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Abstract
Contemporary machine translation systems
achieve greater coverage by applying sub-
word models such as BPE and character-level
CNNs, but these methods are highly sensitive
to orthographical variations such as spelling
mistakes. We show how training on a mild
amount of random synthetic noise can dra-
matically improve robustness to these vari-
ations, without diminishing performance on
clean text. We focus on translation perfor-
mance on natural typos, and show that robust-
ness to such noise can be achieved using a bal-
anced diet of simple synthetic noises at train-
ing time, without access to the natural noise
data or distribution.

1 Introduction

Machine translation systems are generally trained
on clean data, without spelling errors. Yet many
translation scenarios require robustness to such er-
rors: for example, social media text in which there
is little emphasis on standard spelling (Michel and
Neubig, 2018), and interactive settings in which
users must enter text on a mobile device. Systems
trained on clean data generally perform poorly
when faced with such errors at test time (Heigold
et al., 2017; Belinkov and Bisk, 2018).

One potential solution is to introduce noise
at training time, similar in spirit to the use of
adversarial examples (Goodfellow et al., 2014;
Ebrahimi et al., 2018). So far, using synthetic
noise at training time has been found to im-
prove performance only on test data with exactly
the same kind of synthetic noise, while at the
same time impairing performance on clean test
data (Heigold et al., 2017; Belinkov and Bisk,
2018). We desire methods that perform well on
both clean text and naturally-occurring noise, but
this is beyond the current state of the art.

∗Jacob Eisenstein is now at Google Research.

Drawing inspiration from dropout and noise-
based regularization methods, we explore the
space of random noising methods at training time,
and evaluate performance on both clean text and
text corrupted by “natural noise” found in real
spelling errors. We find that by feeding our trans-
lation models a balanced diet of several types of
synthetic noise at training time (random charac-
ter deletions, insertions, substitutions, and swaps),
it is possible to obtain substantial improvements
on such naturally noisy data, with minimal impact
on the performance on clean data, and without ac-
cessing the test noise data or even its distribution.

Our method substantially improves the robust-
ness of a transformer-based machine translation
model with CNN character encoders to spelling
errors across multiple input languages (German,
French, and Czech). Of the different noise types
we use at training, we find that random charac-
ter deletions are particularly useful, followed by
character insertions. However, noisy training does
not improve translations of social media text, as
indicated by performance on the MTNT dataset
of Reddit posts (Michel and Neubig, 2018). This
finding aligns with previous work arguing that the
distinctive feature of social media text is not noise
or orthographical errors, but rather, variation in
writing style and vocabulary (Eisenstein, 2013).

2 Noise Models

We focus on orthographical noise; character-level
noise that affects the spelling of individual terms.
Orthographical noise is problematic for machine
translation systems that operate on token-level em-
beddings because noised terms are usually out-of-
vocabulary, even when divided into subwords us-
ing techniques such as byte pair encoding (BPE;
Sennrich et al., 2015). Interestingly, orthograph-
ical noise can also pose problems for character-
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Deletion A character is deleted. whale→ whle
Insertion A character is inserted into a random position. whale→ wxhale
Substitution A character is replaced with a random character. whale→ whalz
Swap Two adjacent characters change position. whale→ wahle

Table 1: The synthetic noise types applied during training. Noise is applied on a random character, selected from
a uniform distribution. The right column illustrates the application of each noise type on the word “whale.”

level encoding models, which are based on mod-
els such as convolutional neural networks (CNNs;
Kim et al., 2016). These models learn to match
filters against specific character n-grams, so when
n-grams are disrupted by orthographical noise, the
resulting encoding may radically differ from the
encoding of a “clean” version of the same text. Be-
linkov and Bisk (2018) report significant degrada-
tions in performance after applying noise to only a
small fraction of input tokens.

Synthetic Noise Table 1 describes the four types
of synthetic noise we used during training. Substi-
tutions and swaps were experimented with exten-
sively in previous work (Heigold et al., 2017; Be-
linkov and Bisk, 2018), but deletion and insertion
were not. Deletion and insertion pose a different
challenge to character encoders, because they al-
ter the distances between character sequences in
the word, as well as the overall word length.

During training, we noised each token by sam-
pling from a multinomial distribution of 60%
clean (no noise) and 10% probability for each of
the four noise types. The noise was added dynam-
ically, allowing for different mutations of the same
example over different epochs.

Natural Noise We evaluate our models on nat-
ural noise from edit histories of Wikipedia (for
French and German; Max and Wisniewski, 2010;
Zesch, 2012) and manually-corrected essays (for
Czech; Šebesta et al., 2017). These authors have
obtained a set of likely spelling error pairs, each
involving a clean spelling and a candidate error.
We used that set to replace correct words with
their misspelled versions for each evaluation sam-
ple text in the source language. When there are
multiple error forms for a single word, an error is
selected randomly. Not all words have errors, and
so even with maximal noise, only 20-50% of the
tokens are noised.

Natural noise is more representative of what
might actually be encountered by a deployed ma-
chine translation system, so we reserve it for test
data. While it is possible, in theory, to use nat-

ural noise for training, it is not always realistic.
Significant engineering effort is required to obtain
such noise examples, making it difficult to build
naturally-noised training sets for any source lan-
guage. Furthermore, orthography varies across de-
mographics and periods, so it is unrealistic to an-
ticipate the exact distribution of noise at test time.

3 Experiment

Data Following Belinkov and Bisk (2018), we
evaluated our method on the IWSLT 2016 ma-
chine translation benchmark (Cettolo et al., 2016).
We translated from three source languages (Ger-
man, French, Czech) to English, each with a train-
ing set of approximately 200K sentence pairs.
Synthetic noise was added only to the training
data, and natural noise was added only to the test
data; the validation data remained untouched.

Model We used a transformer-based translation
model (Vaswani et al., 2017) with a CNN-based
character encoder (Kim et al., 2016).

Hyperparameters We followed the base con-
figuration of the transformer (Vaswani et al., 2017)
with 6 encoder and decoder layers of 512/2048
model/hidden dimensions and 8 attention heads.
Character embeddings had 256 dimensions and
the character CNN followed the specifications of
Kim et al. (2016). We optimized the model with
Adam and used the inverse square-root learning
rate schedule typically used for transformers, but
with a peek learning rate of 0.001. Each batch
contained a maximum of 8,000 tokens. We used
a dropout rate of 0.2. We generated the transla-
tions with beam search (5 beams), and computed
BLEU scores to measure test set performance.

Results Table 2 shows the model’s performance
on data with varying amounts of natural errors. As
observed in prior art (Heigold et al., 2017; Be-
linkov and Bisk, 2018), when there are signifi-
cant amounts of natural noise, the model’s perfor-
mance drops significantly. However, training on
our synthetic noise cocktail greatly improves per-
formance, regaining between 19% and 54% of the
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BLEU

Dataset Noise Probability Noised Tokens Clean Training Data + Synthetic Noise ∆ %Recovered

de-en 0.00% 0.00% 34.20 33.53 –0.67 –
de-en 25.00% 9.72% 27.93 31.32 3.39 54.1%
de-en 100.00% 39.36% 12.49 23.34 10.85 50.0%

fr-en 0.00% 0.00% 39.61 39.94 0.33 –
fr-en 25.00% 13.47% 30.48 34.07 3.59 39.3%
fr-en 100.00% 53.74% 11.48 19.43 7.95 28.3%

cs-en 0.00% 0.00% 27.48 27.09 –0.39 –
cs-en 25.00% 6.14% 24.31 24.91 0.60 18.9%
cs-en 100.00% 24.53% 16.64 18.91 2.27 20.9%

Table 2: Performance on the IWSLT 2016 translation task with varying rates of natural noise in the test set. Noise
Probability is the probability of attempting to apply natural noise to a test token, while Noised Tokens is the
fraction of tokens that were noised in practice; not every word in the vocabulary has a corresponding misspelling.

Training Noise BLEU ∆

No Training Noise 12.49
+ Deletion 17.39 4.90
+ Insertion 15.00 2.51
+ Substitution 11.99 –0.50
+ Swap 14.04 1.55

All Training Noise 23.34
− Deletion 14.96 –8.38
− Insertion 18.81 -4.53
− Substitution 20.23 –3.11
− Swap 23.07 –0.27

Table 3: Performance on IWSLT 2016 de-en test with
maximal natural noise when training with one noise
type (top) and three noise types (bottom).

BLEU score that was lost to natural noise. More-
over, this training regime has minimal impact on
clean text translations, with negative and positive
fluctuations that are smaller than 1 BLEU point.

To determine the ceiling performance of noise-
based training, we split the set of natural typos
and used one part for training and the other for
test. However, we observed that training on natu-
ral noise behaves very similarly to training with-
out noise at all (not shown), perhaps because the
natural typos did not have enough variance to en-
courage the model to generalize well.

Ablation Analysis To determine the individual
contribution of each type of synthetic noise, we
conduct an ablation study. We first add only one
type of synthetic noise at 10% (i.e. 90% of the
training data is clean), and measure performance.
We then take the full set of noise types, and re-
move a single type at each time to see how impor-
tant it is given the other noises.

Table 3 shows the model’s performance on the
German dataset when training with various mix-
tures of noise. We find that deletion is by far

Dataset Del Ins Sub Swap

de-en 16.6% 26.5% 17.0% 6.0%
fr-en 11.8% 11.4% 9.7% 2.6%
cs-en 6.6% 6.1% 41.7% 0.4%

Table 4: The proportion of natural errors caused
by deleting/inserting/substituting a single character or
swapping two adjacent characters.

the most effective synthetic noise in preparing
our model for natural errors, followed by inser-
tion. We observe the same trend for French and
Czech. This result could explain why our experi-
ments show a significant improvement when train-
ing on synthetic noise, while previous work, which
trained only on synthetic substitutions and swaps,
did not observe similar improvements.

Natural Noise Analysis Finally, we analyze
how well our synthetic noise covers the distribu-
tion of natural noise. Table 4 shows the percentage
of noised tokens that can be covered by a single
noising operation. With the exception of substitu-
tions in Czech, higher overlap between synthetic
and natural noise appears to correlate with higher
recovery rate in Table 2. One possible explanation
for this outlier is that random synthetic substitu-
tions might be less effective at imitating real sub-
stitutions, and that perhaps a more informed model
is needed for simulating synthetic substitutions.

4 Translating Social Media Text

We also apply our synthetic noise training proce-
dure to social media, using the recently-released
MTNT dataset of Reddit posts (Michel and Neu-
big, 2018), focusing on the English-French trans-
lation pair. Note that no noise was inserted into the
test data in this case; the only source of noise is the



45

Dataset Clean Train + Synthetic Noise

en-fr 21.1 20.6
fr-en 23.6 24.1

Table 5: The performance of a machine translation
model on the MTNT task.

non-standard spellings inherent to the dataset.
As shown in Table 5, noised training has min-

imal impact on performance. We did not ex-
haustively explore the space of possible noising
strategies, and so these negative results should be
taken only as a preliminary finding. Nonetheless,
there are reasons to believe that synthetic train-
ing noise may not help in this case. Michel and
Neubig (2018) note that the rate of spelling errors,
as reported by a spell check system, is not espe-
cially high in MTNT; other differences from stan-
dard corpora include the use of entirely new words
and names, terms from other languages (especially
English), grammar differences, and paralinguis-
tic phenomena such as emoticons. These findings
align with prior work showing that social media
does not feature high rates of misspellings (Rello
and Baeza-Yates, 2012). Furthermore, many of the
spelling variants in MTNT have very high edit dis-
tance (e.g., catholique → catho [Fr]). It is unlikely
that training with mild synthetic noise would yield
robustness to these variants, which reflect well-
understood stylistic patterns rather than random
variation at the character level.1

5 Related work

The use of noise to improve robustness in ma-
chine learning has a long history (e.g., Holm-
strom and Koistinen, 1992; Wager et al., 2013),
with early work by Bishop (1995) demonstrating a
connection between additive noise and regulariza-
tion. To achieve robustness to orthographical er-
rors, we require noise that operates at the character
level. Heigold et al. (2017) demonstrated that syn-
thetic noising operations such as random swaps
and replacements can degrade performance when
inserted at test time; they also show that some ro-
bustness can be obtained by inserting the same
noise at training time. Similarly, Sperber et al.
(2017) explore the impact of speech-like noise.

1 Contemporaneous work shows that MTNT performance
can be improved by a domain-specific noising distribution
that includes character insertions and deletions, as well as
the random insertion of emoticons, stopwords, and profan-
ity (Vaibhav et al., 2019). The specific impact of spelling
noise is not evaluated, nor is the impact on clean text.

Most relevant for us is the work of Belinkov
and Bisk (2018), who evaluated on natural noise
obtained from Wikipedia edit histories (e.g., Max
and Wisniewski, 2010). They find that robustness
to natural noise can be obtained by training on the
same noise model, but that (a) training on syn-
thetic noise does not yield robustness to natural
noise at test time, and (b) training on natural noise
significantly impairs performance on clean text. In
contrast, we show that training on the right blend
of synthetic noise can yield substantial improve-
ments on natural noise at test time, without signif-
icantly impairing performance on clean data. Our
ablation results suggest that deletion and insertion
noise (not included by Belinkov and Bisk) are es-
sential to achieving robustness to natural noise.

An alternative to noise infusion is to build
character-level encoders that are robust to noise by
design. Belinkov and Bisk (2018) experiment with
a bag of characters, while Sakaguchi et al. (2017)
use character-level recurrent neural networks com-
bined with special representations for the first and
last characters of each token. These models are
particularly suited for specific types of swapping
and scrambling noises, but are not robust to natu-
ral noise. We conducted preliminary experiments
with noise-invariant encoders, but obtained better
results by adding noise at training time. A re-
lated idea is to optimize an adversarial objective,
in which a discriminator tries to distinguish noised
and clean examples from their encoded represen-
tations (Cheng et al., 2018). This improves per-
formance on clean data, but it makes optimization
unstable, which is a well-known defect of adver-
sarial learning (Arjovsky et al., 2017). Cheng et al.
(2018) do not evaluate on natural noise.

6 Conclusion

This work takes a step towards making machine
translation robust to character-level noise. We
show how training on synthetic character-level
noise, similar in spirit to dropout, can significantly
improve a translation model’s robustness to natu-
ral spelling mistakes. In particular, we find that
deleting and inserting random characters play a
key role in preparing the model for test-time typos.
While our method works well on misspellings, it
does not appear to generalize to non-standard text
in social media. We conjecture that spelling mis-
takes constitute a small part of the deviations from
standard text, and that the main challenges in this
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domain stem from other linguistic phenomena.
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