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Abstract

Recent studies on AMR-to-text generation
often formalize the task as a sequence-to-
sequence (seq2seq) learning problem by con-
verting an Abstract Meaning Representation
(AMR) graph into a word sequence. Graph
structures are further modeled into the seq2seq
framework in order to utilize the structural in-
formation in the AMR graphs. However, pre-
vious approaches only consider the relations
between directly connected concepts while ig-
noring the rich structure in AMR graphs. In
this paper we eliminate such a strong limita-
tion and propose a novel structure-aware self-
attention approach to better modeling the re-
lations between indirectly connected concepts
in the state-of-the-art seq2seq model, i.e., the
Transformer. In particular, a few different
methods are explored to learn structural rep-
resentations between two concepts. Experi-
mental results on English AMR benchmark
datasets show that our approach significantly
outperforms the state of the art with 29.66
and 31.82 BLEU scores on LDC2015E86 and
LDC2017T10, respectively. To the best of our
knowledge, these are the best results achieved
so far by supervised models on the bench-
marks.

1 Introduction

AMR-to-text generation is a task of automatically
generating a natural language sentence from an
Abstract Meaning Representation (AMR) graph.
Due to the importance of AMR as a widely
adopted semantic formalism in representing the
meaning of a sentence (Banarescu et al., 2013),
AMR has become popular in semantic representa-
tion and AMR-to-text generation has been draw-
ing more and more attention in the last decade.
As the example in Figure 1(a) shows, nodes, such
as he and convict-01, represent semantic concepts
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and edges, such as “:ARG1” and “:quant”, re-
fer to semantic relations between the concepts.
Since two concepts close in an AMR graph may
map into two segments that are distant in the cor-
responding sentence, AMR-to-text generation is
challenging. For example in Figure 1, the neigh-
boring concepts he and convict-01 correspond to
the words he and convicted which locate at the dif-
ferent ends of the sentence.

To address the above mentioned challenge, re-
cent studies on AMR-to-text generation regard the
task as a sequence-to-sequence (seq2seq) learning
problem by properly linearizing an AMR graph
into a sequence (Konstas et al., 2017). Such an
input representation, however, is apt to lose useful
structural information due to the removal of reen-
trant structures for linearization. To better model
graph structures, previous studies propose various
graph-based seq2seq models to incorporate graphs
as an additional input representation (Song et al.,
2018; Beck et al., 2018; Damonte and Cohen,
2019). Although such graph-to-sequence models
can achieve the state-of-the-art results, they focus
on modeling one-hop relations only. That is, they
only model concept pairs connected directly by an
edge (Song et al., 2018; Beck et al., 2018), and as a
result, ignore explicit structural information of in-
directly connected concepts in AMR graphs, e.g.
the relation between concepts he and possible in
Figure 1.

To make better use of structural information
in an AMR graph, we attempt to model arbi-
trary concept pairs no matter whether directly con-
nected or not. To this end, we extend the en-
coder in the state-of-the-art seq2seq model, i.e.,
the Transformer (Vaswani et al., 2017) and pro-
pose structure-aware self-attention encoding ap-
proach. In particular, several distinct meth-
ods are proposed to learn structure represen-
tations for the new self-attention mechanism.
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Empirical studies on two English benchmarks
show that our approach significantly advances
the state of the art for AMR-to-text generation,
with the performance improvement of 4.16 BLEU
score on LDC2015E86 and 4.39 BLEU score on
LDC2017T10 respectively over the strong base-
line. Overall, this paper makes the following con-
tributions.

• To the best of our knowledge, this is the first
work that applies the Transformer to the task
of AMR-to-text generation. On the basis of
the Transformer, we build a strong baseline
that reaches the state of the art.

• We propose a new self-attention mechanism
to incorporate richer structural information in
AMR graphs. Experimental results on two
benchmarks demonstrate the effectiveness of
the proposed approach.

• Benefiting from the strong baseline and
the structure-aware self-attention mecha-
nism, we greatly advance the state of the art
in the task.

2 AMR-to-Text Generation with Graph
Structure Modeling

We start by describing the implementation of our
baseline system, a state-of-the-art seq2seq model
which is originally used for neural machine trans-
lation and syntactic parsing (Vaswani et al., 2017).
Then we detail the proposed approach to incorpo-
rating structural information from AMR graphs.

2.1 Transformer-based Baseline

Transformer: Our baseline system builds on the
Transformer which employs an encoder-decoder
framework, consisting of stacked encoder and de-
coder layers. Each encoder layer has two sublay-
ers: self-attention layer followed by a position-
wise feed forward layer. Self-attention layer em-
ploys multiple attention heads and the results from
each attention head are concatenated and trans-
formed to form the output of the self-attention
layer. Each attention head uses scaled dot-
product attention which takes a sequence x =
(x1, · · · , xn) of n elements as input and computes
a new sequence z = (z1, · · · , zn) of the same
length:

z = Attention (x) (1)
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Figure 1: (a) An example of AMR graph for the sen-
tence of He could be sentenced to 7 years in prison if
convicted. (b) input to our baseline system, the seq2seq
Transformer. (c) input to our proposed system based on
structure-aware self-attention. (d) An example of graph
structure extensions to sub-word units.
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where xi ∈ Rdx and z ∈ Rn×dz . Each output
element zi is a weighted sum of a linear transfor-
mation of input elements:

zi =

n∑
j=1

αij

(
xjW

V
)

(2)

whereW V ∈ Rdx×dz is matrix of parameters. The
vectors αi = (αi1, · · · , αin) in Equation 2 are
obtained by the self-attention model, which cap-
tures the correspondences between xi and others.
Specifically, the attention weight αij of each ele-
ment xj is computed using a softmax function:

αij =
exp(eij)∑n
k=1 exp(eik)

(3)

where

eij =

(
xiW

Q
) (
xjW

K
)T

√
dz

(4)

is an alignment function which measures how well
the input elements xi and xj match. WQ,WK ∈
Rdx×dz are parameters to be learned.
Input Representation: We use the depth-first
traversal strategy as in Konstas et al. (2017) to
linearize AMR graphs and to obtain simplified
AMRs. We remove variables, wiki links and sense
tags before linearization. Figure 1(b) shows an ex-
ample linearization result for the AMR graph in
Figure 1(a). Note that the reentrant concept he in
Figure 1 (a) maps to two different tokens in the
linearized sequence.
Vocabulary: Training AMR-to-text generation
systems solely on labeled data may suffer from
data sparseness. To attack this problem, previ-
ous works adopt techniques like anonymization to
remove named entities and rare words (Konstas
et al., 2017), or apply a copy mechanism (Gul-
cehre et al., 2016) such that the models can learn
to copy rare words from the input sequence. In
this paper we instead use two simple yet effective
techniques. One is to apply Byte Pair Encoding
(BPE) (Sennrich et al., 2016) to split words into
smaller, more frequent sub-word units. The other
is to use a shared vocabulary for both source and
target sides. Experiments in Section 3.2 demon-
strate the necessity of the techniques in building a
strong baseline.

2.2 Modeling Graph Structures in
Transformer

Input Representation: We also use the depth-
first traversal strategy to linearize AMR graphs

and to obtain simplified AMRs which only con-
sist of concepts. As shown in Figure 1 (c), the
input sequence is much shorter than the input se-
quence in the baseline. Besides, we also obtain a
matrix which records the graph structure between
every concept pair, which implies their semantic
relationship (Section2.3).
Vocabulary: To be compatible with sub-words,
we extend the original AMR graph, if necessary, to
include the structures of sub-words. As sentence-
01 in Figure 1(a) is segmented into sent@@ ence-
01, we split the original node into two connected
ones with an edge labeled as the incoming edge of
the first unit. Figure 1(d) shows the graph structure
for sub-words sent@@ ence-01.
Structure-Aware Self-Attention: Motivated
by Shaw et al. (2018), we extend the conventional
self-attention architecture to explicitly encode the
relation between an element pair (xi, xj) in the
alignment model by replacing Equation 4 with
Equation 5. Note that the relation rij ∈ Rdz is
the vector representation for element pair (xi, xj),
and will be learned in Section 2.3.

eij =

(
xiW

Q
) (
xjW

K + rijW
R
)T

√
dz

(5)

whereWR ∈ Rdz×dz is a parameter matrix. Then,
we update Equation 2 accordingly to propagate
structure information to the sublayer output by:

zi =
n∑

j=1

αij

(
xjW

V + rijW
F
)

(6)

where WF ∈ Rdz×dz is a parameter matrix.

2.3 Learning Graph Structure
Representation for Concept Pairs

The above structure-aware self-attention is capa-
ble of incorporating graph structure between con-
cept pairs. In this section, we explore a few meth-
ods to learn the representation for concept pairs.
We use a sequence of edge labels, along the path
from xi to xj to indicate the AMR graph structure
between concepts xi and xj .1 In order to distin-
guish the edge direction, we add a direction sym-
bol to each label with ↑ for climbing up along the
path, and ↓ for going down. Specifically, for the
special case of i == j, we use None as the path.
Table 1 demonstrates structural label sequences
between a few concept pairs in Figure 1.

1While there may exist two or more paths connecting xi

and xj , we simply choose the shortest one.
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xi xj Structural label sequence
he convict-01 :ARG1↑
he 7 :ARG1↑ :ARG2↓ :quant↓
he he None

Table 1: Examples of structural path between a few
concept pairs in Figure 1.

Now, given a structural path with a label
sequence s = s1, · · · , sk and its dx-sized
corresponding label embedding sequence l =
l1, · · · , lk, we use the following methods to ob-
tain its representation vector r, which maps to rij
in Equation 5 and Equation 6.
Feature-based
A natural way to represent the structural path is to
view it as a string feature. To this end, we combine
the labels in the structural path into a string. Un-
surprisingly, this will end up with a large number
of features. We keep the most frequent ones (i.e.,
20K in our experiments) in the feature vocabu-
lary and map all others into a special feature UNK.
Each feature in the vocabulary will be mapped into
a randomly initialized vector.
Avg-based
To overcome the data sparsity in the above feature-
based method, we view the structural path as a la-
bel sequence. Then we simply use the averaged la-
bel embedding as the representation vector of the
sequence, i.e.,

r =

∑k
i=1 li
k

(7)

Sum-based
Sum-based method simply returns the sum of all
label embeddings in the sequence, i.e.,

r =
k∑

i=1

li (8)

Self-Attention-based (SA-based for short)
As shown in Figure 2, given the label sequence
s = s1, · · · , sk, we first obtain the sequence
e, whose element is the addition of a word em-
bedding and the corresponding position embed-
ding. Then we use the self-attention, as pre-
sented in Eq. 1 to obtain its hidden states h, i.e,
h = Attention(e), where hi ∈ Rdz . Our aim
is to encode a variable length sentence into a dz-
sized vector. Motivated by (Lin et al., 2017), we
achieve this by choosing a linear combination of

r

+

h1 h2 hk. . .

α1 α2
αk

Self-Attention

e1 e2 ek. . .

l1 l2 lk. . .

+ + +. . .

dz

Positional

Encoding

S1 S2 Sk

Figure 2: Self-Attention-based method.

the k vectors in h. Computing the linear combina-
tion requires an attention mechanism which takes
the whole hidden states h as input, and outputs a
vector of weights α:

α = softmax(W 2 tanh(W 1hT )) (9)

where W 1 ∈ Rdw×dz and W 2 ∈ Rdw . Then
the label sequence representation vector is the
weighted sum of its hidden states:

r =
k∑

i=1

αihi (10)

CNN-based
Motivated by (Kalchbrenner et al., 2014), we use
convolutional neural network (CNN) to convolute
the label sequence l into a vector r, as follow:

conv = Conv1D(kernel size = (m),

strides = 1,

filters = dz,

input shape = dz

activation =′ relu′)

(11)

r = conv (l) (12)
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where kernel size m is set to 4 in our experiments.

3 Experimentation

3.1 Experimental Settings
For evaluation of our approach, we use the sen-
tences annotated with AMRs from the LDC re-
lease LDC2015E86 and LDC2017T10. The
two datasets contain 16,833 and 36,521 training
AMRs, respectively, and share 1,368 development
AMRs and 1,371 testing AMRs. We segment
words into sub-word units by BPE (Sennrich et al.,
2016) with 10K operations on LDC2015E86 and
20K operations on LDC2017T10.

For efficiently learning graph structure repre-
sentation for concept pairs (except the feature-
based method), we limit the maximum label se-
quence length to 4 and ignore the labels exceeding
the maximum. In SA-based method, we set the
filter size dw as 128.

We use OpenNMT (Klein et al., 2017) as the im-
plementation of the Transformer seq2seq model.2

In parameter setting, we set the number of layers
in both the encoder and decoder to 6. For opti-
mization we use Adam with β1 = 0.1 (Kingma
and Ba, 2015). The number of heads is set to 8.
In addition, we set the embedding and the hidden
sizes to 512 and the batch token-size to 4096. Ac-
cordingly, the dx and dz in Section 2 are 64. In all
experiments, we train the models for 300K steps
on a single K40 GPU.

For performance evaluation, we use BLEU (Pa-
pineni et al., 2002), Meteor (Banerjee and
Lavie, 2005; Denkowski and Lavie, 2014), and
CHRF++ (Popovi, 2017) as metrics. We report re-
sults of single models that are tuned on the devel-
opment set.

We make our code available at
https://github.com/Amazing-J/
structural-transformer.

3.2 Experimental Results
We first show the performance of our baseline
system. As mentioned before, BPE and sharing
vocabulary are two techniques we applied to re-
lieving data sparsity. Table 2 presents the re-
sults of the ablation test on the development set of
LDC2015E86 by either removing BPE, or vocabu-
lary sharing, or both of them from the baseline sys-
tem. From the results we can see that BPE and vo-
cabulary sharing are critical to building our base-

2https://github.com/OpenNMT/OpenNMT-py

Model BLEU Meteor CHRF++
Baseline 24.93 33.20 60.30
-BPE 23.02 31.60 58.09
-Share Vocab. 23.24 31.78 58.43
-Both 18.77 28.04 51.88

Table 2: Ablation results of our baseline system on the
LDC2015E86 development set.

line system (an improvement from 18.77 to 24.93
in BLEU), revealing the fact that they are two ef-
fective ways to address the issue of data sparseness
for AMR-to-text generation.

Table 3 presents the comparison of our ap-
proach and related works on the test sets of
LDC2015E86 and LDC2017T10. From the re-
sults we can see that the Transformer-based base-
line outperforms most of graph-to-sequence mod-
els and is comparable with the latest work by Guo
et al. (2019). The strong performance of the base-
line is attributed to the capability of the Trans-
former to encode global and implicit structural in-
formation in AMR graphs. By comparing the five
methods of learning graph structure representa-
tions, we have the following observations.

• All of them achieve significant improve-
ments over the baseline: the biggest im-
provements are 4.16 and 4.39 BLEU scores
on LDC2015E86 and LDC2017T10, respec-
tively.

• Methods using continuous representations
(such as SA-based and CNN-based) outper-
form the methods using discrete representa-
tions (such as feature-based).

• Compared to the baseline, the methods have
very limited affect on the sizes of model pa-
rameters (see the column of #P (M) in Ta-
ble 3).

Finally, our best-performing models are the best
among all the single and supervised models.

4 Analysis

In this section, we use LDC2017T10 as our bench-
mark dataset to demonstrate how our proposed
approach achieves higher performance than the
baseline. As representative, we use CNN-based
method to obtain structural representation.

https://github.com/Amazing-J/structural-transformer
https://github.com/Amazing-J/structural-transformer
https://github.com/OpenNMT/OpenNMT-py
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System LDC2015E86 LDC2017T10
BLEU Meteor CHRF++ #P (M) BLEU Meteor CHRF++

Baseline 25.50 33.16 59.88 49.1 27.43 34.62 61.85

Our Approach

feature-based 27.23 34.53 61.55 49.4 30.18 35.83 63.20
avg-based 28.37 35.10 62.29 49.1 29.56 35.24 62.86
sum-based 28.69 34.97 62.05 49.1 29.92 35.68 63.04
SA-based 29.66 35.45 63.00 49.3 31.54 36.02 63.84

CNN-based 29.10 35.00 62.10 49.2 31.82 36.38 64.05
Previous works with single models

Konstas et al. (2017)∗ 22.00 - - - - - -
Cao and Clark (2019)∗ 23.5 - - - 26.8 - -

Song et al. (2018)† 23.30 - - - - - -
Beck et al. (2018)† - - - - 23.3 - 50.4

Damonte and Cohen (2019)† 24.40 23.60 - - 24.54 24.07 -
Guo et al. (2019)† 25.7 - - - 27.6 - 57.3
Song et al. (2016)‡ 22.44 - - - - - -

Previous works with either ensemble models or unlabelled data, or both
Konstas et al. (2017)∗ 33.8 - - - - - -

Song et al. (2018)† 33.0 - - - - - -
Beck et al. (2018)† - - - - 27.5 - 53.5
Guo et al. (2019)† 35.3 - - - - - -

Table 3: Comparison results of our approaches and related studies on the test sets of LDC2015E86 and
LDC2017T10. #P indicates the size of parameters in millions. ∗ indicates seq2seq-based systems while † for
graph-based models, and ‡ for other models. All our proposed systems are significant over the baseline at 0.01,
tested by bootstrap resampling (Koehn, 2004).

System BLEU
Baseline 27.43

Our approach 31.82
No indirectly connected concept pairs 29.92

Table 4: Performance on the test set of our approach
with or without modeling structural information of in-
directly connected concept pairs.

4.1 Effect of Modeling Structural
Information of Indirectly Connected
Concept Pairs

Our approach is capable of modeling arbitrary
concept pairs no matter whether directly con-
nected or not. To investigate the effect of model-
ing structural information of indirectly connected
concept pairs, we ignore their structural informa-
tion by mapping all structural label sequences be-
tween two indirectly connected concept pairs into
None. In this way, the structural label sequence for
he and 7 in Table 1, for example, will be None.

Table 4 compares the performance of our ap-
proach with or without modeling structural infor-
mation of indirectly connected concept pairs. It

shows that by modeling structural information of
indirectly connected concept pairs, our approach
improves the performance on the test set from
29.92 to 31.82 in BLEU scores. It also shows that
even without modeling structural information of
indirectly connected concept pairs, our approach
achieves better performance than the baseline.

4.2 Effect on AMR Graphs with Different
Sizes of Reentrancies

Linearizing an AMR graph into a sequence un-
avoidably loses information about reentrancies
(nodes with multiple parents). This poses a chal-
lenge for the baseline since there exists on ob-
vious sign that the first he and the second he,
as shown in Figure 1 (b), refer to the same per-
son. By contrast, our approach models reentran-
cies explicitly. Therefore, it is expected that the
benefit of our approach is more evident for those
AMR graphs containing more reentrancies. To test
this hypothesis, we partition source AMR graphs
to different groups by their numbers of reentran-
cies and evaluate their performance respectively.
As shown in Figure 3, the performance gap be-
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Figure 3: Performance (in BLEU) on the test set with
respect to the reentrancy numbers of the input AMR
graphs.

tween our approach and the baseline goes widest
for AMR graphs with more than 5 reentrancies,
on which our approach outperforms the baseline
by 6.61 BLEU scores.

4.3 Effect on AMR Graphs with Different
Sizes

When we encode an AMR graph with plenty con-
cepts, linearizing it into a sequence tends to lose
great amount of structural information. In order
to test the hypothesis that graphs with more con-
cepts contribute more to the improvement, we par-
tition source AMR graphs to different groups by
their sizes (i.e., numbers of concepts) and evaluate
their performance respectively. Figure 4 shows the
results which indicate that modeling graph struc-
tures significantly outperforms the baseline over
all AMR lengths. We also observe that the per-
formance gap between the baseline and our ap-
proach increases when AMR graphs become big,
revealing that the baseline seq2seq model is far
from capturing deep structural details of big AMR
graphs. Figure 4 also indicates that text generation
becomes difficult for big AMR graphs. We think
that the low performance on big AMR graphs is
mainly attributed to two reasons:

• Big AMR graphs are usually mapped into
long sentences while seq2seq model tends to
stop early for long inputs. As a result, the
length ratio3 for AMRs with more than 40
concepts is 0.906, much lower than that for
AMRs with less concepts.

3Length ratio is the length of generation output, divided
by the length of reference.

Figure 4: Performance (in BLEU) on the test set with
respect to the size of the input AMR graphs.

• Big AMR graphs are more likely to have
reentrancies, which makes the generation
more challenging.

4.4 Case Study
In order to better understand the model perfor-
mance, Figure 5 presents a few examples studied
in Song et al. (2018) (Example (1)) and Damonte
and Cohen (2019) (Examples (2) - (5)).

In Example (1), though our baseline recovers
a propositional phrase for the noun staff and an-
other one for the noun funding, it fails to recog-
nize the anaphora and antecedent relation between
the two propositional phrases. In contrast, our
approach successfully recognizes :prep-for c as a
reentrancy node and generates one propositional
phrase shared by both nouns staff and funding. In
Example (2), we note that although AMR graphs
lack tense information, the baseline generates out-
put with inconsistent tense (i.e., do and found)
while our approach consistently prefers past tense
for the two clauses. In Example (3), only our ap-
proach correctly uses people as the subject of the
predicate can. In Example (4), the baseline fails to
predict the direct object you for predicate recom-
mend. Finally in Example (5), the baseline fails to
recognize the subject-predicate relation between
noun communicate and verb need. Overall, we
note that compared to the baseline, our approach
produces more accurate output and deal with reen-
trancies more properly.

Comparing the generation of our approach and
graph-based models in Song et al. (2018) and Da-
monte and Cohen (2019), we observe that our gen-
eration is more close to the reference in sentence
structure. Due to the absence of tense informa-
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(1)  (p/ provide-01 
    :ARG0 (a / agree-01) 
    :ARG1 (a2 / and 
         :op1 (s / staff 
               :prep-for (c / center 
                       :mod (r / research-01))) 
         :op2 (f / fund-01 
               :prep-for c))) 

       REF:  the agreement will provide staff and funding for the research center . 
       SEQ1: agreed to provide research and institutes in the center . 
       G2S: the agreement provides the staff of the  research center and the funding . 
       Baseline: the agreement provides staff for research centres and funding for center . 
       Our approach: the agreement provided staff and funding for research centers . 
(2)  REF:  i dont tell him but he finds out , 
       SEQ2:  i did n't tell him but he was out . 
       GRAPH: i do n’t tell him but he found out . 
       Baseline: i do n't tell him but he found out . 
       Our approach: i did n't tell him but he found out . 

(3)  REF: if you tell people they can help you , 
       SEQ2: if you tell him , you can help you ! 
       GRAPH: if you tell them , you can help you . 
       Baseline: if you tell people , you might help you ! 
       Our approach: if you tell people , people can help you ! 

(4)  REF:  i 'd recommend you go and see your doctor too . 
       SEQ2: i recommend you go to see your doctor who is going to see your doctor . 
       GRAPH: i recommend you going to see your doctor too . 
       Baseline: i would recommend going to see your doctor too . 
       Our approach: i would recommend you to go to see your doctor too . 

(5)  REF:  tell your ex that all communication needs to go through the lawyer . 
       SEQ2: tell that all the communication go through lawyer . 
       GRAPH: tell your ex the need to go through a lawyer . 
       Baseline: tell your ex you need to go all the communication by lawyer . 
       Our approach: tell your ex that all communication needs to go through lawyers .

Figure 5: Examples of generation from AMR graphs. (1) is from Song et al. (2018), (2) - (5) are from Damonte
and Cohen (2019). REF is the reference sentence. SEQ1 and G2S are the outputs of the seq2seq and the graph2seq
models in Song et al. (2018), respectively. SEQ2 and GRAPH are the outputs of the seq2seq and the graph models
in Damonte and Cohen (2019), respectively.

tion in AMR graphs, our model tends to use past
tense, as provided and did in Example (1) and (2).
Similarly, without information concerning singu-
lar form and plural form, our model is more likely
to use plural nouns, as centers and lawyers in Ex-
ample (1) and (5).

5 Related Work

Most studies in AMR-to-text generation regard
it as a translation problem and are motivated by
the recent advances in both statistical machine
translation (SMT) and neural machine translation
(NMT). Flanigan et al. (2016) first transform an
AMR graph into a tree, then specify a number
of tree-to-string transduction rules based on align-

ments that are used to drive a tree-based SMT
model (Graehl and Knight, 2004). Pourdamghani
et al. (2016) develop a method that learns to lin-
earize AMR graphs into AMR strings, and then
feed them into a phrase-based SMT model (Koehn
et al., 2003). Song et al. (2017) use synchronous
node replacement grammar (SNRG) to generate
text. Different from synchronous context-free
grammar in hierarchical phrase-based SMT (Chi-
ang, 2007), SNRG is a grammar over graphs.

Moving to neural seq2seq approaches, Konstas
et al. (2017) successfully apply seq2seq model
together with large-scale unlabeled data for both
text-to-AMR parsing and AMR-to-text genera-
tion. With special interest in the target side syn-
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tax, Cao and Clark (2019) use seq2seq models to
generate target syntactic structure, and then the
surface form. To prevent the information loss
in linearizing AMR graphs into sequences, (Song
et al., 2018; Beck et al., 2018) propose graph-
to-sequence models to encode graph structure di-
rectly. Focusing on reentrancies, Damonte and
Cohen (2019) propose stacking encoders which
consist of BiLSTM (Graves et al., 2013), TreeL-
STMs (Tai et al., 2015), and Graph Convolutional
Network (GCN) (Duvenaud et al., 2015; Kipf and
Welling, 2016). Guo et al. (2019) propose densely
connected GCN to better capture both local and
non-local features. However, all the aforemen-
tioned graph-based models only consider the re-
lations between nodes that are directly connected,
thus lose the structural information between nodes
that are indirectly connected via an edge path.

Recent studies also extend the Transformer to
encode structural information for other NLP ap-
plications. Shaw et al. (2018) propose relation-
aware self-attention to capture relative positions
of word pairs for neural machine translation.
Ge et al. (2019) extend the relation-aware self-
attention to capture syntactic and semantic struc-
tures. Our model is inspired by theirs but aims to
encode structural label sequences of concept pairs.
Koncel-Kedziorski et al. (2019) propose graph
Transformer to encode graph structure. Similar to
the GCN, it focuses on the relations between di-
rectly connected nodes.

6 Conclusion and Future Work

In this paper we proposed a structure-aware self-
attention for the task of AMR-to-text generation.
The major idea of our approach is to encode
long-distance relations between concepts in AMR
graphs into the self-attention encoder in the Trans-
former. In the setting of supervised learning, our
models achieved the best experimental results ever
reported on two English benchmarks.

Previous studies have shown the effectiveness
of using large-scale unlabelled data. In future
work, we would like to do semi-supervised learn-
ing and use silver data to test how much improve-
ments could be further achieved.
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