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Abstract

We propose a fine-grained entity typing model
with a novel attention mechanism and a hy-
brid type classifier. We advance existing meth-
ods in two aspects: feature extraction and type
prediction. To capture richer contextual infor-
mation, we adopt contextualized word repre-
sentations instead of fixed word embeddings
used in previous work. In addition, we propose
a two-step mention-aware attention mecha-
nism to enable the model to focus on im-
portant words in mentions and contexts. We
also present a hybrid classification method be-
yond binary relevance to exploit type inter-
dependency with latent type representation.
Instead of independently predicting each type,
we predict a low-dimensional vector that en-
codes latent type features and reconstruct the
type vector from this latent representation. Ex-
periment results on multiple data sets show
that our model significantly advances the state-
of-the-art on fine-grained entity typing, obtain-
ing up to 6.6% and 5.5% absolute gains in
macro averaged F-score and micro averaged F-
score respectively. 1

1 Introduction

Fine-grained entity typing aims to assign one or
more types to each entity mention given a certain
context. For example, in the following sentence,
“If Rogers is in the game, the Huskies will be much
better equipped to match the Cougars in that as-
pect”, the mention “Rogers” should be labeled as
athlete in addition to person according to the
context (e.g., game, Huskies). These fine-grained
entity types are proven to be effective in support-
ing a wide range of downstream applications such
as relation extraction (Yao et al., 2010), question
answering (Lin et al., 2012), and coreference res-
olution (Recasens et al., 2013).

1Code for this paper is available at: https://github.
com/limteng-rpi/fet.

Fine-grained entity typing is usually formulated
as a multi-label classification problem. Previous
approaches (Ling and Weld, 2012; Choi et al.,
2018; Xin et al., 2018) typically address it with bi-
nary relevance that decomposes the problem into
isolated binary classification subproblems and in-
dependently predicts each type. However, this
method is commonly criticized for its label inde-
pendence assumption, which is not valid for fine-
grained entity typing. For example, if the model is
confident at predicting the type artist, it should
promote its parent type person but discourage
organization and its descendant types. In or-
der to capture inter-dependencies between types,
we propose a hybrid model that incorporates la-
tent type representation in addition to binary rel-
evance. Specifically, the model learns to predict
a low-dimensional vector that encodes latent type
features obtained through Principle Label Space
Transformation (Tai and Lin, 2012) and recon-
struct the sparse and high-dimensional type vector
from this latent representation.

Another major challenge in fine-grained entity
typing is to differentiate similar types, such as
director and actor, which requires the model
to capture slightly different nuances in texts. Pre-
vious neural models (Shimaoka et al., 2016; Xin
et al., 2018; Choi et al., 2018; Xu and Barbosa,
2018) generally extract features from pre-trained
word embeddings. Instead, we adopt contextu-
alized word representations (Peters et al., 2018),
which can capture context-aware word semantics
and better represent out-of-vocabulary words. We
further propose a two-step attention mechanism to
actively extract the most relevant information from
the sentence. Particularly, we calculate the atten-
tion for context words in a mention-aware man-
ner, allowing the model to focus on different parts
of the sentence for different mentions. For exam-
ple, in the following sentence, “In 2005 two fed-

https://github.com/limteng-rpi/fet
https://github.com/limteng-rpi/fet
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Figure 1: An illustration of our fine-grained entity typing framework.

eral agencies, the US Geological Survey and the
Fish and Wildlife Service, began to identify fish in
the Potomac and tributaries ...”, the model should
use “federal agencies” to help classify “US Geo-
logical Survey” and “Fish and Wildlife Service”
as government agency, but focus on “fish” and
“tributaries” to determine that “Potomac” should
be a body of water (river) instead of a city.

2 Methodology

Figure 1 illustrates our fine-grained entity typing
framework. We represent the input sentence using
pre-trained contextualized word representations.
Next, we apply a two-step mention-aware atten-
tion mechanism to extract the most relevant fea-
tures from the sentence to form the feature vector.
On top of the model, we employ a hybrid classifier
to predict the types of each mention.

2.1 Sentence Encoder

Contextual information plays a key role as we of-
ten need to determine the types especially sub-
types according to the context. Hence, unlike pre-
vious neural models that generally use fixed word
embeddings, we employ contextualized word rep-
resentations (ELMo, Peters et al. 2018) that can
capture word semantics in different contexts. Fur-
thermore, because ELMo takes as input characters
instead of words, it can better represent out-of-
vocabulary words that are prevalent in entity men-
tions by leveraging sub-word information. Given
a sentence of S words, the encoder generates a se-
quence of word vectors {r1, ..., rS}, where ri ∈
Rdr is the representation of the i-th word.

2.2 Mention Representation

Previous attentive models (Shimaoka et al., 2017;
Xu and Barbosa, 2018; Xin et al., 2018; Choi et al.,

2018) only apply attention mechanisms to the con-
text. However, some words in an entity mention
may provide more useful information for typing,
such as “Department” in Figure 1. To allow the
model to focus on more informative words, we
represent a mention m consisting of M words as a
weighted sum of its contextualized word represen-
tations with an attention mechanism (Bahdanau
et al., 2015) as

m =
∑M

i ami ri,

where the attention score ami is computed as

ami = Softmax(emi ) =
exp (emi )∑M
k exp (emk )

,

emi = vm> tanh (Wmri),

where parameters Wm ∈ Rda×dr and vm ∈ Rda

are learned during training, and the hidden atten-
tion dimension da is set to dr in our experiments.

2.3 Context Representation
Given the context of mentionm, we form its repre-
sentation from involved contextualized word vec-
tors with a mention-aware attention mechanism

c =
∑C

i a
c
iri,

where C is the number of contextual words, and
aci is defined as aci = Softmax(eci ), where

eci = vc> tanh(W c(ri ⊕m⊕ pi)),

where ⊕ represents concatenation, and vc ∈ Rda

and W c ∈ Rda×(2dr+1) are trainable parameters.
We introduce a relative position term pi to indicate
the distance from the i-th word to the mention as

pi =

(
1− µ

(
min(|i− a|, |i− b|)− 1

))+

,
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where a and b are indices of the first and last words
of the mention, and µ is set to 0.1.

Finally, the feature vector of mention m is
formed by concatenating its mention representa-
tion m and context representation c.

2.4 Hybrid Classification Model
We propose a hybrid type classification model
consisting of two classifiers as Figure 1 shows. We
first learn a matrix W b ∈ Rdt×2dr to predict type
scores by

ỹb = W b(m⊕ c),

where ỹbi is the score for the i-th type and dt is
the number of types. However, this method in-
dependently predicts each type and does not con-
sider their inter-dependencies. To tackle this is-
sue, we introduce an additional classifier inspired
by Principle Label Space Transformation (Tai and
Lin, 2012). Under the hypercube sparsity as-
sumption that the number of training examples
is much smaller than 2dt , Tai and Lin (2012)
project high-dimensional type vectors into a low-
dimensional space to find underlying type correla-
tions behind the first order co-occurrence through
Singular Value Decomposition (SVD)

Y ≈ Ỹ = UΣL>,

where U ∈ Rdt×dl , Σ ∈ Rdl×dl , L ∈ RN×dl ,
and dl � dt. This low-dimensional space is simi-
lar to the hidden concept space in Latent Semantic
Analysis (Deerwester et al., 1990). The i-th row of
L is the latent representation of the i-th type vec-
tor. After that, we learn to predict the latent type
representation from the feature vector using

l = V l(m⊕ c),

where V l ∈ R2dr×dl is trainable. We then recon-
struct the type vector from l using a linear pro-
jection ỹl = W ll = UΣl. Next, by combining
scores from both classifiers, we have

ỹ = σ(W b(m⊕ c) + γW ll),

where γ is a scalar initialized to 0.1 and updated
during training. Finally, our training objective is to
minimize the following cross-entropy-based loss
function

J(θ) =− 1

N

N∑
i

yi log ỹi + (1− yi) log(1− ỹi).

In the test phase, we predict each type with a
probability ỹi > 0.5 or argmax ỹi if all probabil-
ities are lower than 0.5.

3 Experiments

3.1 Data Sets

In our experiments, we evaluate the proposed
model on the following data sets.

OntoNotes fine-grained entity typing data set is
derived from the OntoNotes corpus (Weischedel
et al., 2013) and annotated by Gillick et al. (2014)
using a three-layer set of 87 types. We use the
augmented data set created by Choi et al. (2018).

FIGER (Ling and Weld, 2012) contains 2.7
million automatically labeled training instances
from Wikipedia and 434 manually annotated sen-
tences from news reports. We use ground truth
mentions in our experiments and sample 0.1M
training instances as the development set.

KNET (Xin et al., 2018) is another data set de-
rived from Wikipedia. It consists of an automati-
cally annotated subset (WIKI-AUTO) and a manu-
ally annotated (WIKI-MAN) test set.

BBN Pronoun Coreference and Entity Type
Corpus (BBN, Weischedel and Brunstein, 2005)
annotates 2,311 Wall Street Journal articles in
Treebank-2 (LDC95T7) with fine-grained entity
types. We use the version processed by Ren et al.
(2016a).

Data set Train Dev Test Label Depth
OntoNotes 3.4M 2,202 8,963 87 3
FIGER 2.7M - 563 113 2
KNET (Wiki-Auto) 1M 0.1M 0.1M 74 2
KNET (Wiki-Man) - - 100 74 2
BBN 32,739 - 6,430 56 2

Table 1: Data set statistics: Numbers of train/dev/test
instances, label set size, max hierarchy depth.

3.2 Experimental Setup

We use the pre-trained original-5.5b ELMo
model 2 and freeze its weights during training. We
use an Adam optimizer with learning rate of 5e-
5, L2 weight decay of 0.01, warmup rate of 0.1,
and linear learning rate decay. We use a mini-
batch size of 200. To reduce overfitting, we ap-
ply dropout (Srivastava et al., 2014) to the word
representation, relative position term, and the final
feature vector with probability 0.5, 0.2, and 0.2.

We evaluate the performance by strict accu-
racy (Acc), macro-average F-score (Macro F1),
and micro-average F-score (Micro F1) (Ling and
Weld, 2012).

2https://allennlp.org/elmo

https://allennlp.org/elmo
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3.3 Evaluation Results
We compare the performance of our model with
state-of-the-art methods on OntoNotes, FIGER,
and KNET in Table 2, 3, and 4.

Model Acc Macro F1 Micro F1
Shimaoka et al. (2016) 51.7 70.9 64.9
Ren et al. (2016b) 57.2 71.5 66.1
Choi et al. (2018) 59.5 76.8 71.8
Our Model 63.8 82.9 77.3

Table 2: Results on the OntoNotes test set. The first
three methods use only KB-based supervision.

Model Acc Macro F1 Micro F1
Ling and Weld (2012) 53.2 69.9 69.3
Yogatama et al. (2015) – – 72.3
Shimaoka et al. (2017) 54.5 74.8 71.6
+ hand-crafted 59.7 79.0 75.4
Our Model 62.9 83.0 79.8

Table 3: Results on the FIGER (Gold) test set.

WIKI-AUTO
Model Acc Macro F1 Micro F1
Shimaoka et al. (2016) 42.8 72.4 74.9
KNET-MA 41.6 72.7 75.7
KNET-KA* 45.5 73.6 76.2
KNET-KAD* 47.2 74.9 77.9
Our Model 45.8 77.4 78.4

WIKI-MAN
Model Acc Macro F1 Micro F1
Shimaoka et al. (2016) 18.0 69.4 70.1
KNET-MA 26.0 71.2 72.1
KNET-KA* 23.0 71.1 71.7
KNET-KAD* 34.0 74.9 75.3
Our Model 29.0 77.6 75.3

Table 4: Results on KNET test sets. KNET-KA and
KNET-KAD use additional entity embeddings.

Model Acc Macro F1 Micro F1
Ling and Weld (2012) 46.7 67.2 61.2
Yosef et al. (2012) 52.3 57.6 58.7
Ren et al. (2016a) 67.0 72.7 73.5
Our Model 55.9 79.3 78.1
Our Model* 55.4 76.1 75.7

Table 5: Results on the BBN test set. Our Model* is a
variant of our model that uses Bert contextualized word
representations.

We compare the outputs of both classifiers
(ỹb and ỹl). The reconstructed type vector ỹl

alone doesn’t predict entity types accurately, while
adding this classifier substantially improves the
performance of the model.

We show results on the BBN dataset in Table 5.
Our Model* is a variant where we replace ELMo
embeddings with Bert (large cased model) contex-
tualized word representations.

Acc Marco F1 Micro F1
Shimaoka et al. (2017) 54.5 74.8 71.6
+ ELMo 59.3 81.7 79.0
+ latent 57.7 77.5 75.2

+ two-step attention 59.7 78.8 76.3
+ ELMo 62.9 83.0 79.8

Table 6: Ablation study on the FIGER (Gold) test set.

To evaluate the influence of individual compo-
nents of our model, we conduct an ablation study
as shown in Table 6. We implement a baseline
model similar to (Shimaoka et al., 2017) (no hand-
crafted features), the state-of-the-art on this data
set. We observe that each component added to the
model improves its performance.

We visualize mention and context attention in
Figure 2. The first example shows the impact
of mention attention. The baseline model mis-
takenly classifies the mention as location prob-
ably because “Asian” generally appears in loca-
tion mentions, while our model successfully pre-
dicts organization by assigning higher weights
to “Student Commission”. In Example #2 and
#3, we compare context attention between “Terry
Martino” and “APA”. Although they occur in the
same sentence, our model is able to focus on dif-
ferent context words for different mentions with
the mention-aware attention mechanism.

#1 ... left out of the [ORGANIZATION Asian Student

Commission ] and that they don’t feel like they are be-
ing represented well...

#2 After Executive Director [PERSON Terry Martino]

announced ... applause packed into the APA ’s

board room

#3 After Executive Director Terry Martino announced

... applause packed into the [ORGANIZATION APA ]

’s board room

Figure 2: Mention and context attention visualization.

4 Related Work

As entity types are usually organized as a forest of
hierarchies, several models are proposed to lever-
age this structure. In (Yosef et al., 2012), the au-
thors build a set of classifiers based on the taxon-
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omy of YAGO (Hoffart et al., 2013) and perform
top-down hierarchical classification. Shimaoka
et al. (2017) propose a hierarchical label encod-
ing method to share parameters between types in
the same hierarchy. Xu and Barbosa (2018) pro-
pose a hierarchy-aware loss function to reduce
the penalty when predicted types are related. By
contrast, our model automatically find type inter-
dependency via matrix factorization and is able to
capture inter-dependencies between types regard-
less of whether they are in the same hierarchy.

Attention mechanisms are widely used in neural
fine-grained entity typing models (Shimaoka et al.,
2016, 2017; Xu and Barbosa, 2018; Xin et al.,
2018; Choi et al., 2018) to weight context words.
We also apply it to mention words and introduce a
position term to make attentions for context words
more mention-aware.

5 Conclusions and Future Work

We propose an attentive architecture for fine-
grained entity typing with latent type representa-
tion. Experiments on multiple data sets demon-
strate that our model achieves state-of-the-art per-
formance. In the future, we will further improve
the performance of fine-grained types, which is
still lower than that of general types due to less
training instances and distant supervision noise.
We also plan to utilize fine-grained entity typing
results in more downstream applications, such as
coreference resolution and event extraction.
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