
Proceedings of the 2019 EMNLP and the 9th IJCNLP (System Demonstrations), pages 121–126
Hong Kong, China, November 3 – 7, 2019. c©2019 Association for Computational Linguistics

121

LIDA: Lightweight Interactive Dialogue Annotator

Edward Collins
Wluper Ltd.

London, United Kingdom
ed@wluper.com

Nikolai Rozanov
Wluper Ltd.

London, United Kingdom
nikolai@wluper.com

Bingbing Zhang
Wluper Ltd.

London, United Kingdom
bingbing@wluper.com

Abstract

Dialogue systems have the potential to change
how people interact with machines but are
highly dependent on the quality of the data
used to train them. It is therefore impor-
tant to develop good dialogue annotation tools
which can improve the speed and quality of di-
alogue data annotation. With this in mind, we
introduce LIDA, an annotation tool designed
specifically for conversation data. As far as
we know, LIDA is the first dialogue annotation
system that handles the entire dialogue anno-
tation pipeline from raw text, as may be the
output of transcription services, to structured
conversation data. Furthermore it supports the
integration of arbitrary machine learning mod-
els as annotation recommenders and also has
a dedicated interface to resolve inter-annotator
disagreements such as after crowdsourcing an-
notations for a dataset. LIDA is fully open
source, documented and publicly available 1.

1 Introduction

Of all the milestones on the road to creating arti-
ficial general intelligence perhaps one of the most
significant is giving machines the ability to con-
verse with humans. Dialogue systems are be-
coming one of the most active research areas in
Natural Language Processing (NLP) and Machine
Learning (ML). New, large dialogue datasets such
as MultiWOZ (Budzianowski et al., 2018) have
allowed data-hungry deep learning algorithms to
be applied to dialogue systems, and challenges
such as the Dialogue State Tracking Challenge
(DSTC) (Henderson et al., 2014) and Amazon’s
Alexa Prize (Khatri et al., 2018) encourage com-
petition among teams to produce the best systems.

The quality of a dialogue system dependents on
the quality of the data used to train the system.

1https://github.com/Wluper/lida

Creating a high-quality dialogue dataset incurs a
large annotation cost, which makes good dialogue
annotation tools essential to ensure the highest
possible quality. Many annotation tools exist for a
range of NLP tasks but none are designed specifi-
cally for dialogue with modern usability principles
in mind - in collecting MultiWOZ, for example,
Budzianowski et al. (2018) had to create a bespoke
annotation interface.

In this paper, we introduce LIDA, a web ap-
plication designed to make dialogue dataset cre-
ation and annotation as easy and fast as possible.
In addition to following modern principles of us-
ability, LIDA integrates best practices from other
state-of-the-art annotation tools such as INCEp-
TION (Klie et al., 2018), most importantly by al-
lowing arbitrary ML models to be integrated as an-
notation recommenders to suggest annotations for
data. Any system with the correct API can be in-
tegrated into LIDA’s back end, meaning LIDA can
be used as a front end for researchers to interact
with their dialogue systems and correct their re-
sponses, then save the interaction as a future test
case.

When data is crowdsourced, it is good prac-
tice to have multiple annotators label each piece
of data to reduce noise and mislabelling (Deng
et al., 2009). Once you have multiple annotations,
it is important to be able to resolve conflicts by
highlighting where annotators disagreed so that
an arbiter can decide on the correct annotation.
To this end, LIDA provides a dedicated interface
which automatically finds where annotators have
disagreed and displays the labels alongside a per-
centage of how many annotators selected each la-
bel, with the majority annotated labels selected by
default.

1.1 Main Contributions

Our main contributions with this tool are:

https://github.com/Wluper/lida


122

Annotation Tool Turn/Dialogue Seg-
mentation

Classification Labels Edit Dialogues/Turns Recommenders Inter-Annotator
Disagreement
Resolution

Language

LIDA YES YES YES YES YES PYTHON
INCEpTion (Klie et al., 2018) NO YES NO YES YES/NO4 JAVA
GATE (Cunningham, 2002) NO YES NO NO YES/NO 5 JAVA
TWIST (Pluss, 2012) YES NO YES NO NO -
BRAT (Stenetorp et al., 2012) NO YES NO YES NO PYTHON
DOCCANO3 NO YES NO NO NO PYTHON
DialogueView (Heeman et al., 2002) YES YES YES NO NO TcK/TK

Table 1: Annotator Tool Comparison Table
Turn/Dialogue Segmentation: segment raw text into turns and dialogues. Classification Labels: label classification data. Edit
Dialogues/Turns: allow users to add/edit/delete new turns or dialogues. Recommenders: ML models to suggest annotations.
Inter-Annotator Disagreement Resolution: whether the system has an interface to resolve disagreements between different

annotators. Language: what programming language the system uses

• A modern annotation tool designed specifi-
cally for task-oriented conversation data

• The first dialogue annotator capable of han-
dling the full dialogue annotation pipeline
from turn and dialogue segmentation through
to labelling structured conversation data

• Easy integration of dialogue systems and rec-
ommenders to provide annotation sugges-
tions

• A dedicated interface to resolve inter-
annotator disagreements for dialogue data

2 Related Work

Various annotation tools have been developed for
NLP tasks in recent years. Table 1 compares LIDA
with other recent annotation tools. TWIST (Pluss,
2012) is a dialogue annotation tool which consists
of two stages: turn segmentation and content fea-
ture annotation. Turn segmentation allows users
to highlight and create new turn segments from
raw text. After this, users can annotate sections of
text in a segment by highlighting them and select-
ing from a predefined feature list. However, this
tool doesn’t allow users to specify custom anno-
tations or labels and doesn’t support classification
or slot-value annotation. This is not compatible
with modern dialogue datasets which require such
annotations (Budzianowski et al., 2018).

INCEpTION (Klie et al., 2018) is a semantic
annotation platform for interactive tasks that re-
quire semantic resources like entity linking. It pro-
vides machine learning models to suggest annota-
tions and allows users to collect and model knowl-
edge directly in the tool. GATE (Cunningham,
2002) is an open source tool that provides prede-
fined solutions for many text processing tasks. It is
powerful because it allows annotators to enhance
the provided annotation tools with their own Java

code, making it easily extensible and provides an
enormous number of predefined features. How-
ever, GATE is a large and complicated tool with a
significant setup cost - its instruction manual alone
is over 600 pages long2. Despite their large fea-
ture sets, INCEpTION and GATE are not designed
for annotating dialogue and cannot display data as
turns, an important feature for dialogue datasets.

BRAT (Stenetorp et al., 2012) and Doccano3 are
web-based annotation tools for tasks such as text
classification and sequence labeling. They have
intuitive and user-friendly interfaces which aim to
make the creation of certain types of dataset such
as classification or sequence labelling datasets as
fast as possible. BRAT also supports annotation
suggestions by integrating ML models. However,
like INCEpTION4 and GATE5, they are not de-
signed for annotating dialogues and do not support
generation of formatted conversational data from a
raw text file such as may be output by a transcrip-
tion service. LIDA aims to fill these gaps by pro-
viding a lightweight, easy-to-setup annotation tool
which displays data as a series of dialogues, sup-
ports integration of arbitrary ML models as rec-
ommenders and supports segmentation of raw text
into dialogues and turns.

DialogueView (Heeman et al., 2002) is a tool
for dialogue annotation. However, the main use-
cases are not focused on building dialogue sys-
tems, rather it is focused on segmenting recorded
conversations. It supports annotating audio files
as well as discourse segmentation - hence, granu-
lar labelling of the dialogue, recommenders, inter-

2https://gate.ac.uk/sale/tao/tao.pdf
3https://github.com/chakki-works/doccano
4Getting the scores is available as a plugin:

https://dkpro.github.io/dkpro-statistics/dkpro-agreement-
poster.pdf - resolving the issues seems to be not supported

5Again inter-annotator score calculation capabilities are
available as separate plug-in https://gate.ac.uk/releases/gate-
5.1-beta1-build3397-ALL/doc/tao/splitch10.html - however
support for resolutions is not apparent



123

annotator agreement, and slot-value labelling is
not possible with DialogueView.

3 System Overview

LIDA is built according to a client-server architec-
ture with the front end written in standard web lan-
guages (HTML/CSS/JavaScript) that will run on
any browser. The back end written in Python us-
ing the Flask6 web framework as a RESTful API.

The main screen which lists all available dia-
logues is shown in Figure 3, in the Appendix. The
buttons below this list allow a user to add a blank
or formatted dialogue file. Users can also drag and
drop files in this screen to upload them. The user
is then able to add, delete or edit any particular
dialogue. There is also a button to download the
whole dataset as a JSON file on this page. Click-
ing on a dialogue will take users to the individual
dialogue annotation screen shown in Figure 1.

LIDA uses the concept of a “turn” to organise
how a dialogue is displayed and recorded. A turn
consists of a query by the user followed by a re-
sponse from the system, with an unlimited num-
ber of labels allowed for each user query. The
user query and system response are displayed in
the large area on the left of the interface, while
the labels for each turn are shown in the scrol-
lable box on the right. There are two forms that
these labels can currently take which are particu-
larly relevant for dialogue: multilabel classifica-
tion and slot-value pair.

An example of multilabel classification is
whether the user was informing the system or re-
questing a piece of information. An example of
a slot-value pair is whether the user mentioned
the type of restaurant they’d like to eat at (slot:
restaurant-type) and if so what it was (value: ital-
ian, for example). The front-end code is written in
a modular form so that it is easy for researchers us-
ing LIDA to add custom types of labels and anno-
tations, such as sequence classification, to LIDA.

Once annotation is complete, users can resolve
inter-annotator disagreements on the resolution
screen. Here, each dialogue is listed along with
the number of different people who have annotated
it. More annotations can be added by dragging
and dropping dialogue files into this screen. When
the user clicks on one of these dialogues, they are
taken to the resolution screen shown in Figure 2.
Here, all of the disagreements in a dialogue are

6http://flask.pocoo.org/

listed and the label which annotators disagreed on
is also shown. The label most frequently selected
by annotators is assigned as correct by default,
and the arbiter can accept this annotation simply
by pressing “Enter” or else re-label the data item.
Once the arbiter has checked an annotation, it is
displayed as “Accepted” in the error list and the
dialogue file automatically saved.

3.1 Use Cases
3.1.1 Experimenting with Dialogue Systems
While generic evaluation metrics are important for
understanding the performance of a dialogue sys-
tem, another important method of evaluation is
to talk to the dialogue system and see if it gives
subjectively satisfying results. This gives the re-
searcher insight into which part of the system most
urgently needs improvement faster than perform-
ing more complex error analysis. However, if the
user talks to their dialogue system through a ter-
minal interface, they have no way of correcting
the system when it answers incorrectly. The re-
searcher should be able to record every interaction
they have with their system and correct the predic-
tions of the system easily and quickly. That way,
the researcher will be able to use each previous
recorded interaction as a test case for future ver-
sions of their system.

LIDA is designed with this in mind - a dialogue
system can be integrated in the back end so that it
will run whenever the user enters a new query in
the front end. The user will then be able to eval-
uate whether the system gave the correct answer
and correct the labels it gets wrong using the front
end. LIDA will record these corrections and allow
the user to download the interaction with their di-
alogue system with the corrected labels so that it
can be used as a test case in future versions of the
system.

3.1.2 Creating a New Dialogue Dataset
Users can create a blank dialogue on LIDA’s home
screen, then enter queries in the box shown at the
bottom of Figure 1. Along with whole dialogue
systems, arbitrary ML models can be added as rec-
ommenders in the back end. Once the user hits
“Enter”, the query is run through the recommender
models in the back end and the suggested annota-
tions displayed for the label. If no recommender
is specified in the back end, the label will be left
blank. Users can delete turns and navigate be-
tween them using “Enter” or the arrow keys. The



124

Figure 1: Turn List : A list of turns for one specific dialogue, users can add new turns, delete turns, edit utterances
and annotate labels here.

name of the dialogue being annotated can be seen
next to the “Back” button at the top left of the
screen and can be edited by clicking on it.

3.1.3 Annotating An Existing Dataset
Datasets can be uploaded via drag-and-drop to the
home screen of the system, or paths can be spec-
ified in the back end if the system were being
used for crowdsourcing. Datasets can be in one
of two forms, either a “.txt” file such as may be
produced by a transcription service, or a format-
ted “.json” file, a common format for dialogue
data (Budzianowski et al., 2018; Henderson et al.,
2014). Once the user has uploaded their data, their
dialogue(s) will appear on the home screen. The
user can click on each dialogue and will be taken
to the single dialogue annotation screen shown
in Figure 1 to annotate it. If the user uploaded
a text file, they will be taken to a dialogue and
turn segmentation screen. Following the same
constraints imposed in MultiWOZ (Budzianowski
et al., 2018) and DSTC (Henderson et al., 2014),
this turn segmenter assumes that there are only two
participants in the dialogue: the user and the sys-
tem, and that the user asks the first query. The
user separates each utterance in the dialogue by a
blank line, and separates dialogues with a triple
equals sign (“===”). Once the user clicks “Done”,
the text file will automatically be parsed into the
correct JSON format and each query run through
the recommenders in the back-end to obtain anno-

tation suggestions.

3.1.4 Resolving Annotator Disagreement
Researchers could use LIDA’s main interface to
crowdsource annotations for a dialogue dataset.
Once they have several annotations for each dia-
logue, they can upload these to the inter-annotator
resolution interface of LIDA. The disagreements
between annotators will be detected, with a per-
centage shown beside each label to show how
many annotators selected it. The label with the
highest percentage of selections is checked by de-
fault. The arbiter can accept the majority label
simply by pressing “Enter” and can change er-
rors with the arrow keys to facilitate fast resolu-
tion. This interface also displays an averaged (over
turns) version of Cohen’s Kappa (Cohen, 1960),
the total number of annotations, total number of
errors and averaged (over turns) accuracy.

3.2 Features7

Specifying Custom Labels LIDA’s configura-
tion is controlled by a single script in the back
end. This script defines which labels will be dis-
played in the UI and is easy to extend. Users can
define their own labels by altering this configura-
tion script. If a user wishes to add a new label, all
they need to do is specify the label’s name, its type

7We refer the reader to visit the public repository for
a full documentation https://github.com/Wluper/
lida.

https://github.com/Wluper/lida
https://github.com/Wluper/lida


125

Figure 2: Screenshot of the inter-annotator disagreement resolution screen.

(classification or slot-value pair, currently) and the
possible values the classification can take. Along-
side the label specification, they can also specify
a recommender to use for the label values. The
label will then automatically be displayed in the
front end. Note that labels in uploaded datasets
will only be displayed if the label has an entry in
the configuration file.

Custom Recommenders When creating a dia-
logue dataset from scratch, LIDA is most power-
ful when used in conjunction with recommenders
which can suggest annotations for user queries
to be corrected by the annotator. State-of-the-art
tools such as INCEpTION (Klie et al., 2018) em-
phasise the importance of being able to use recom-
menders in annotation systems. Users can spec-
ify arbitrary ML models to use for each label in
LIDA’s back end. The back end is written in
Python, the de facto language for machine learn-
ing, so researchers can directly integrate models
written in Python to the back end. This is in con-
trast to tools such as INCEpTION (Klie et al.,
2018) and GATE (Cunningham, 2002) which are
written in Java and so require extra steps to inte-
grate a Python-based model. To integrate a rec-
ommender, the user simply provides an instanti-
ated Python object in the configuration file that
has a method called “transform” that takes a single
string and returns a predicted label.

Dialogue and Turn Segmentation from Raw
Data When uploading a .txt file, users can seg-
ment each utterance and each dialogue with a sim-
ple interface. This means that raw dialogue data
with no labels, such as obtained from a transcrip-
tion service, can be uploaded and processed into a
labelled dialogue. Segmented dialogues and turns
are automatically run through every recommender
to give suggested labels for each utterance.

4 Evaluation

Table 1 shows a comparison of LIDA to other an-
notation tools. To our knowledge, LIDA is the
only annotation tool designed specifically for di-
alogue systems which supports the full pipeline of
dialogue annotation from raw text to labelled dia-
logue to inter-annotator resolution and can also be
used to test the subjective performance of a dia-
logue system.

To test LIDA’s capabilities, we designed a sim-
ple experiment: we took a bespoke dataset of 154
dialogues with an average of 3.5 turns per dialogue
and a standard deviation of 1.55. The task was to
assign three classification labels to each user utter-
ance in each dialogue. Each annotator was given a
time limit of 1 hour and told to annotate as many
dialogues as they could in that time. We had six
annotators perform this task, three of whom were
familiar with the system and three of whom had
never seen it before.



126

These annotators annotated an average of 79 di-
alogues in one hour with a standard deviation of
30, which corresponds to an average of 816.5 indi-
vidual annotations. The annotators who had never
seen the system before annotated an average of 60
dialogues corresponding to an average of 617 in-
dividual annotations.

Once we had these six annotations, we per-
formed a second experiment whereby a single ar-
biter resolved inter-annotator disagreements. In
one hour, the arbiter resolved 350 disagreements
and noted that resolution was slowest when resolv-
ing queries with a high degree of disagreement.

These results show that LIDA provides fast an-
notation sufficient for collecting large scale data.
At the recorded pace of the annotators who had
not seen the system before, 100 workers could cre-
ate a dialogue dataset of 6000 dialogues with ap-
proximately 6000 ∗ 3.5 = 21000 turns with three
annotations per turn in one hour. In large scale col-
lections, such as MultiWOZ (Budzianowski et al.,
2018) where 1249 workers were used, much larger
datasets with richer annotations could be created.
Clearly annotation quantity will depend on the dif-
ficulty of the task, length of dialogue and number
of labels to be assigned to each utterance but our
results suggest that a high speed is achievable.

5 Conclusion

We present LIDA, an open source, web-based an-
notation system designed specifically for dialogue
data. LIDA implements state-of-the-art annotation
techniques including recommenders, fully cus-
tomisable labels and inter-annotator disagreement
resolution. LIDA is the only dialogue annotation
tool which can handle the full pipeline of dia-
logue dataset creation from turn and dialogue seg-
mentation to structured conversation data to inter-
annotator disagreement resolution.

Future work will look at adding new label types
to LIDA, adding the possibility to have more than
two actors in the conversation, a centralised ad-
min page, additional labelling (e.g. co-reference
resolution) and in general enhancing usability as
users provide feedback. Our hope is that this work
will find applications and usability beyond what
we have outlined and developed so far and that
with a community effort a modern and highly ac-
cessible tool will become widely available.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz-a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological
measurement, 20(1):37–46.

Hamish Cunningham. 2002. Gate, a general architec-
ture for text engineering. Computers and the Hu-
manities, 36(2):223–254.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Peter A. Heeman, Fan Yang, and Susan E. Strayer.
2002. DialogueView - an annotation tool for dia-
logue. In Proceedings of the Third SIGdial Work-
shop on Discourse and Dialogue, pages 50–59,
Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

Matthew Henderson, Blaise Thomson, and Jason D
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), pages 263–272.

Chandra Khatri, Behnam Hedayatnia, Anu Venkatesh,
Jeff Nunn, Yi Pan, Qing Liu, Han Song, Anna Got-
tardi, Sanjeev Kwatra, Sanju Pancholi, et al. 2018.
Advancing the state of the art in open domain dia-
log systems through the alexa prize. arXiv preprint
arXiv:1812.10757.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The inception platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9.

Brian Pluss. 2012. Twist dialogue annota-
tion tool. http://mcs.open.ac.uk/
nlg/non-cooperation/resources/
user-guide.pdf.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

https://doi.org/10.3115/1118121.1118129
https://doi.org/10.3115/1118121.1118129
http://mcs.open.ac.uk/nlg/non-cooperation/resources/user-guide.pdf
http://mcs.open.ac.uk/nlg/non-cooperation/resources/user-guide.pdf
http://mcs.open.ac.uk/nlg/non-cooperation/resources/user-guide.pdf

