
Proceedings of the Second Workshop on Machine Reading for Question Answering, pages 191–195
Hong Kong, China, November 4, 2019. c©2019 Association for Computational Linguistics

191

Question Answering Using Hierarchical Attention on Top of BERT
Features

Reham Osama, Nagwa El-Makky and Marwan Torki
Computer and Systems Engineering Department

Alexandria University
Alexandria, Egypt

{eng-reham.osama, nagwamakky, mtorki}@alexu.edu.org

Abstract
Machine Comprehension (MC) tests the abil-
ity of the machine to answer a question about
a given passage. It requires modeling complex
interactions between the passage and the ques-
tion. Recently, attention mechanisms have
been successfully extended to machine com-
prehension. In this work, the question and pas-
sage are encoded using BERT language em-
beddings to better capture the respective repre-
sentations at a semantic level. Then, attention
and fusion are conducted horizontally and ver-
tically across layers at different levels of gran-
ularity between question and paragraph. Our
experiments were performed on the datasets
provided in MRQA shared task 2019 1

1 Introduction

The tasks of question answering (QA), especially
machine comprehension have gained significant
popularity over the past few years within the natu-
ral language processing and computer vision com-
munities. Systems trained end-to-end now achieve
promising results on a variety of tasks in the text
and image domains. The task of machine com-
prehension is challenging as it requires a compre-
hensive understanding of natural languages and
the ability to do further inference and reasoning.
Restricted by the limited volume of the annotated
datasets, early studies mainly relied on a pipeline
of NLP models to complete this task, such as se-
mantic parsing and linguistic annotation. Bene-
fiting from the availability of large datasets, e.g.,
SQuAD (Rajpurkar et al., 2016), rapid progress
has been made recently.

There have been advancements in multiple vari-
ations of the problem including visual question an-
swering and video question answering due to this
fast improvement in QA models. Attention mech-
anisms have a very significant role in increasing

1https://mrqa.github.io/shared

the performance of the models as they focus on
the targeted area in the passage. In this paper we
use BERT (Devlin et al., 2018) to obtain the rep-
resentation of both the passage and question, then
an encoder layer, which consists of recurrent neu-
ral networks, is used to build representations for
questions and passages, then a co-attention layer
and fusion followed by a self-attention layer are
used. Finally, an output layer is added to get the
index of both the start and end of the answer.

The rapid progress that has been made recently
was mainly due to the availability of SQuAD
dataset benchmark. The work in (Wang and Jiang,
2016) was one of the first to investigate the dataset.
The authors proposed an end-to-end architecture
based on match-LSTM and pointer networks. (Seo
et al., 2016) introduced the bi-directional atten-
tion flow network which captures the question-
document context at different levels of granular-
ity. (Chen et al., 2017) introduced a bilinear match
function and a few manual features. (Wang et al.,
2017) proposed a gated attention-based recurrent
network where self-match attention mechanism is
first incorporated. In (Liu et al., 2017) and (Shen
et al., 2017) the multi-turn memory networks are
designed to simulate multi-step reasoning in ma-
chine reading comprehension.

(Devlin et al., 2018) introduced a new language
representation model called BERT which is de-
signed to pre-train deep bidirectional representa-
tions from unlabeled text by jointly conditioning
on both left and right context in all layers. As a
result, the pre-trained BERT model can be fine-
tuned with just one additional output layer to cre-
ate state-of-the-art models for a wide range of
tasks including question answering. BERT makes
use of Transformer (Vaswani et al., 2017) which
is an attention mechanism that learns contextual
relations between words (or sub-words) in a text.
BERT uses the encoder mechanism from the trans-

https://mrqa.github.io/shared


192

former as the goal is to generate a language model.
BERT is considered a masked language model

as the input to the BERT model is masked before
entering the model. 15% of the words in each se-
quence are replaced with a [MASK] token. The
model then attempts to predict the original value of
the masked words, based on the context provided
by the other, non-masked, words in the sequence.

Due to the great effectiveness of the attention
mechanism in the performance of the machine
comprehension systems, we used two attention
mechanisms in this work similar to (Wang et al.,
2018), where in addition to the co-attention mech-
anism proposed in (Seo et al., 2016) we use a self
attention for each of the paragraph and question.
So, the output layer can use both of them while
predicting the start and end index of the answer.

2 Architecture

The model used in this work was inspired by some
of the components of (Devlin et al., 2018) and
(Wang et al., 2018).

We chose the components from these 2 mod-
els due to their effectiveness in solving the task
of machine comprehension. So, we expected that
merging the strong components from both models
will achieve better results than each one of them
individually.

The proposed architecture is explained in this
section and is shown in Figure 1.

2.1 Embedding Layer
For the input embeddings we used BERT pre-
trained models (Devlin et al., 2018) which is based
on word piece level tokenization. BERT has two
models that have the same architecture with differ-
ent sizes

1. BERT base: which consists of 12 transformer
blocks, 12 attention heads, and 110 million
parameters.

2. BERT large: which consists of 24 trans-
former blocks, 16 attention heads and, 340
million parameters.

BERT can be used in two ways. The first way is to
use it as a model and add a task-specific layer on
top of it to produce the required output and train
the model with the added layer. The second way
is to use it as a pre-trained language model while
either keeping the pre-trained weights as they are
or training them with your model.

In this work we used a pre-trained BERT base
model and we used the second way which is us-
ing the pre-trained model with training its weights
along with the model. Using BERT large model
is expected to yield better results when used. We
didn’t use it in this work due to the limited re-
sources we had, as the machine we had access to
couldn’t run BERT large model in its memory.

2.2 Encoder layer
The goal of this layer of the model is to trans-
form the discrete word tokens of question and pas-
sage to a sequence of continuous vector represen-
tations.

In this layer a Bi-LSTM network is used on top
of the embeddings provided by the previous layer
to model the temporal interactions between words.

2.3 Co-Attention Layer
This layer is similar to the co-attention layer used
in (Seo et al., 2016). Given the question and pas-
sage representation from the previous layer, a soft-
alignment matrix is built to calculate the shallow
semantic similarity between question and passage.
We use this similarity matrix to compute the atten-
tion between question and passage, which is fur-
ther used to obtain the attended vectors in passage
to question and question to passage direction, re-
spectively.

The output here is a passage-aware question
representation and a question-aware passage rep-
resentation. The question-aware passage repre-
sentation is calculated using the Passage to Ques-
tion (P2Q) Attention which signifies the question
words that are most relevant to each passage word.
The passage-aware question representation is cal-
culated using Question to Passage (Q2P) Atten-
tion which signifies the passage words that have
the closest similarity to one of the question words
and are hence critical for answering the question.

After calculating the aligned passage and ques-
tion representation, a fusion unit is used to com-
bine the original contextual representations and
the corresponding attention vectors for question
and passage.

There are several ways to perform the fusion ac-
cording to (Wang et al., 2018) but one of the sim-
plest ways, which we used here, is a concatena-
tion of the two representations. This fusion is per-
formed due to the importance of the original con-
textual representations in reflecting the semantics
at a more global level.



193

Figure 1: Model Architecture

2.4 Self attention Layer

In this layer, we separately consider the represen-
tations of question and passage, and further re-
fine the obtained information from the co-attention
layer. Since fusing information among context
words allows contextual information to flow close
to the correct answer, the self-attention layer is
used to further align the question and passage rep-
resentation against itself, so as to keep the global
sequence information in memory.

The idea of benefiting from the advantage of
self-alignment attention in addressing the long-
distance dependence was taken from (Wang et al.,
2017). To allow for more freedom of the align-
ing process, we used a bilinear self-alignment at-
tention function on the passage representation, in-
troduced in (Wang et al., 2018). We then fol-
low this layer with another fusion unit that com-
bines the question-aware passage representation
with the passage self-aware representation. Then,
a bidirectional LSTM is used to get the final con-
textual passage representation.

As for question side we follow the question en-
coding method used in (Chen et al., 2017) fol-
lowed by linear transformation to encode the ques-
tion representation to a single vector. First, an-
other contextual bidirectional LSTM network is

applied on top of the fused question representa-
tion Then we aggregate the resulting hidden units
into one single question vector, with a linear self-
alignment.

2.5 Output layer

Instead of predicting the start and end positions
based only on the passage representation, a top-
level bilinear match function is used to capture the
semantic relation between question and passage
representation from the previous layer in a match-
ing style.

The top model layer uses a bilinear matching
function to capture the interaction between outputs
from previous layers and locate the right answer
span.

The output layer is application-specific, in Ma-
chine comprehension task, we use pointer net-
works to predict the start and end position of the
answer, since it requires the model to find a contin-
uous span of the passage to answer the question.

3 Experiments

In this section, we first present the datasets used
for evaluation. Then, we explain the evaluation
metrics used, and finally we report the results af-
ter training the previously explained model on the



194

given datasets.

3.1 Datasets
In this work we used the datasets provided by the
MRQA 2019 shared task. The training datasets in-
cluded some benchmark datasets such as SQUAD
and NewsQA. In-domain and out-of-domain de-
velopment datasets are also included. Examples of
the out-of-domain datasets are DROP and RACE.

The datasets were adapted from several exist-
ing datasets from their original formats and set-
tings to conform to the unified extractive setting.
The changes made to the datasets to conform to
the new settings included:

1. Only a single, length-limited context is pro-
vided.

2. There are no unanswerable or non-span an-
swer questions.

3. All questions have at least one accepted an-
swer that is found exactly in the context.

3.2 Evaluation metrics
Performance is measured via two metrics: Exact
Match (EM) score and F1 score.

• Exact Match: is a binary measure (i.e.
true/false) of whether the system output
matches the ground truth answer exactly.
This is a considered a strict metric.

• F1: is a less strict metric. It is the harmonic
mean of precision and recall.

A span is judged to be an exact match if it matches
the answer string after performing normalization
consistent with the SQuAD dataset. Specifically:

1. The text is uncased.

2. All punctuation is stripped.

3. All articles, e.g., a, an ,the, etc. are removed.

4. All consecutive whitespace markers are com-
pressed to just a single normal space ’ ’.

3.3 Training details
We use the BertAdam optimizer, with a batch size
of 6 and initial learning rate of 0.0003. A dropout
rate of 0.2 is used for all LSTM layers. We take
F1 score as reward with Cross Entropy Loss. We
consider the BERT parameters trainable during the
training process.

Dataset EM F1
BioASQ 43.02 59.09
DROP 24.38 34.78
DuoRC.ParaphraseRC 38.46 49.64
RACE 24.57 37.38
RelationExtraction 67.87 81.30
TextbookQA 32.10 40.49

Table 1: Development Datasets Results.

Dataset EM F1
BioProcess 44.29 60.83
ComplexWebQuestions 41.87 51.21
MCTest 54.23 67.88
QAMR 47.97 66.01
QAST 50.91 75.51
TREC 27.72 48.71

Table 2: Test Datasets Results.

The training process takes roughly 48 hours on
a single Nvidia Tesla K80 GPU when training the
whole provided training and validation datasets,
and it takes roughly 12 hours when training a sam-
ple size of 20000 instances from each of the train-
ing datasets and a sample size of 2000 from each
of the development datasets.

3.4 Results
The results of our model on all the development
datasets are summarized in Table 1 and the results
on all the test datasets are summarized in Table 2.
The proposed model achieved an average EM of
41.45 and an average F1 of 56.07 on all datasets
(development and test sets combined).

The average F1 obtained for the development
datasets is 50.45 and the average F1 obtained for
the test datasets is 61.69

3.5 Other Experiments
Other experiments were performed either by
changing the model parameters or by trying to add
new componenets. But they didn’t achieve any in-
crease in the performance of the model.

The following is a brief description of each of
the tried experiments

1. Making BERT parameters not trainable.
In this experiment we tried to use the BERT
parameters as they are without retraining, but
this caused the performance to decrease sig-
nificantly.



195

2. Adding CNN character level embeddings
with different number of filters(64, 100).
In this experiment, the input to the model was
the concatenation of BERT embeddings and
the character level embeddings. At first we
used the settings in (Seo et al., 2016) but we
couldn’t train the model due to the memory
limitations.
When setting the BERT parameters to be
trainable, we cannot add the character level
embeddings. However, when we set the pa-
rameters to be untrainable ,which causes a
big decrease in the performance, the maxi-
mum number of filters we could use was 100.

3. Adding L2 regularization.
We expected that adding the L2 regularizer
will make the model achieve better results on
the validation and not seen datasets but this
didn’t happen.

4. Using Adamax optimizer instead of
BertAdam.
In this experiment, we used Adamax opti-
mizer instead of the BertAdam optimizer but
we didn’t achieve better performance.

4 Conclusion

In this work, we described our machine com-
prehension system which was designed for the
MRQA 2019 Shared Task. When supplied a ques-
tion and a passage it makes use of the BERT
embedding along with the hierarchical attention
model which consists of 2 parts, the co-attention
and the self-attention, to locate a continuous span
of the passage that is the answer to the question.

The proposed model achieved an average EM
of 41.45 and an average F1 of 56.07. After ana-
lyzing our results, we have identified many ways
for improving the system in the future. For in-
stance, other features can be added to the passage
and question representations such as adding char-
acter embeddings with BERT embeddings. Part-
Of-Speech (POS) and Named Entity Recognition
(NER) features can also be added in the self-
attention layer to better capture the information in
the passage.

Another way that will probably increase the per-
formance is using the proposed model with the
BERT large model to produce the embeddings in-
stead of BERT base in case there are more re-
sources available.

References
Danqi Chen, Adam Fisch, Jason Weston, and An-

toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Rui Liu, Wei Wei, Weiguang Mao, and Maria Chik-
ina. 2017. Phase conductor on multi-layered atten-
tions for machine comprehension. arXiv preprint
arXiv:1710.10504.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2017. Reasonet: Learning to stop
reading in machine comprehension. In Proceedings
of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1047–1055. ACM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905.

Wei Wang, Ming Yan, and Chen Wu. 2018. Multi-
granularity hierarchical attention fusion networks
for reading comprehension and question answering.
arXiv preprint arXiv:1811.11934.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 189–198.


