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Abstract

We consider the problem of automatically gen-
erating textual paraphrases with modified at-
tributes or properties, focusing on the setting
without parallel data (Hu et al., 2017; Shen
et al., 2017). This setting poses challenges
for evaluation. We show that the metric of
post-transfer classification accuracy is insuffi-
cient on its own, and propose additional met-
rics based on semantic preservation and flu-
ency as well as a way to combine them into
a single overall score. We contribute new loss
functions and training strategies to address the
different metrics. Semantic preservation is ad-
dressed by adding a cyclic consistency loss
and a loss based on paraphrase pairs, while flu-
ency is improved by integrating losses based
on style-specific language models. We experi-
ment with a Yelp sentiment dataset and a new
literature dataset that we propose, using multi-
ple models that extend prior work (Shen et al.,
2017). We demonstrate that our metrics corre-
late well with human judgments, at both the
sentence-level and system-level. Automatic
and manual evaluation also show large im-
provements over the baseline method of Shen
et al. (2017). We hope that our proposed met-
rics can speed up system development for new
textual transfer tasks while also encouraging
the community to address our three comple-
mentary aspects of transfer quality.

1 Introduction

We consider textual transfer, which we define
as the capability of generating textual paraphrases
with modified attributes or stylistic properties,
such as politeness (Sennrich et al., 2016a), sen-
timent (Hu et al., 2017; Shen et al., 2017), and
formality (Rao and Tetreault, 2018). An effec-
tive transfer system could benefit a range of user-

§Work completed while the author was a student at the
University of Chicago and a visiting student at Toyota Tech-
nological Institute at Chicago.

facing text generation applications such as dia-
logue (Ritter et al., 2011) and writing assistance
(Heidorn, 2000). It can also improve NLP systems
via data augmentation and domain adaptation.

However, one factor that makes textual transfer
difficult is the lack of parallel corpora. Advances
have been made in developing transfer methods
that do not require parallel corpora (see Section 2),
but issues remain with automatic evaluation met-
rics. Li et al. (2018) used crowdsourcing to obtain
manually-written references and used BLEU (Pa-
pineni et al., 2002) to evaluate sentiment transfer.
However, this approach is costly and difficult to
scale for arbitrary textual transfer tasks.

Researchers have thus turned to unsupervised
evaluation metrics that do not require references.
The most widely-used unsupervised evaluation
uses a pretrained style classifier and computes the
fraction of times the classifier was convinced of
transferred style (Shen et al., 2017). However, re-
lying solely on this metric leads to models that
completely distort the semantic content of the in-
put sentence. Table 1 illustrates this tendency.

We address this deficiency by identifying two
competing goals: preserving semantic content and
producing fluent output. We contribute two cor-
responding metrics. Since the metrics are un-
supervised, they can be used directly for tun-
ing and model selection, even on test data. The
three metric categories are complementary and
help us avoid degenerate behavior in model selec-
tion. For particular applications, practitioners can
choose the appropriate combination of our metrics
to achieve the desired balance among transfer, se-
mantic preservation, and fluency. It is often useful
to summarize the three metrics into one number,
which we discuss in Section 3.3.

We also add learning criteria to the frame-
work of Shen et al. (2017) to accord with our
new metrics. We encourage semantic preserva-
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tion by adding a “cyclic consistency” loss (to en-
sure that transfer is reversible) and a loss based
on paraphrase pairs (to show the model exam-
ples of content-preserving transformations). To
encourage fluent outputs, we add losses based
on pretrained corpus-specific language models.
We also experiment with multiple, complemen-
tary discriminators and find that they improve the
trade-off between post-transfer accuracy and se-
mantic preservation.

To demonstrate the effectiveness of our met-
rics, we experiment with textual transfer models
discussed above, using both their Yelp polarity
dataset and a new literature dataset that we pro-
pose. Across model variants, our metrics correlate
well with human judgments, at both the sentence-
level and system-level.

2 Related Work

Textual Transfer Evaluation Recent work has
included human evaluation of the three categories
(post-transfer style accuracy, semantic preserva-
tion, fluency), but does not propose automatic
evaluation metrics for all three (Li et al., 2018;
Prabhumoye et al., 2018; Chen et al., 2018; Zhang
et al., 2018). There have been recent proposals
for supervised evaluation metrics (Li et al., 2018),
but these require annotation and are therefore un-
available for new textual transfer tasks. There is a
great deal of recent work in textual transfer (Yang
et al., 2018b; Santos et al., 2018; Zhang et al.,
2018; Logeswaran et al., 2018; Nikolov and Hahn-
loser, 2018), but all either lack certain categories
of unsupervised metric or lack human validation
of them, which we contribute. Moreover, the tex-
tual transfer community lacks discussion of early
stopping criteria and methods of holistic model
comparison. We propose a one-number summary
for transfer quality, which can be used to select
and compare models.

In contemporaneous work, Mir et al. (2019)
similarly proposed three types of metrics for style
transfer tasks. There are two main differences
compared to our work: (1) They use a style-
keyword masking procedure before evaluating se-
mantic similarity, which works on the Yelp dataset
(the only dataset Mir et al. (2019) test on) but does
not work on our Literature dataset or similarly
complicated tasks, because the masking proce-
dure goes against preserving content-specific non-
style-related words. (2) They do not provide a

way of aggregating three metrics for the purpose
of model selection and overall comparison. We
address these two problems, and we also propose
metrics that are simple in addition to being ef-
fective, which is beneficial for ease of use and
widespread adoption.

Textual Transfer Models In terms of generat-
ing the transferred sentences, to address the lack
of parallel data, Hu et al. (2017) used variational
autoencoders to generate content representations
devoid of style, which can be converted to sen-
tences with a specific style. Ficler and Goldberg
(2017) used conditional language models to gen-
erate sentences where the desired content and style
are conditioning contexts. Li et al. (2018) used a
feature-based approach that deletes characteristic
words from the original sentence, retrieves simi-
lar sentences in the target corpus, and generates
based on the original sentence and the character-
istic words from the retrieved sentences. Xu et al.
(2018) integrated reinforcement learning into the
textual transfer problem. Another way to address
the lack of parallel data is to use learning frame-
works based on adversarial objectives (Goodfel-
low et al., 2014); several have done so for tex-
tual transfer (Yu et al., 2017; Li et al., 2017; Yang
et al., 2018a; Shen et al., 2017; Fu et al., 2018).
Recent work uses target-domain language models
as discriminators to provide more stable feedback
in learning (Yang et al., 2018b).

To preserve semantics more explicitly, Fu et al.
(2018) use a multi-decoder model to learn content
representations that do not reflect styles. Shetty
et al. (2017) use a cycle constraint that penalizes
L1 distance between input and round-trip transfer
reconstruction. Our cycle consistency loss is in-
spired by Shetty et al. (2017), together with the
idea of back translation in unsupervised neural
machine translation (Artetxe et al., 2017; Lample
et al., 2017), and the idea of cycle constraints in
image generation by Zhu et al. (2017).

3 Evaluation

3.1 Issues with Most Existing Methods

Prior work in automatic evaluation of textual
transfer has focused on post-transfer classifica-
tion accuracy (“Acc”), computed by using a pre-
trained classifier to measure classification accu-
racy of transferred texts (Hu et al., 2017; Shen
et al., 2017). However, there is a problem with
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#ep Acc Sim Sentence

original input the host that walked us to the table and
left without a word .

0.5 0.87 0.65 the food is the best and the food is the .
3.3 0.72 0.75 the owner that went to to the table and

made a smile .
7.5 0.58 0.81 the host that walked through to the ta-

ble and are quite perfect !

Table 1: Examples showing why Acc is insufficient.
The original sentence has negative sentiment, and the
goal is to transfer to positive. #ep is number of epochs
trained when generating the sentence and Sim (de-
scribed below) is the semantic similarity to the original
sentence. High Acc is associated with low Sim.

relying solely on this metric. Table 1 shows ex-
amples of transferred sentences at several points
in training the model of Shen et al. (2017). Acc is
highest very early in training and decreases over
time as the outputs become a stronger semantic
match to the input, a trend we show in more detail
in Section 6. Thus transfer quality is inversely pro-
portional to semantic similarity to the input sen-
tence, meaning that these metrics are complemen-
tary and difficult to optimize simultaneously.

We also identify a third category of metric,
namely fluency of the transferred sentence, and
similarly find it to be complementary to the first
two. These three metrics can be used to eval-
uate textual transfer systems and to do hyperpa-
rameter tuning and early stopping. In our experi-
ments, we found that training typically converges
to a point that gives poor Acc. Intermediate re-
sults are much better under a combination of all
three unsupervised metrics. Stopping criteria are
rarely discussed in prior work on textual transfer.

3.2 Unsupervised Evaluation Metrics

We now describe our proposals. We validate the
metrics with human judgments in Section 6.3.

Post-transfer classification accuracy (“Acc”):
This metric was mentioned above. We use a CNN
(Kim, 2014) trained to classify a sentence as be-
ing from X0 or X1 (two corpora corresponding to
different styles or attributes). Then Acc is the per-
centage of transferred sentences that are classified
as belonging to the transferred class.

Semantic Similarity (“Sim”): We compute se-
mantic similarity between the input and trans-
ferred sentences. We embed sentences by averag-
ing their word embeddings weighted by idf scores,

where idf(q) = log(|C| · |{s ∈ C : q ∈ s}|−1) (q
is a word, s is a sentence, C = X0 ∪X1). We use
300-dimensional GloVe word embeddings (Pen-
nington et al., 2014). Then, Sim is the average of
the cosine similarities over all original/transferred
sentence pairs. Though this metric is quite simple,
we show empirically that it is effective in captur-
ing semantic similarity. Simplicity in evaluation
metrics is beneficial for computational efficiency
and widespread adoption. The quality of transfer
evaluations will be significantly boosted with even
such a simple metric. We also experimented with
METEOR (Denkowski and Lavie, 2014). How-
ever, given that we found it to be strongly corre-
lated with Sim (shown in supplemental materials),
we adopt Sim due to its computational efficiency
and simplicity.

Different textual transfer tasks may require dif-
ferent degrees of semantic preservation. Our sum-
mary metric, described in Section 3.3, can be
tailored by practitioners for various datasets and
tasks which may require more or less weight on
semantic preservation.

Fluency (“PP”): Transferred sentences can ex-
hibit high Acc and Sim while still being ungram-
matical. So we add a third unsupervised metric
to target fluency. We compute perplexity (“PP”)
of the transferred corpus, using a language model
pretrained on the concatenation of X0 and X1.
We note that perplexity is distinct from fluency.
However, certain measures based on perplexity
have been shown to correlate with sentence-level
human fluency judgments (Gamon et al., 2005;
Kann et al., 2018). Furthermore, as discussed
in Section 3.3, we punish abnormally small per-
plexities, as transferred texts with such perplexi-
ties typically consist entirely of words and phrases
that do not result in meaningful sentences. Our
summary metric, described in Section 3.3, can be
tailored by practitioners for various datasets and
tasks which may require more or less weight on
semantic preservation.

3.3 Summarizing Metrics into One Score

It is often useful to summarize multiple metrics
into one number, for ease of tuning and model se-
lection. To do so, we propose an adjusted geomet-
ric mean (GM) of a generated sentence q:

GMt(q) =
(
[100 ·Acc− t1]+ · [100 · Sim− t2]+

·min{[t3 − PP]+, [PP− t4]+}
) 1

3 (1)
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where t = (ti)i∈[4], and [·]+ = max(·, 0). Note
that as discussed above, we punish abnormally
small perplexities by setting t4.

When choosing models, different practition-
ers may prefer different trade-offs of Acc, Sim,
and PP. As one example, we provide a set of
parameters based on our experiments: t =
(63, 71, 97,−37). We sampled 300 pairs of trans-
ferred sentences from a range of models from our
two different tasks (Yelp and literature) and asked
annotators which of the two sentences is better.
We denote a pair of sentences by (y+, y−) where
y+ is preferred. We train the parameters t using
the following loss:

LGM(t) = max(0,−GMt(y
+) + GMt(y

−) + 1)

In future work, a richer function f(Acc,Sim,PP)
could be learned from additional annotated data,
and more diverse textual transfer tasks can be in-
tegrated into the parameter training.

4 Textual Transfer Models

The textual transfer systems introduced below are
designed to target the metrics. These system vari-
ants are also used for metric evaluation. Note that
each variant of the textual transfer system uses dif-
ferent components described below.

Our model is based on Shen et al. (2017). We
define y ∈ R200 and z ∈ R500 to be latent
style and content variables, respectively. X0 and
X1 are two corpora containing sentences x(i)

0 and
x
(i)
1 respectively, where the word embeddings are

in R100. We transfer using an encoder-decoder
framework. The encoder E : X × Y → Z
(where X ,Y,Z are sentence domain, style space,
and content space, respectively) is defined using
an RNN with gated recurrent unit (GRU; Chung
et al., 2014) cells. The decoder/generator G :
Y × Z → X is defined also using a GRU RNN.
We use x̃ to denote the style-transferred version
of x. We want x̃

(i)
t = G(y1−t, E(x

(i)
t ,yt)) for

t ∈ {0, 1}.

4.1 Reconstruction and Adversarial Losses
Shen et al. (2017) used two families of losses
for training: reconstruction and adversarial losses.
The reconstruction loss solely helps the encoder
and decoder work well at encoding and generating
natural language, without any attempt at transfer:
Lrec(θE , θG)

=
∑1

t=0 Ext

[
− log pG(xt | yt, E(xt,yt))

]
(2)

The loss seeks to ensure that when a sentence xt is
encoded to its content vector and then decoded to
generate a sentence, the generated sentence should
match xt. For their adversarial loss, Shen et al.
(2017) used a pair of discriminators: D0 tries to
distinguish between x0 and x̃1, and D1 between
x1 and x̃0. In particular, decoderG’s hidden states
are aligned instead of output words.

Ladv t(θE , θG, θDt) = − 1
k

∑k
i=1 logDt(h

(i)
t )

− 1
k

∑k
i=1 log(1−Dt(h̃

(i)
1−t)) (3)

where k is the size of a mini-batch. Dt outputs
the probability that its input is from style t where
the classifiers are based on the convolutional neu-
ral network from Kim (2014). The CNNs use fil-
ter n-gram sizes of 3, 4, and 5, with 128 filters
each. We obtain hidden states h by unfolding
G from the initial state (yt, z

(i)
t ) and feeding in

x
(i)
t . We obtain hidden states h̃ by unfolding G

from (y1−t, z
(i)
t ) and feeding in the previous out-

put probability distributions.

4.2 Cyclic Consistency Loss

We use a “cyclic consistency” loss (Zhu et al.,
2017) to encourage already-transferred sentences
to be able to be recovered by transferring back
again. This loss is similar to Lrec except we now
transfer style twice in the loss. Recall that we seek
to transfer xt to x̃t. After successful transfer, we
expect x̃t to have style y1−t, and ˜̃xt (transferred
back from x̃t) to have style yt. We want ˜̃xt to be
very close to the original untransferred xt. The
loss is defined as

Lcyc(θE , θG)=
∑1

t=0 Ext

[
−log pG(xt |yt, z̃t)

]
(4)

where z̃t = E(G(y1−t, E(xt,yt)),y1−t) or,
more concisely, z̃t = E(x̃t,y1−t).

To use this loss, the first step is to transfer sen-
tences xt from style t to 1− t to get x̃t. The sec-
ond step is to transfer x̃t of style 1− t back to t
so that we can compute the loss of the words in
xt using probability distributions computed by the
decoder. Backpropagation on the embedding, en-
coder, and decoder parameters will only be based
on the second step, because the first step involves
argmax operations which prevent backpropaga-
tion. Still, we find that the cyclic loss greatly im-
proves semantic preservation during transfer.
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4.3 Paraphrase Loss
While Lrec provides the model with one way to
preserve style (i.e., simply reproduce the input),
the model does not see any examples of style-
preserving paraphrases. To address this, we add a
paraphrase loss very similar to losses used in neu-
ral machine translation. We define the loss on a
sentential paraphrase pair 〈u,v〉 and assume that
u and v have the same style and content. The loss
is the sum of token-level log losses for generating
each word in v conditioned on the encoding of u:

Lpara(θE , θG)

=
∑1

t=0 E〈u,v〉
[
−log pG(v | yt, E(u,yt))

]
(5)

For paraphrase pairs, we use the ParaNMT-50M
dataset (Wieting and Gimpel, 2018).1

4.4 Language Modeling Loss
We attempt to improve fluency (our third metric)
and assist transfer with a loss based on matching a
pretrained language model for the target style. The
loss is the cross entropy (CE) between the proba-
bility distribution from this language model and
the distribution from the decoder:

Llang(θE , θG)=
∑1

t=0Ext

[∑
iCE(lt,i,gt,i)

]
(6)

where lt,i and gt,i are distributions over the vocab-
ulary defined as follows:

lt,i = pLM 1−t( · | x̃t1:(i−1)
)

gt,i = pG( · | x̃t1:(i−1)
,y1−t, E(xt,yt))

where · stands for all words in the vocabulary built
from the corpora. When transferring from style t
to 1 − t, lt,i is the distribution under the language
model pLM 1−t pretrained on sentences from style
1− t and gt,i is the distribution under the decoder
G. The two distributions lt,i and gt,i are over
words at position i given the i − 1 words already
predicted by the decoder. The two style-specific
language models are pretrained on the corpora cor-
responding to the two styles. They are GRU RNNs
with a dropout probability of 0.5, and they are kept
fixed during the training of the transfer network.

4.5 Multiple Discriminators
Note that each of the textual transfer system vari-
ants uses different losses or components described

1We first filter out sentence pairs where one sentence is
the substring of another, and then randomly select 90K pairs.

in this section. To create more variants, we add a
second pair of discriminators, D′0 and D′1, to the
adversarial loss to address the possible mode col-
lapse problem (Nguyen et al., 2017). In particular,
we use CNNs with n-gram filter sizes of 3, 4, and
5 for D0 and D1, and we use CNNs with n-gram
sizes of 1, 2, and 3 for D′0 and D′1. Also, for D′0
and D′1, we use the Wasserstein GAN (WGAN)
framework (Arjovsky et al., 2017). The adversar-
ial loss takes the following form:

Ladv ′t
(θE , θG, θD′t) = 1

k

∑k
i=1

[
D′t(h̃

(i)
t )

−D′t(h
(i)
t ) + ξ(‖∇◦

h
(i)
t

D′t(
◦
h
(i)
t )‖2 − 1)2

]
(7)

where
◦
h
(i)
t = εih

(i)
t + (1 − εi)h̃

(i)
t where εi ∼

Uniform([0, 1]) is sampled for each training in-
stance. The adversarial loss is based on Arjovsky
et al. (2017),2 with the exception that we use the
hidden states of the decoder instead of word dis-
tributions as inputs to D′t, similar to Eq. (3).

We choose WGAN in the hope that its differen-
tiability properties can help avoid vanishing gra-
dient and mode collapse problems. We expect the
generator to receive helpful gradients even if the
discriminators perform well. This approach leads
to much better outputs, as shown below.

4.6 Summary
We iteratively update (1) θD0 , θD1 , θD′0 , and θD′1
by gradient descent on Ladv0 , Ladv1 , Ladv ′0

, and
Ladv ′1

, respectively, and (2) θE , θG by gradient de-
scent on Ltotal = λ1Lrec + λ2Lpara + λ3Lcyc +
λ4Llang−λ5(Ladv0 +Ladv1)−λ6(Ladv ′0

+Ladv ′1
).

Depending on which model is being trained (see
Table 2), the λi’s for the unused losses will be
zero. More details are shown in Section 5. The
appendix shows the full algorithm.

5 Experimental Setup

5.1 Datasets
Yelp sentiment. We use the same Yelp dataset as
Shen et al. (2017), which uses corpora of positive
and negative Yelp reviews. The goal of the transfer
task is to generate rewritten sentences with similar
content but inverted sentiment. We use the same
train/development/test split as Shen et al. (2017).
The dataset has 268K, 38K, 76K positive train-
ing, development, and test sentences, respectively,
and 179K/25K/51K negative sentences. Like Shen

2We use a default value of ξ = 10.
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et al. (2017), we only use sentences with 15 or
fewer words.

Literature. We consider two corpora of litera-
ture. The first corpus contains works of Charles
Dickens collected from Project Gutenberg. The
second corpus is comprised of modern literature
from the Toronto Books Corpus (Zhu et al., 2015).
Sentences longer than 25 words are removed. Un-
like the Yelp dataset, the two corpora have very
different vocabularies. This dataset poses chal-
lenges for the textual transfer task, and it provides
diverse data for assessing quality of our evalua-
tion system. Given the different and sizable vo-
cabulary, we preprocess by using the named en-
tity recognizer in Stanford CoreNLP (Manning
et al., 2014) to replace names and locations with -
PERSON- and -LOCATION- tags, respectively. We
also use byte-pair encoding (BPE), commonly
used in generation tasks (Sennrich et al., 2016b).
We only use sentences with lengths between 6 and
25. The resulting dataset has 156K, 5K, 5K Dick-
ens training, development, and testing sentences,
respectively, and 165K/5K/5K modern literature
sentences.

5.2 Hyperparameter Settings
Section 4.6 requires setting the λ weights for each
component. Depending on which model is being
trained (see Table 2), the λi’s for the unused losses
will be zero. Otherwise, we set λ1 = 1, λ2 = 0.2,
λ3 = 5, λ4 = 10−3, λ5 = 1, λ6 = 2−ep where ep
is the number of epochs. For optimization we use
Adam (Kingma and Ba, 2014) with a learning rate
of 10−4. We implement our models using Tensor-
Flow (et al., 2015).3 Code is available via the first
author’s webpage yzpang.me.

5.3 Pretrained Evaluation Models
For the pretrained classifiers, the accuracies on the
Yelp and Literature development sets are 0.974
and 0.933, respectively. For language models, the
perplexities on the Yelp and Literature develop-
ment sets are 27.4 and 40.8, respectively.

6 Results and Analysis

6.1 Analyzing Metric Relationships
Table 2 shows results for the Yelp dataset and Fig-
ure 1 plots learning trajectories of those models.

3Our implementation is based on code from Shen et al.
(2017).

Acc Sim PP GM

M0: Shen et al. (2017) 0.818 0.719 37.3 10.0
M1: M0+para 0.819 0.734 26.3 14.2
M2: M0+cyc 0.813 0.770 36.4 18.8
M3: M0+cyc+lang 0.807 0.796 28.4 21.5
M4: M0+cyc+para 0.798 0.783 39.7 19.2
M5: M0+cyc+para+lang 0.804 0.785 27.1 20.3
M6: M0+cyc+2d 0.805 0.817 43.3 21.6
M7: M6+para+lang 0.818 0.805 29.0 22.8

Table 2: Yelp results with various systems and auto-
matic metrics at a nearly-fixed Acc, with best scores in
boldface. We use M0 to denote Shen et al. (2017).

Acc Sim PP GM

M0: Shen et al. (2017) 0.694 0.728 22.3 8.81
M1: M0+para 0.702 0.747 23.6 11.7
M2: M0+cyc 0.692 0.781 49.9 12.8
M3: M0+cyc+lang 0.698 0.754 39.2 12.0
M4: M0+cyc+para 0.702 0.757 33.9 12.8
M5: M0+cyc+para+lang 0.688 0.753 28.6 11.8
M6: M0+cyc+2d 0.704 0.794 63.2 12.8
M7: M6+para+lang 0.706 0.768 49.0 12.8

Table 3: Literature results with various systems and au-
tomatic metrics at a nearly-fixed Acc, with best scores
in boldface. We use M0 to denote Shen et al. (2017).

Figure 1: Learning trajectories with models from Table
2. Metrics are computed on the dev sets. Figures for
Literature (with similar trends) are in supplementary.

Table 3 shows results for the Literature dataset.
Models for the Literature dataset show similar
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Models Transfer quality Semantic preservation Fluency
Dataset A B A>B B>A Tie A>B B>A Tie ∆Sim A>B B>A Tie ∆PP

M0 M2 9.0 6.0 85.1 1.5 25.4 73.1 -0.05 10.4 23.9 65.7 0.9

Yelp M0 M7 9.6 14.7 75.8 2.5 54.5 42.9 -0.09 4.6 39.4 56.1 8.3
M6 M7 13.7 11.6 74.7 16.0 16.7 67.4 0.01 10.3 20.0 69.7 14.3
M2 M7 5.8 9.3 84.9 8.1 25.6 66.3 -0.04 14.0 26.7 59.3 7.4

Literature M2 M6 4.2 6.7 89.2 16.7 20.8 62.5 0.01 40.8 13.3 45.8 -13.3
M6 M7 15.8 13.3 70.8 25.0 9.2 65.8 0.03 14.2 20.8 65.0 14.2

Table 4: Manual evaluation results (%) using models from Table 2 (i.e., with roughly fixed Acc). > means “better
than”. ∆Sim = Sim(A) − Sim(B), and ∆PP = PP(A) − PP(B) (note that lower PP generally means better
fluency). Each row uses at least 120 sentence pairs. A cell is bold if it represents a model win of at least 10%.

trends. The figures show trajectories of statis-
tics on corpora transferred/generated from the dev
set during learning. Each two consecutive mark-
ers deviate by half an epoch of training. Lower-
left markers generally precede upper-right ones.
In Figure 1(a), the plots of Sim by error rate
(1−Acc) exhibit positive slopes, meaning that er-
ror rate is positively correlated with Sim. Curves
to the upper-left corner represent better trade-off
between error rate and Sim. In the plots of PP
by Sim in Figure 1(b), the M0 curve exhibits large
positive slope but the curves for other models do
not, which indicates that M0 sacrifices PP for
Sim. Other models maintain consistent PP as Sim
increases during training.

6.2 System-Level Validation
Annotators were shown the untransferred sen-
tence, as well as sentences produced by two mod-
els (which we refer to as A and B). They were
asked to judge which better reflects the target style
(A, B, or tie), which has better semantic preser-
vation of the original (A, B, or tie), and which is
more fluent (A, B, or tie). Results are shown in
Table 4.

Overall, the results show the same trends as
our automatic metrics. For example, on Yelp,
large differences in human judgments of semantic
preservation (M2>M0, M7>M0, M7>M2) also
show the largest differences in Sim, while M6 and
M7 have very similar human judgments and very
similar Sim scores.

6.3 Sentence-Level Validation of Metrics
We describe a human sentence-level validation of
our metrics in Table 5.

To validate Acc, human annotators were asked
to judge the style of 100 transferred sentences
(sampled equally from M0, M2, M6, M7). Note
that it is a binary choice question (style 0 or style 1

Metric Method of validation Yelp Lit.

Acc % of machine and human judg-
ments that match

94 84

Sim Spearman’s ρ b/w Sim and human
ratings of semantic preservation

0.79 0.75

PP Spearman’s ρ b/w negative PP and
human ratings of fluency

0.81 0.67

Table 5: Human sentence-level validation of metrics;
100 examples for each dataset for validating Acc; 150
each for Sim and PP; see text for validation of GM.

without “tie” option) so that human annotators had
to make a choice. We then compute the percentage
of machine and human judgments that match.

We validate Sim and PP by computing
sentence-level Spearman’s ρ between the metric
and human judgments (an integer score from 1 to
4) on 150 generated sentences (sampled equally
from M0, M2, M6, M7). We presented pairs
of original sentences and transferred sentences to
human annotators. They were asked to rate the
level of semantic similarity (and similarly for flu-
ency) where 1 means “extremely bad”, 2 means
“bad/ok/needs improvement”, 3 means “good”,
and 4 means “very good.” They were also given
5 examples for each rating (i.e., a total of 20 for
four levels) before annotating. From Table 5, all
validations show strong correlations on the Yelp
dataset and reasonable correlations on Literature.

We validate GM by obtaining human pairwise
preferences (without the “tie” option) of over-
all transfer quality and measuring the fraction of
pairs in which the GM score agrees with the hu-
man preference. Out of 300 pairs (150 from each
dataset), 258 (86%) match.

The transferred sentences used in the evaluation
are sampled from the development sets produced
by models M0, M2, M6, and M7, at the accuracy
levels used in Table 2. In the data preparation for
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the manual annotation, there is sufficient random-
ization regarding model and textual transfer direc-
tion.

6.4 Comparing Losses

Cyclic Consistency Loss. We compare the tra-
jectories of the baseline model (M0) and the +cyc
model (M2). Table 2 and Figure 1 show that under
similar Acc, M2 has much better semantic simi-
larity for both Yelp and Literature. In fact, cyclic
consistency loss proves to be the strongest driver
of semantic preservation across all of our model
configurations. The other losses do not constrain
the semantic relationship across style transfer, so
we include the cyclic loss in M3 to M7.

Paraphrase Loss. Table 2 shows that the model
with paraphrase loss (M1) slightly improves Sim
over M0 on both datasets under similar Acc. For
Yelp, M1 has better Acc and PP than M0 at com-
parable semantic similarity. So, when used alone,
the paraphrase loss helps. However, when com-
bined with other losses (e.g., compare M2 to M4),
its benefits are mixed. For Yelp, M4 is slightly bet-
ter in preserving semantics and producing fluent
output, but for Literature, M4 is slightly worse. A
challenge in introducing an additional paraphrase
dataset is that its notions of similarity may clash
with those of content preservation in the transfer
task. For Yelp, both corpora share a great deal of
semantic content, but Literature shows systematic
semantic differences even after preprocessing.

Language Modeling Loss. When comparing
between M2 and M3, between M4 and M5, and
between M6 and M7, we find that the addition
of the language modeling loss reduces PP, some-
times at a slight cost of semantic preservation.

6.5 Results based on Supervised Evaluation

If we want to compare the models using one sin-
gle number, GM is our unsupervised approach.
We can also compute BLEU scores between our
generated outputs and human-written gold stan-
dard outputs using the 1000 Yelp references from
Li et al. (2018). For BLEU scores reported for
the methods of Li et al. (2018), we use the val-
ues reported by Yang et al. (2018b). We use the
same BLEU implementation as used by Yang et al.
(2018b), i.e., multi-bleu.perl. We compare
three models selected during training from each
of our M6 and M7 settings. We also report post-
transfer accuracies reported by prior work, as well

Model BLEU Acc∗

Fu et al. (2018)
Multi-decoder 7.6 0.792
Style embed. 15.4 0.095

Li et al. (2018)
Template 18.0 0.867
Delete/Retrieve 12.6 0.909

Yang et al. (2018b)
LM 13.4 0.854
LM + classifier 22.3 0.900

Untransferred 31.4 0.024

M. BLEU Acc

M0 4.9 0.818
M6 22.3 0.804
M6 22.5 0.843
M6 16.3 0.897
M7 17.0 0.814
M7 16.3 0.839
M7 12.9 0.901

Table 6: Results on Yelp sentiment transfer, where
BLEU is between 1000 transferred sentences and hu-
man references, and Acc is restricted to the same 1000
sentences. Our best models (right table) achieve higher
BLEU than prior work at similar levels of Acc, but un-
transferred sentences achieve the highest BLEU. Acc∗:
the definition of Acc varies by row because of different
classifiers in use. Other results from Li et al. (2018) are
not included as they are worse.

our own computed Acc scores for M0, M6, M7,
and the untransferred sentences. Though the clas-
sifiers differ across models, their accuracy tends to
be very high (> 0.97), making it possible to make
rough comparisons of Acc across them.

BLEU scores and post-transfer accuracies are
shown in Table 6. The most striking result is that
untransferred sentences have the highest BLEU
score by a large margin, suggesting that prior work
for this task has not yet eclipsed the trivial baseline
of returning the input sentence. However, at sim-
ilar levels of Acc, our models have higher BLEU
scores than prior work. We additionally find that
supervised BLEU shows a trade-off with Acc: for
a single model type, higher Acc generally corre-
sponds to lower BLEU.

7 Conclusion

We proposed three kinds of metrics for non-
parallel textual transfer, studied their relation-
ships, and developed learning criteria to address
them. We emphasize that all three metrics are
needed to make meaningful comparisons among
models. We expect our components to be applica-
ble to a broad range of generation tasks.
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