or a paragraph. Generally, the final hidden outputs
of the first token [CLS] is considered as the overall
representation of the whole input sequence.

When applying BERT to MCRC task, the input
token sequence is the concatenation of each candi-
date answer with the corresponding question and
passage in the following format:
[CLS] Passage [SEP] Question Candidate [SEP].
So, the final hidden state of [CLS] represents
the comprehensive understanding of the passage,
question and candidate answer. Additionally, a
classification layer is required to stack on the top
of the BERT model to score for each candidate an-
swer. The candidate who has the highest score
would be regarded as the correct answer. When
fine-tuning, the weight of both the BERT and clas-
sification layer are modified to adapt to the target
task with the goal of minimizing the cross-entropy
loss.

2.2 How powerful is BERT?

In this part, BERTbase and BERTlarge model are
fine-tuned as above described. Figure 1 show
the gap between baseline model Attentive Reader
(Hermann et al., 2015) re-implemented by Os-
termann et al. (2019) and two pre-trained BERT
models. The pre-trained models brings about
12.2% to 15.6% improvements, which obviously
outperform the baseline system.

Figure 1: Comparing pre-trained models with baseline
model.

Moreover, in order to compare the difference
between BERTbase and BERTlarge, we give the
statistics of their performance on three question
labels. Figure 2 illustrates that 1) Both models
are good at answering questions whose answer are
given in the corresponding passages. 2) Even text-
script questions can be answered based on either
given passages or external commonsense, it’s still
hard for BERTbase model to answer. 3) Com-
pared with BERTbase, BERTlarge shows signifi-
cant improvements in both script-based questions
and text-script questions. These observations re-
veal that training more texts with a larger model
is more likely to learn more commonsense knowl-
edge. So, we use BERTlarge model in the follow-
ing experiments.

Figure 2: Comparing two BERT models on three ques-
tion labels.

3 Stagewise Fine-tuning BERT

The overview of stage-wise fine-tuning BERT pre-
sented in this work is shown in Figure 3. It consists
of two phases: encoder fine-tuning stage, classifier
and encoder fine-tuning stage.



101

Figure 3: A view of two fine-tuning stages.

Dataset Name Content #Passages
RACE (Lai et al., 2017) Mid/High Exam 25K
ReCoRD (Zhang et al., 2018) News articles 80K
ROCStories (Mostafazadeh et al., 2016) Narrations 3K (dev + test)
MCScript (Ostermann et al., 2018) Narrations 2.1K
MCScript2.0 (Ostermann et al., 2019) Narrations 3.5K
Inscript (Modi et al., 2017) Narrations 1K
DES (Wanzare et al., 2019) Narrations 0.5K

Table 1: Datasets used in this paper for fine-tuning.

3.1 Encoder Fine-tuning

In this work, we denote the pre-trained BERTlarge

model including the embedding part as well as the
12 layers of transformer blocks as a whole and
name them as the encoder.

The encoder is responsible for sequence repre-
sentation by transforming raw input tokens into a
fixed representation. Weights in the encoder de-
cide how one token is represented and how one
token in a sequence interacts with another. There-
fore, allowing the encoder to witness more and
train longer can enhance its representation abil-
ity and thus able to encode new input with a wide
range of structures, writing styles and expressions.

Hence, in this phase, the key lies in how to find
more applicable data to train the encoder further,
also called fine-tune the encoder based on the pre-
trained BERTlarge. When choosing new data, we
take two aspects, the task form pertaining to the
MCRC and the content relating to everyday narra-
tions into consideration. In addition, based on the
number of datasets used for training, the encoder
fine-tuning can be classified into two categories:
single-dataset fine-tuning and multi-datasets fine-

tuning. The former means to fine-tune the encoder
using only a single dataset. The latter fine-tunes
the encoder by taking data from multiple datasets
as input. Table 1 lists datasets selected in this pa-
per.

For most datasets, only paragraphs or passages
are used as training data, whose questions and
answers are ignored. But to add more question-
answering information, we add some questions
and their answers to the passages, which is mo-
tivated by the task of the next sentence predic-
tion. For dataset like RACE, whose questions and
candidate answer is free-text, we randomly pick a
question for the passage as well as its answer and
then append it to the end of the passage. In this
way, the question is treated as the next sentence
for the final sentence of the passage, and similarly,
the answer can be seen as the next sentence for the
question. This technique makes it possible for the
encoder to learn the potential questioning and its
answer.

When fine-tuning, the model is still jointly
trained on the task of masked language model and
next sentence prediction. All weights are modified



102

Datasets for first stage Datasets for second stage Dev-acc(%) Test-acc(%)

- 84.8
MCScript2.0 84.8
MCScript 83.6
RACE MCScript2.0 84.9 -
ReCoRD 85.9
ROCStories 83.5
Inscript 83.6
DES 83.9

RACE MCScript2.0 + MCScript 85.1 -
RACE MCScript2.0 + MCScript-w/o-who-how 85.7 -

RACE+ReCoRD MCScript2.0 85.0 -
RACE+ReCoRD MCScript2.0 + MCScript 86.0 -
RACE+ReCoRD MCScript2.0 + MCScript-w/o-who-how 86.6 84.2
RACE+ReCoRD MCScript2.0 + SWAG 85.9 -
All Datasets MCScript2.0 + MCScript-w/o-who-how 84.7 -

Table 2: Main results.

when fine-tuned.

3.2 Classifier and Encoder Fine-tuning

The fist stage fine-tuning endows the encoder with
more new knowledge, while the second stage fine-
tuning focuses on adjusting weights in the encoder
to adapt to the target task. This phase is carried on
the fine-tuned encoder with the support of addi-
tional commonsense datasets, like MCScript (Os-
termann et al., 2018), SWAG (Zellers et al., 2018).
The most benefits come from the MCScript, which
is the dataset used for evaluation of SemEval 2018
Task 11. When doing experiments, an interest-
ing discovery is found that using the entire MC-
Script is not the best choice. Filtering some types
of questions leads to better results on the devel-
opment set of MCScript2.0. During fine-tuning,
a classification layer is also added on the top of
BERT and the training is guided by minimizing
the cross-entropy loss.

4 Experiments and Results

4.1 Data

COIN Shared Task 1 uses MCScript2.0 corpus,
which consists of three kinds of question labels,
including text-based, script-based, and text-script.
For text-based question, the answer can be de-
duced from the information provided in passages,
while script-based question can only be answered
with the support of external commonsense knowl-
edge. The text-script question can be answered ei-
ther depends on passages or external script knowl-

edge.

4.2 Experiment Setup

We use the Pytorch version of pre-trained BERT
implemented by huggingface1. Adam Optimizer
(Kingma and Ba, 2014) is used to optimize the
model, which is trained on TITAN RTX with 2
GPUs. Important hyper-parameters for training
are listed in Table 3.

Description first
stage

second
stage

t: tokens max length 350 300
e: fine-tune epoch {3,4} {3,4}
α: learning rate 3e-5 1e-5
b: batch size 32 64
g:gradient accumulation step 4 8

Table 3: Hyper-parameters settings used during train-
ing.

4.3 Results and Analysis

Table 2 demonstrates results of various trained
models, consisting of three groups. This first
group experiment is designed for first stage fin-
tune, so only the target dataset, which refers to
the MCScript2.0, is used in the second stage. The
second group is conducted to help find the most
suitable dataset to assist second-stage fine-tuning.
The last group is a combination of the previous
two groups.

1https://github.com/huggingface/pytorch-transformers



103

By observing the results in the first group, we
can see that using the dataset from target task to
first fine-tune the encoder didn’t bring any im-
provements, indicating that using the same data to
train model twice is unnecessary. Also, instead of
raising the accuracy, training with some datasets
even damage the model and diminish the accuracy.
This can be attributed to many reasons, for exam-
ple, the passage in ROCStories is too short com-
pared with the target task, the data size of Inscript
and DES is too small. However, with the prop of
RACE and ReCoRD, the model has secured some
advances. So, in the next phase fine-tuning, the
two datasets are mixed to fine-tune the encoder in
the first stage.

The second group of results points out that re-
moving the question types with who and how in
the MCScript can surprisingly increase the accu-
racy compared with using the whole set of MC-
Script. This is possibly caused by the different
data distribution in the two datasets.

Our final submitted model is first fine-tuned on
both RACE and ReCoRD and then fine-tuned with
data in MCScript without the question type of who
and how in MCScript2.0, which achieves the accu-
racy of 86.6% and 84.2% on the development set
and test set separately and ranks fourth on the final
test leaderboard.

5 Conclusion

This paper depicts our system that fine-tunes the
pre-trained BERT model with two stages, which
outperforms far further than the baseline model
and achieves the accuracy of 84.2% in the offi-
cial test dataset. Experimental results indicate that
both stages fine-tuning bring benefits to the model.
Besides, experiments reveal that BERTlarge excels
at commonsense inference task.

Acknowledgement

This work is funded by the open project of Key
Laboratory of Intelligent Information Process-
ing, Institute of Computing Technology, Chinese
Academy of Sciences (IIP2019-4).

References

Tim Salimans Ilya Sutskever Alec Radford,
Karthik Narasimhan. 2018. Improving language
understanding by generative pre-training.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Karl Moritz Hermann, Tomás Kociský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In NIPS.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard H. Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
EMNLP.

Yann LeCun and Yoshua Bengio. 1998. Convolutional
networks for images, speech, and time series.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2017. Inscript: Narrative
texts annotated with script information. CoRR,
abs/1703.05260.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vander-
wende, Pushmeet Kohli, and James F. Allen. 2016.
A corpus and evaluation framework for deeper
understanding of commonsense stories. ArXiv,
abs/1604.01696.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018. Mcscript: A
novel dataset for assessing machine comprehension
using script knowledge.

Simon Ostermann, Michael Roth, and Manfred Pinkal.
2019. MCScript2.0: A machine comprehension cor-
pus focused on script events and participants. In
Proceedings of the Eighth Joint Conference on Lex-
ical and Computational Semantics (*SEM 2019),
pages 103–117, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL.

Lilian D. A. Wanzare, Michael Roth, and Manfred
Pinkal. 2019. Detecting everyday scenarios in nar-
rative texts. ArXiv, abs/1906.04102.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. Swag: A large-scale adversarial dataset
for grounded commonsense inference. In EMNLP.

Shenmin Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension. ArXiv,
abs/1810.12885.

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
https://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.aclweb.org/anthology/D17-1082
https://www.aclweb.org/anthology/D17-1082
http://yann.lecun.com/exdb/publis/pdf/lecun-bengio-95a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-bengio-95a.pdf
http://arxiv.org/abs/1703.05260
http://arxiv.org/abs/1703.05260
https://www.aclweb.org/anthology/N16-1098
https://www.aclweb.org/anthology/N16-1098
https://www.aclweb.org/anthology/L18-1564
https://www.aclweb.org/anthology/L18-1564
https://www.aclweb.org/anthology/L18-1564
https://doi.org/10.18653/v1/S19-1012
https://doi.org/10.18653/v1/S19-1012
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/W19-3410
https://www.aclweb.org/anthology/W19-3410
https://www.aclweb.org/anthology/D18-1009
https://www.aclweb.org/anthology/D18-1009
https://arxiv.org/pdf/1810.12885.pdf
https://arxiv.org/pdf/1810.12885.pdf

