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Abstract

In this study, we investigate the employment
of the pre-trained BERT language model to
tackle question generation tasks. We intro-
duce three neural architectures built on top
of BERT for question generation tasks. The
first one is a straightforward BERT employ-
ment, which reveals the defects of directly us-
ing BERT for text generation. Accordingly,
we propose another two models by restructur-
ing our BERT employment into a sequential
manner for taking information from previous
decoded results. Our models are trained and
evaluated on the recent question-answering
dataset SQuAD. Experiment results show that
our best model yields state-of-the-art perfor-
mance which advances the BLEU 4 score of
the existing best models from 16.85 to 22.17.

1 Introduction

Question generation (QG) problem, which takes
a context text and an answer phase as input and
generates a question corresponding to the given
answer phase, has received tremendous interests
in recent years from both industrial and academic
natural language processing communities (Zhao
et al., 2018; Zhou et al., 2017; Du et al., 2017).
The state-of-the-art model mainly adopts neural
QG approaches: training a neural network based
on sequence-to-sequence framework. So far, the
best performing result is reported in (Zhao et al.,
2018), which advances the state-of-the-art results
from 13.9 to 16.85 (BLEU 4).

The existing QG models mainly rely on recur-
rent neural networks (RNN), e.g. long short-term
memory LSTM network (Hochreiter and Schmid-
huber, 1997) or gated recurrent unit (Chung et al.,
2014), augmented by attention mechanisms (Lu-
ong et al., 2015). However, the inherent sequential
nature of the RNN models suffers from the prob-
lem of handling long sequences. Therefore, the
existing QG models (Du et al., 2017; Zhou et al.,

2017) mainly use only sentence-level information
as a context text for question generation. When
applied to a paragraph-level context, the existing
models show significant performance degradation.
However, as indicated by (Du et al., 2017), provid-
ing paragraph-level information can improve QG
performance. For handling long context, the work
(Zhao et al., 2018) introduces a maxout pointer
mechanism with a gated self-attention encoder for
processing paragraph-level input. The work re-
ports state-of-the-art performance.

Recently, the NLP community has seen the ex-
citement around neural learning models that make
use of pre-trained language models (Devlin et al.,
2018; Radford et al., 2018). The latest develop-
ment is BERT, which has shown significant perfor-
mance improvement over various natural language
understanding tasks, such as document summa-
rization, document classification, etc.

Given the success of the BERT model, a natu-
ral question follows: can we leverage the BERT
models to further advance the state-of-the-art for
QG tasks? By our study, the answer is yes. In-
tuitively, the BERT employment brings two ad-
vantages for tackling the QG problem. First, as
reported by studies (Devlin et al., 2018; Rad-
ford et al., 2018), employing pre-training language
models has shown to be effective for improv-
ing NLP tasks. Second, the BERT model is a
stack of multi-layer Transformer block (Vaswani
et al., 2017), which eschews recurrence structure
and relies entirely on self-attention mechanism
to draw global dependencies between input se-
quences. With the Transformer blocks, processing
paragraph-level contexts for QG are therefore to
be possible.

In this study, we investigate the employment of
the pre-trained BERT language model to tackle
question generation tasks. We introduce three neu-
ral architectures built on top of BERT for question
generation tasks. The first one is a straightforward
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BERT employment, which reveals the defects of
directly using BERT for text generation. As will
be shown in the experiment, the naive BERT em-
ployment (called BERT-QG, BERT Question Gen-
eration) offers poor performance, as by construc-
tion, BERT produces all tokens at a time without
considering decoding results in previous steps. We
find that the question generated by the naive em-
ployment is not even a readable sentence. As a re-
sult, we propose a sequential question generation
model based on BERT as our second model called
BERT-SQG (BERT-Sequential Question Genera-
tion) for taking information from previous de-
coded results. As will shown in the performance
evaluation, the BERT-SQG model outperforms the
exiting best model (Zhao et al., 2018) by advanc-
ing the state-of-the-art results from 16.85 to 21.04
(BLEU 4).

Furthermore, we propose an augmented model
called BERT-HLSQG (Highlight Sequential Ques-
tion Generation) for further enhancing the per-
formance of the BERT-SQG. Our BERT-HLSQG
model works by marking the answer with [HL]
tokens to avoid possible ambiguity in specifying
answers for question generation. Such design fur-
ther improves the BLEU 4 score from 21.04 to
22.17.

The contribution of this paper is summarized as
follows.

• In this paper, we investigate the employment
of using the BERT model for QG tasks. We
show that the sequential structure is impor-
tant for the decoding of text generation. Aim-
ing at this point, we propose two sequential
question generation models based on BERT
in this paper.

• Furthermore, we propose a simple but ef-
fective input encoding scheme, which inserts
special highlighting tokens [HL] before and
after the given answer span, to address the
ambiguity issue when an answer phase ap-
pears multiple times in the question.

• Extensive experiments are conducted using
benchmark datasets, and the experiment re-
sults show the effectiveness of our question
generation model. Our model outperforms
the existing best models (Zhao et al., 2018)
and pushes the state-of-the-art result from
16.85 to 22.17 (BLEU 4).

The rest of this paper is organized as follows.
In Section 2, we discuss the related work for QG
generation. In Section 3, we review the BERT
model (the basic building block for our model). In
Section 4, we introduce our models for question
generation, and Section 5 provides the experiment
results. In Section 6, we conclude the paper and
discuss future work.

2 Related Work

The question generation has been mainly tackled
with two types of approaches. One is built on
top of heuristic rules that creates questions with
manually constructed template and ranks the gen-
erated results (Heilman and Smith, 2010; Mazidi
and Nielsen, 2014; Labutov et al., 2015). In (Lab-
utov et al., 2015), the authors propose to use a
crowdsourcing policy to generate question tem-
plates from a large amount of text to generate
question. The research in (Heilman and Smith,
2010) proposes to use manually written rules to
perform a sequence of general-purpose syntac-
tic transformations to turn declarative sentences
into questions. The generated questions are then
ranked by a logistic regression model to select
the qualified questions for later use. And, the re-
search in (Yao et al., 2012) proposes to convert
the sentence into a Minimal Recursion Seman-
tics (MRS) representation through linguistic pars-
ing, and then construct semantic structures and
grammar rules from the representation to gener-
ate questions through the manually designed rules.
Those approaches heavily depend on human ef-
fort, which makes them hard to scale up and being
generalized in various domains.

The other one, which is becoming increasingly
popular, is to train an end-to-end neural network
from scratch by using sequence to sequence or
encoder-decoder framework, e.g. (Du et al., 2017;
Yuan et al., 2017; Song et al., 2017; Zhou et al.,
2017; Zhao et al., 2018).

(Du et al., 2017) pioneered the work of au-
tomatic QG tasks using an end-to-end trainable
seq2seq neural model. Automatic and human eval-
uation results showed that the proposed model out-
performed the previous rule-based systems (Heil-
man and Smith, 2010; Rus et al., 2010). However,
in their study, there was no control about which
part of the context text the generated question was
asking about.

On the other hands, the work (Zhou et al., 2017;
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Figure 1: BERT input architecture. Input Transformer
block embedding is the sum of the three embeddings,
and then use the hidden vector to fine tune each task.

Subramanian et al., 2017; Yuan et al., 2017) pro-
pose to encode answer location information us-
ing an annotation vector corresponding to the an-
swer word positions. (Zhou et al., 2017) utilized
rich features of the passage including answer posi-
tions. (Subramanian et al., 2017) deployed a two-
stage neural model that detects important phrases
and accordingly generates questions conditioned
on the important phases. (Yuan et al., 2017) com-
bined supervised and reinforcement learning in the
training of their model using policy gradient tech-
niques to maximize several rewards that measure
question quality. Instead of using an annotation
vector to tag the answer locations, the (Song et al.,
2017) propose to employ a unified framework for
QG and question answering by encoding both the
answer and the passage with a multi-perspective
matching mechanism. Further, (Tang et al., 2017;
Wang et al., 2017) proposed joint models to ad-
dress QG and question answering as a multi-task
learning setting. (Duan et al., 2017) conducted
QG for improving question answering. Due to
the mixed objectives including question answer-
ing, the performance reported by their work was
lower than the state-of-the-art results. In (Zhao
et al., 2018), authors propose a maxout pointer
mechanism with a gated self-attention encoder to
solve the problem of processing long context for
question generation.

All above-mentioned models are RNN base
models, which suffers from the issue of process-
ing long context/sequences. Compared with the
RNN based model, our models based on BERT
composed by transformer models (Vaswani et al.,
2017). As shown in the later section, the question
generated by our model is more semantically co-
herent and fluent.

Figure 2: The BERT-QG architecture

3 BERT Overview

The BERT model is built by a stack of multi-layer
bidirectional Transformer encoder (Vaswani et al.,
2017). The BERT model has three architecture pa-
rameter settings: the number of layers (i.e., trans-
former blocks), the hidden size, and the number of
self-attention heads in a transformer block.

For using BERT model, the input is required to
be aligned as the BERT’s specific input sequence.
In general, a special token [CLS] is inserted as
the first token for BERT’s input sequence. The fi-
nal hidden state of the [CLS] token is designed
to be used as a final sequence representation for
classification tasks. The input token sequence can
be a pack of multiple sentences. To distinguish
the information from different sentences, a special
token [SEP] is added between the tokens of two
consecutive sentences. In addition, a learned em-
bedding is added to every token to denote whether
it belongs to which sentence. For example, given
a sentence pair (si, sj) where si contains |si| to-
kens and sj contains |sj | tokens, the BERT input
sequence is formulated as a sequence in the fol-
lowing form:

X = ([CLS], ti,1, ..., ti,|si|,[SEP], tj,1..., tj,|sj |)

As shown in Figure 1, the input representation
of a given token is the sum of three embeddings:
the token embeddings, the segmentation embed-
dings, and the position embeddings. Then the in-
put representation is fed forward into extra layers
to perform a fine-tuning procedure. The BERT
model can be employed in three language mod-
eling tasks: sequence-level classification, span-
level prediction, and token-level prediction tasks.
The fine-tuning procedure is performed in a task-
specific manner. The details of our fine-tuning
procedure are introduced in the later subsections.
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4 BERT for Question Generation

In the following subsections, we introduce our
models for QG. In Subsection 4.1, we introduce
the naive BERT employment (BERT-QG), which
serves as a first cut for using BERT for QG. BERT-
QG offer poor performance but draws some in-
sights for using BERT in QG tasks. Further, in
Subsection 4.2, we introduce BERT-SQG by con-
sidering sequential information when generating
questions. Last, in Subsection 4.3, we introduce
BERT-HLSQG which shows the SOTA results for
QG based on BERT.

4.1 BERT-QG

As an initial attempt, we first adapt the BERT
model for QG as follows. First, for a given context
paragraph C = [c1, ..., c|C|] and an answer phase A
= [a1, ..., a|A|], the input sequence X is aligned as

X = ([CLS], C,[SEP], A,[SEP])

Let BERT() be the BERT model. We first ob-
tain the hidden representation H ∈ R|X|×h by
H = BERT(X), where |X| is the length of the
input sequence and h is the size of the hidden
dimension. Then, H is passed to a dense layer
W ∈ Rh×|V | followed by a softmax function as
follows.

Pr(w|xi) = softmax(H ·W + b),∀xi ∈ X

q̂i = argmaxwPr(w|xi)

The softmax is applied along the dimension of
the sequence. All of the parameters of BERT
and W are fine-tuned jointly to maximize the log-
probability of the correct token qi. The model ar-
chitecture is shown in Figure 2. As such, a se-
quence of tokens [w1, ..., w|x|] is generated and we
use the first generated [SEP] symbol as the end
of the generated question sentence.

4.2 BERT-SQG

In text generation tasks, as proposed by (Sutskever
et al., 2014), considering the previous decoded re-
sults has significant impacts on the quality of the
generated text. However, in BERT-QG, the token
generation is performed without previous decoded
result information. Due to this consideration, we
propose a sequential question generation model
based on BERT (called BERT-SQG).

In BERT-SQG, we take into consideration the
previous decoded results for decoding a token.
We adapt the BERT model for question genera-
tion as follows. First, for a given context para-
graph C = [c1, ..., c|C|] and an answer phase A

= [a1, ..., a|A|], and Q̂ = [q̂1, ..., q̂i] the input se-
quence Xi is formulated as

Xi =([CLS], C,[SEP], A,[SEP], q̂1,

..., q̂i,[MASK])

Then, the input sequence Xi is represented by
the BERT embedding layers and then travel for-
ward into the BERT model. After that, we take
the final hidden state (i.e., the output of the Trans-
former blocks) for the last token [MASK] in the
input sequence. We denote the final hidden vector
of [MASK] as h[MASK] ∈ Rh. We adapt BERT
model by adding an affine layer WSQG ∈ Rh×|V |

to the output of the [MASK] token. We compute
the label probabilities Pr(w|Xi) ∈ R|V | by a soft-
max function as follows.

Pr(w|Xi) = softmax(h[MASK] ·WSQG + bSQG)

q̂i = argmaxwPr(w|Xi)

Subsequently, the newly generated token q̂i is
appended into X and the question generation pro-
cess is repeated (as illustrated in Figure 3) with
the new X until [SEP] is predicted. We report
the generated tokens as the predicted question. In
Table 1, we give an example of the actual running
of the model.

4.3 BERT-HLSQG
In BERT-SQG, we find there are two shortcom-
ings for producing quality results. First, when
processing lengthy context, we find that the gen-
erated question is often with lower quality. Sec-
ond, when an answer phase appears multiple times
in the context, there is ambiguity for select which
one to generate questions. As a result, poor re-
sults are reported when we use the BLEU score for
performance evaluation. To address these short-
comings, we propose to further restructure BERT-
SQG as follows. First, for a given context para-
graph C = [c1, ..., c|C|] and an answer phase A =
[a1, ..., a|A|], we integrate C and A into a new C ′

in the following form.

C ′ = [c1, c2, ...,[HL], a1, ..., a|A|,[HL], ..., c|C|]
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X xi
iter0 [CLS] The Super Bowl 50 was played at Santa Clara, California. [SEP] Santa Clara, California. [SEP] [MASK] Where
iter1 [CLS] The Super Bowl 50 was played at Santa Clara, California. [SEP] Santa Clara, California. [SEP] Where [MASK] did
iter2 [CLS] The Super Bowl 50 was played at Santa Clara, California. [SEP] Santa Clara, California. [SEP] Where did [MASK] Super
iter3 [CLS] The Super Bowl 50 was played at Santa Clara, California. [SEP] Santa Clara, California. [SEP] Where did Super [MASK] Bowl
iter4 [CLS] The Super Bowl 50 was played at Santa Clara, California. [SEP] Santa Clara, California. [SEP] Where did Super Bowl [MASK] 50
iter5 [CLS] The Super Bowl 50 was played at Santa Clara, California. [SEP] Santa Clara, California. [SEP] Where did Super Bowl 50 [MASK] take
iter6 [CLS] The Super Bowl 50 was played at Santa Clara, California. [SEP] Santa Clara, California. [SEP] Where did Super Bowl 50 take [MASK] place?
iter7 [CLS] The Super Bowl 50 was played at Santa Clara, California. [SEP] Santa Clara, California. [SEP] Where did Super Bowl 50 take place [MASK] [SEP]
iter8 [CLS] The Super Bowl 50 was played at Santa Clara, California. [SEP] Santa Clara, California. [SEP] Where did Super Bowl 50 take place [SEP] [MASK]

Table 1: BERT-SQG Running Example

Figure 3: The BERT-SQG architecture

In C ′, we design and insert a new token (i.e.,
[HL]) to indicate the answer phase in the context.
The observation for doing so is that we observe
that for a long context, the answer phase often ap-
pears multiple times in the context, which causes
ambiguity for the model for knowing which one as
a target to generate question sentence. Thus, we
design [HL] token to avoid possible ambiguity.
With C ′, the input sequence X can be formulated
as

Xi = ([CLS], C ′,[SEP], q̂1, ..., q̂i,[MASK])

Figure 4 shows the BERT-HLSQG model archi-
tecture. At each iteration, for generating qi, we
take the final hidden state vector h[MASK] ∈ Rh of
the last token [MASK] in the input sequence. and
connect it to an affine layer WHLSQG ∈ Rh×|V |.
We compute the label probabilities Pr(w|Xi) ∈
R|V | by a softmax function as follows.

Pr(w|Xi) =softmax(h[MASK] ·WHLSQG+

bHLSQG)

q̂i = argmaxwPr(w|Xi)

We show a running example of BERT-HLSQG
in Table 2.

5 Performance Evaluation

In this section, we present the performance evalua-
tion results on the QG task on SQuAD (Rajpurkar
et al., 2016) dataset.

5.1 Datasets
The SQuAD dataset contains 536 Wikipedia arti-
cles and 100K reading comprehension questions
(and the corresponding answers) posed about the
articles. Answers of the questions are text spans
in the articles.

We use the same data split settings as the previ-
ous work on the QG tasks (Du et al., 2017; Zhao
et al., 2018) to directly compare the state-of-the-
art results on QG tasks. Table 3 summarizes statis-
tics for the compared datasets.

• SQuAD 73K In this set, we follow the same
setting as (Du et al., 2017); the accessible
parts of the SQuAD training data are ran-
domly divided into a training set (80%), a de-
velopment set (10%), and a test set (10%).
We report results on the 10% test set.
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X xi
iter0 [CLS] The Super Bowl 50 was played at [HL] Santa Clara, California [HL] . [SEP][MASK] Where
iter1 [CLS] The Super Bowl 50 was played at [HL] Santa Clara, California [HL] . [SEP] Where [MASK] did
iter2 [CLS] The Super Bowl 50 was played at [HL] Santa Clara, California [HL] . [SEP] Where did [MASK] Super
iter3 [CLS] The Super Bowl 50 was played at [HL] Santa Clara, California [HL] . [SEP] Where did Super [MASK] Bowl
iter4 [CLS] The Super Bowl 50 was played at [HL] Santa Clara, California [HL] . [SEP] Where did Super Bowl [MASK] 50
iter5 [CLS] The Super Bowl 50 was played at [HL] Santa Clara, California [HL] . [SEP] Where did Super Bowl 50 [MASK] take
iter6 [CLS] The Super Bowl 50 was played at [HL] Santa Clara, California [HL] . [SEP] Where did Super Bowl 50 take [MASK] place?
iter7 [CLS] The Super Bowl 50 was played at [HL] Santa Clara, California [HL] . [SEP] Where did Super Bowl 50 take place [MASK] [SEP]
iter8 [CLS] The Super Bowl 50 was played at [HL] Santa Clara, California [HL] . [SEP] Where did Super Bowl 50 take place [SEP] [MASK]

Table 2: BERT-HLSQG Running Example

Figure 4: The BERT-HLSQG architecture

Train Test Dev
SQuAD 73K 73240 11877 10570
SQuAD 81K 81577 8964 8964

Table 3: Dataset statistics: SQuAD 73K is the setting
of (Du et al., 2017), and SQuAD 81K is the setting of
(Zhao et al., 2018).

• SQuAD 81K In this set, we follow the same
setting as (Zhao et al., 2018); the accessi-
ble SQuAD development data set is divided
into a development set (50%), and a test set
(50%). We report results on the 50% test set.

5.2 Performance Metrics
We use the evaluation package released by
(Sharma et al., 2017). The package includes
BLEU 1, BLEU 2, BLEU 3, BLEU 4 (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014) and ROUGE (Lin, 2004) evaluation scripts.
BLEU measures the average n-gram precision on
a set of reference sentences, with a penalty for
overly short sentences. BLEU-n is a BLEU score
variant that uses up to n-grams for counting co-
occurrences. METEOR is a recall-oriented metric,
which computes the similarity between the gener-
ated sentences and ground truth sentences by con-
sidering synonyms, stemming and paraphrases.
ROUGE is commonly employed to evaluate n-
grams recall of the summaries with gold standard
sentences as references. ROUGE-L (measured
based on the longest common subsequence) re-
sults are reported.

5.3 Implementation Details

We use the PyTorch version of BERT 1 to train our
BERT-QG, BERT-SQG and BERT-HLSQG mod-
els. The pre-trained model uses the officially pro-
vided BERTbase model (12 layers, 768 hidden di-
mensions, and 12 attention heads.) with a vocab of
30522 words. Dropout probability is set to 0.1 be-
tween transformer layers. The Adamax optimizer
is applied during the training process, with an ini-
tial learning rate of 5e-5. The batch size for the
update is set at 28. All our models use two TITAN
RTX GPUs for 5 epochs training. We use Dev.
data for epoch model to make predictions and se-
lect the highest accuracy rate as our score evalua-
tion model. Also, in our BERT-SQG and BERT-
HLSQG model, we use the Beam Search strategy
for sequence decoding. The beam size is set to 3.

5.4 Model Comparison

In this paper, we compare our models with the best
performing models (Du et al., 2017; Zhao et al.,
2018) in the literature. The compared models in
the experiment are:

• NQG-RC (Du et al., 2017): A seq2seq ques-
tion generation model based on bidirectional
LSTMs.

• PLQG (Zhao et al., 2018): A seq2seq net-
work which contains a gated self-attention
encoder and a maxout pointer decoder to en-

1https://github.com/huggingface/pytorch-pretrained-
BERT
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able the capability of handling long text in-
put. The PLQG model is the state-of-the-art
models for QG tasks.

5.5 Quantitative Results

Table 5 shows the comparison results using
sentence-level context texts and Table 6 shows the
results on paragraph-level context. We compare
the models using standard metric BLEU, ROUGE-
L, and METEOR.

We have the following findings to note about the
results. First, as can be observed, BERT-QG offers
poor performance. The performance of BERT-QG
is far from the results by other models. This result
is expected as BERT-QG generates the sentences
without considering the previous decoded results.
However, when taking into account the previous
decoded results (BERT-SQG), we effectively uti-
lize the power of BERT and yield the state-of-the-
art result compared with the existing RNN vari-
ants for QG. Also, we see that BERT-HLSQG suc-
cessfully address the limitation of BERT-SQG. As
shown in Table 5, BERT-HLSQG outperforms the
existing best performing model by 4-5% on both
benchmark datasets.

Second, the results in Table 6 further show that
BERT-SQG successfully processes the paragraph-
level contexts and further push the state-of-the-art
from 16.85 to 21.04 in terms of BLEU 4 score.
Note that NQG-RC and PLQG both use the RNN
architecture, and the RNN-based models all suf-
fer from the issue of consuming long text input.
We see that the BERT model based on Trans-
former blocks effectively addresses the issue of
processing long text. In addition, the improve-
ment of BERT-HLSQG is more obvious under
paragraph-level, which advances the score from
21.04 to 22.17 in terms of BLEU 4 score. Again,
this result validates that our BERT-HLSQG model
does improve the shortcomings of BERT-SQG and
achieves the best score at the paragraph-level con-
text.

5.6 Evaluation Result on Reading
Comprehension Task

One issue we find in our performance evalua-
tion is that we observe questions generated by
our models are good but with a very low BLEU
score. The problem for this result comes from that
BLEU score is token-basis; the generated ques-
tion is compared with a golden standard based

on the token similarity. A question might be ex-
pressed in different ways (but semantically the
same); there are many different ways of describ-
ing the same thing/question. We think the score
computed based on tokens can not truly reflect the
performance of our model.

In order to demonstrate the effectiveness of our
model, we further evaluate our model through
reading comprehension (RC) tasks. Given a con-
text and a question, a reading comprehension task
returns the answer span to the question from the
given context. In this experiment, we compare
and examine the impact of the question sentences
generated by the BERT-SQG and BERT-HLSQG
models on the RC task to further validate our
model.

5.6.1 Implementation Details
In this set of experiments, our goal is to exam-
ine the difference between using human-generated
questions and questions generated by our QG
models to train a reading comprehension model.
Specifically, we use the training data set provided
by the SQuAD and divided the training data set
into QG set (50%) and RC set (50%). Then, we
train BERT-SQG and BERT-HLSQG models us-
ing QG sets. The model is then used to gener-
ate questions to generate the RC-SQG and RC-
HLSQG sets. Finally, we use RC, RC-SQG and
RC-HLSQG sets for reading comprehension task
training, and compare Exact Match and F1 score
with the RC model (the one trained by RC set).

Our RC model is also implemented based on the
PyTorch version BERT model and fine-tuned on
the officially BERTbase pre-training model. The
dropout rate is set to 0.1 for all Transformer layers.
The optimizer is performed using AdamW, with an
initial learning rate of 3e-5. The batch size for the
update is set at 8. All RC models use two TITAN
RTX GPUs for 2 epochs training.

5.6.2 Results and Analysis
Table 4 shows the human question and generated
question experiment comparison results. We ob-
serve that the RC-SQG and RC-HLSQG data sets
generated using the model for question genera-
tion differed only 4-5% from the results of the
human question data set on the Exact Match and
the F1 Score is only 3-4%. The average token on
the question is also close to the human question.
These results demonstrate that the quality of the
problems generated by our model is close to hu-



161

Exact Match F1 score Question avg. tokens
RC 79.09 86.82 12.29
RC-SQG 74.07 82.91 12.09
RC-HLSQG 74.36 83.07 12.06

Table 4: Reading comprehension evaluation results

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L
NQG-RC 43.09 25.96 17.50 12.28 16.62 39.75

PLQG 43.47 28.23 20.40 15.32 19.29 43.91
SQuAD 73K BERT-QG 34.17 15.52 8.36 4.47 14.78 37.60

BERT-SQG 48.38 33.15 24.75 19.08 22.43 46.94
BERT-HLSQG 48.29 33.12 24.78 19.14 22.89 47.07

PLQG 44.51 29.07 21.06 15.82 19.67 44.24
SQuAD 81K BERT-QG 34.18 15.51 8.57 4.97 14.57 37.65

BERT-SQG 50.18 35.03 26.60 20.88 23.84 48.37
BERT-HLSQG 50.71 35.44 26.95 21.20 24.02 48.68

Table 5: Comparison between our model and the published methods using sentence level context

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L
NQG-RC 42.54 25.33 16.98 11.86 16.28 39.37

PLQG 45.07 29.58 21.60 16.38 20.25 44.48
SQuAD 73K BERT-QG 37.49 18.32 10.47 6.10 16.80 41.01

BERT-SQG 50.00 34.54 25.98 20.11 23.88 48.12
BERT-HLSQG 49.73 34.60 26.13 20.33 23.88 48.23

PLQG 45.69 30.25 22.16 16.85 20.62 44.99
SQuAD 81K BERT-QG 32.61 14.50 7.70 4.08 14.18 37.94

BERT-SQG 50.89 35.49 26.87 21.04 24.25 48.66
BERT-HLSQG 51.54 36.45 27.96 22.17 24.80 49.68

Table 6: Comparison between our model and the published methods using paragraph level context

mans, and the use of reading comprehension tasks
also has effective.

6 Conclusion

In this paper, we propose models that generate a
question from the input context (sentence or para-
graph) and the target answer based on BERT mod-
els. Our models are transformer models which
can handle long-term dependencies well. To make
the generation process sequential, we propose to
restructure our model to generate one word at a
time, using the encoded task inputs and the previ-
ously generated words as inputs to the transformer.
The best model outperforms previous RNN-based
state-of-the-arts in terms of standard NLG met-
rics (BLEU, ROUGE, METEOR) and of whether
a standard QA model can correctly answer the
generated questions. While our model is simple,
our model achieves state-of-the-art performance at
both sentence-level and paragraph-level input and

provides strong baselines for future research.
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