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Abstract

Interactive programming with interleaved
code snippet cells and natural language mark-
down is recently gaining popularity in the form
of Jupyter notebooks, which accelerate pro-
totyping and collaboration. To study code
generation conditioned on a long context his-
tory, we present JuICe, a corpus of 1.5 mil-
lion examples with a curated test set of 3.7K
instances based on online programming as-
signments. Compared with existing contextual
code generation datasets, JuICe provides re-
fined human-curated data, open-domain code,
and an order of magnitude more training data.
Using JuICe, we train models for two tasks:
(1) generation of the API call sequence in a
code cell, and (2) full code cell generation,
both conditioned on the NL-Code history up
to a particular code cell. Experiments using
current baseline code generation models show
that both context and distant supervision aid in
generation, and that the dataset is challenging
for current systems.

1 Introduction

Interactive computing (IC) is a software en-
gidneering paradigm where programmers write
source code scripts in an incremental fashion, one
block at a time, taking decisions based on the out-
put of execution of previously written blocks. An
increasingly adopted platform for IC is the Jupyter
notebook (Kluyver et al., 2016), which addition-
ally encourages the use of markdown in natural
language (NL) between code snippets as a means
of documentation (Figure 1). Under the frame-
work of IC, models that automatically generate fu-
ture code blocks based on NL instructions, have
the potential to provide significant assistance and
speed up development. In this paper, we collect
and release a new large-scale dataset based off of

NL: Create and train the model.

from sklearn.tree import DecisionTreeClassifier

dtree = DecisionTreeClassifier()

dtree.fit(X_train, y_train)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y)
d = 2

d = 1

Target

import pandas as pd

X = pd.read_json(‘features.json’)

y = pd.read_json(‘labels.json’)

NL: Split the data into train and test.d = 3

d = 4

NL: Load features and labels in a dataframe.d = 5

NL: Training a Decision Treed = 6

Figure 1: This Python Jupyter notebook, comprising
of interleaved NL markdown and code cells, loads data
from a file and trains a decision tree classifier. We aim
to generate the target code cell (blue) based on the pre-
vious NL markdown Create and train the model and
the prior NL and code history. To the left of each cell,
d represents its distance from the target cell.

Jupyter notebooks named JuICe (for Jupyter Inter-
active Computing). We also present experiments
to demonstrate baseline performance for the task
of incremental context-based code generation.

Figure 1 presents part of a Jupyter notebook
for training a decision tree classifier using Python,
which includes a title, followed by interleaved NL
markdown and code cells. The markdown typ-
ically describes the goal of the code cells that
follow and often is of high quality, since note-
books are frequently used for sharing and collab-
oration amongst teams. The first two code cells
import packages and perform data loading, and
following this, the user would typically inspect
the data and proceed to train the model by first
writing the markdown as Create and train the
model. Our goal is to train models that assist the
user at this particular stage i.e. to generate the
API calls DecisionTreeClassifier() and
fit() and the source code contained in the blue
cell in Figure 1 (which trains a Decision tree clas-
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sifier), based on the previous markdown, and NL
and code context. The closest NL utterance alone
does not specify that a Decision Tree model must
be trained, or which variables should be used as
train and test data. Automatically making these
decisions conditioned on prior history is one of the
main challenges of this task.

Existing tasks for mapping NL to source code
primarily use a single NL utterance (Zettlemoyer
and Collins, 2005; Iyer et al., 2017) to generate
database queries (semantic parsing), single line
python code (Yin et al., 2018; Oda et al., 2015),
multi-line domain-specific code (Ling et al., 2016;
Rabinovich et al., 2017), or sequences of API calls
(Gu et al., 2016b). A recent task by Iyer et al.
(2018) on the CONCODE dataset maps a single
utterance to an entire method, conditioned on en-
vironment variables and methods. In contrast, we
tackle the task of general purpose code genera-
tion in an interactive setting, using an entire se-
quence of prior NL and code blocks as context.
More closely related to our task is the context de-
pendent semantic parsing task on the ATIS dataset
(Zettlemoyer and Collins, 2009; Suhr et al., 2018)
for mapping NL to database queries based on a
prior history of NL and query pairs. One main
difference is that while future queries can be built
by modifying queries in previous utterances, code
snippets in our task are almost always disjoint
from previously generated code.

We collect an open-domain large-scale dataset
(JuICe) of over 659K publicly available Jupyter
notebooks from github.com to train models
for our task. Each notebook contains an aver-
age of 39 NL/code cells and uses python pack-
ages from thousands of domains. Since obtain-
ing source-code with NL annotations is expen-
sive, most large NL-code datasets rely on noisy
automatically scraped data from source code fo-
rums or repositories online (Yin et al., 2018; Iyer
et al., 2018). However, this also results in exces-
sively noisy test sets and thus, a persistent chal-
lenge has been the creation of high quality code
generation test sets. For our dataset, we capi-
talize on the availability of nbgrader (Hamrick,
2016) notebooks, which are high-quality Jupyter
notebooks that are manually created by instructors
as programming assignments for classes. These
notebooks contain accurate and detailed sequences
of NL and code blocks, with blank code-cells in-
tended to be filled in by students and later eval-

uated. We collect and release 13,905 nbgrader
notebooks to evaluate models for code generation
tasks, which, together with the training set, forms
the first dataset for general purpose code genera-
tion in an interactive setting.

We define two code generation related tasks us-
ing JuICe: (1) generating API sequences, and (2)
full code generation. The first task is more relaxed
and aims to assist users by generating a sequence
of all function calls (Gu et al., 2016b) needed to
achieve the goal of the cell. The second task
measures the ability of models to learn to gener-
ate fully functioning complete code snippets. For
both tasks, we investigate strong neural baselines
and study performance improvements obtained by
varying the size of prior NL and code context con-
sidered, as well as varying training data size. In
summary, we introduce the task of code generation
under the paradigm of IC. We collect and release
a new large-scale dataset together with a manu-
ally curated test set based on nbgrader. Finally,
we evaluate strong neural baselines on two code
generation tasks, which achieve reasonable perfor-
mance, with significant room for improvement.

2 Related Work

There is significant existing research on mapping
single NL utterances directly to executable pro-
grams in the form of logical forms (Zettlemoyer
and Collins, 2005), λ-DCS (Liang et al., 2013),
regular expressions (Kushman and Barzilay, 2013;
Locascio et al., 2016), database queries (Iyer et al.,
2017; Zhong et al., 2017) and general purpose pro-
grams (Balog et al., 2016; Allamanis et al., 2015).
Ling et al. (2016) generate Java and Python source
code from NL for card games, conditioned on cat-
egorical card attributes. Iyer et al. (2018) generate
Java class methods using a single NL instruction
and conditioned on a list of class environment vari-
ables and methods. Yin et al. (2018) mine a large
NL-code dataset from Stackoverflow to train mod-
els to map a NL programming question into a short
example solution snippet. Gu et al. (2016c) use
neural models to map Java documentation strings
to a sequence of API calls. In this work, we in-
troduce a new task of mapping NL to source code
under an interactive programming paradigm i.e.,
conditioned on a sequence of past NL and code
cells representing past exploratory interactions.

Models for mapping NL to code have been eval-
uated on datasets containing templated code for

github.com


5438

Dataset Context Based Open Domain Large Scale Curated Dev/Test

JuICe

CONCODE (Iyer et al., 2018)
CoNaLa (Yin et al., 2018)
ATIS (Zettlemoyer and Collins, 2009)
SequentialQA (Iyyer et al., 2017)
SCONE (Long et al., 2016)

Table 1: Comparison of JuICe with various recently released NL-code datasets along four dimensions. Most
datasets that condition on historical natural language and code are small and domain specific, while large scale
datasets only use human curated test sets for simple single line NL-code generation.

card games (Hearthstone & MTG; Ling et al.,
2016), or manually labeled per-line comments
(DJANGO; Oda et al., 2015). These datasets con-
tain ∼20,000 programs with short textual descrip-
tions possibly paired with categorical data and are
highly domain specific with limited context. In
this work, we collect the first large scale dataset
containing over 1.5M source code cells paired
with a sequence of NL and code cells that repre-
sents past exploratory interactions. Although var-
ious large scale datasets (Allamanis and Sutton,
2013, 2014; Allamanis et al., 2016; Iyer et al.,
2018) to study code generation have been cre-
ated from Github, their development and test set
are randomly created from the same dataset since
human curation is prohibitively expensive. Sim-
ilarly, Yin et al. (2018) collect a large dataset
from Stackoverflow.com (CoNaLa) for training,
but only manage to curate a small portion (∼ 2,900
examples) of single line NL and code snippets for
evaluation. We take advantage of nbgrader as-
signment notebooks to create an inexpensive high-
quality human-curated test set of 3,725 NL state-
ments with interactive history.

Neural encoder-decoder models have proved ef-
fective in mapping NL to logical forms and also
for directly producing general purpose programs.
Ling et al. (2016) use a sequence-to-sequence
model with attention and a copy mechanism (Gu
et al., 2016a) to generate source code. Recent
methods focus on constrained decoding mecha-
nisms to generate syntactically correct output us-
ing a decoder that is either grammar-aware or has
a dynamically-determined modular structure par-
alleling the structure of the abstract syntax tree
of the code (Dong and Lapata, 2016; Rabinovich
et al., 2017; Krishnamurthy et al., 2017; Yin and
Neubig, 2017; Iyer et al., 2018). Iyer et al. (2018)
use a specialized context encoder that uses sub-

word units (Sennrich et al., 2016) for representing
code tokens and a grammar-aware decoder that at-
tends to both NL and context to produce source
code parses. Although syntax aware models are
more accurate, they are significantly slower than
Seq2Seq to train on large datasets. We present
strong Seq2seq baselines with sub-word units for
our task, that take interactive context into account
and scale to large datasets.

Train Dev/Test

# Examples 1,518,049 1,744/1,981
Avg Context Cells 29.9 28.3
Avg NL Tokens 39.6 57.2
Avg Code Tokens 38.8 33.7
# Unique NL Token 851,127 11,142
# Unique Code Token 1,001,289 5,113

% Use variables above 45.3 58.6
% Use methods above 6.4 8.2
% Contextual 48.2 61.9
% Multi-cell 19.7 29.0

Table 2: Statistics for the JuICe dataset. The dev/test
sets are obtained from high-quality programming as-
signments. Expanded descriptions for the bottom four
rows are: % Examples using variables defined above,
% Examples using methods declared above, % Exam-
ples using a variable or method from above (i.e. contex-
tual), % Examples where the variables/methods come
from at least 2 different code cells. To accurately mea-
sure contextual reasoning, we only consider those vari-
ables/methods that are not mentioned in the NL above.

3 Dataset Collection

We aim to study code generation in an interac-
tive setting, conditioned on prior history of NL
and code cells. Jupyter notebooks are a popu-
lar platform for exploratory programming that en-
courage users to write code one cell at a time
and to make programming decisions by executing
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previous cells and examining the output. Since
these notebooks are heavily used for sharing and
collaboration, they are typically well documented
with high quality NL. The intent of the NL (mark-
down) is typically to describe the functionality of
the code cells that follow, as opposed to code com-
ments, which primarily describe why code is writ-
ten in a certain way. We collect a large scale
training set to serve as distant supervision for our
human-curated dev/test sets based on program-
ming assignments and exercises.

3.1 Training Set Creation
To create JuICe we first collect all publicly avail-
able Jupyter notebooks from github.com cre-
ated before May 2019 and filter for notebooks hav-
ing NL markdown in English and Python 2/3 as
their kernel type. We observe that the presence of
NL markdown is correlated with notebook qual-
ity and remove any notebooks that have more than
three times the number of code cells as the number
of NL cells, leaving us with ∼ 659K notebooks.

Within these notebooks, each code cell is a po-
tential training example, and we define the se-
quence of NL and code cells above it as its con-
text. We only consider code cells that have NL
markdown in the immediate previous cell (hence-
forth, target NL), as target cells. For our dataset,
we include target cells that have syntactically valid
Python and at most one method definition (for
cells containing methods). Following Iyer et al.
(2018), we canonicalize strings in the target cell
and truncate them to a maximum of 120 code to-
kens. This amounts to over 4 million (target cell,
context) examples that can be used for training,
which we downsample to 1.5 million by ensuring
that each target cell and context is unique. Table 2
presents dataset statistics for JuICe.

3.2 Human Curated Dev/Test Set
While existing large scale NL-code datasets have
leveraged noisy online code repositories/forums
to create training sets, obtaining a human curated
test set has always been prohibitively expensive,
and is typically done only for simple single line
NL to code tasks. For our dataset, we take ad-
vantage of programming assignments written in
Jupyter notebooks to build a high quality dev/test
set. Specifically, we collect 1,510 code context
examples from assignments created with nbgrader
(Hamrick, 2016), and mine an additional 2,215 ex-
amples from in-class exercise notebooks.

1.1.3$$3. Show how the number of attacks evolves with 

time (1 point)
Group all incidents by year. Create a line plot showing how the attacks 
evolve.

attacks_by_year=data.groupby(data[‘year'])['year'].count()

attacks_by_year.plot()

plt.show()

data = read_csv(‘globalterrorism.csv’)

Figure 2: This example nbgrader problem prepared by
an instructor prompts the student to fill in the blue col-
ored cell with code to perform operations on previously
loaded data. We leverage such notebooks with embed-
ded solutions, posted on Github, to create a high quality
dev and test set for JuICe.

Nbgrader Assignments Instructors use
nbgrader to create and grade programming assign-
ments within Jupyter notebooks. Figure 2 presents
one such nbgrader assignment, where the student
must wrangle some data that has been loaded
earlier in the notebook to create a plot, and en-
ter the solution in the cell in blue. Behind the
scenes, nbgrader stores the following properties
within each code cell’s metadata: (1) the num-
ber of points its worth, (2) a unique code cell
ID, (3) whether it’s to be autograded or manually
graded, (4) boilerplate code, (5) whether it is an
instructor solution or a student submission. While
students are expected to confidentially send their
completed assignment to instructors, the solutions
are often later posted on Github.

Taking advantage of this, we search Github for
nbgrader notebooks with embedded metadata and
collect 13,905 such notebooks, each containing
multiple prompts and target code cells, with multi-
ple student submissions for the same assignment.
Based on the problem IDs and point values, we
group together all student submissions that answer
the same instructor prompt. Each prompt written
by an instructor has an average of 8.9 different stu-
dent submissions. If the metadata of any solution
notebook indicates a successful execution on all
the test cases without generating errors in the out-
put, we select that as one of the correct submis-
sions. If there are multiple correct submissions
we select one at random, and wrong solutions are
discarded. If the instructor provided boilerplate
within the target cell, it is extracted and placed into
the context above. Thus, each prompt is paired
with one solution, which forms our target cell.

In-Class Exercises While instructors use

github.com
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nbgrader for creating formal programming assign-
ments, they often use vanilla Jupyter notebooks for
creating informal in-class exercises. In this case,
an instructor can release an exercise notebook in-
tended for students to complete and a companion
solution notebook to provide immediate feedback.
The students are free to solve the exercise and up-
load the notebooks to their git repositories.

We use the following procedure to extract high
quality solution target code cells from these note-
books. First, we collect notebooks containing the
word solution in the title, and pair it with an ex-
ercise notebook from the same repository if over
50% of the cells are the same and solution is not
in the exercise notebook’s title. We find 170K such
notebook pairs. If corresponding code cells in the
two notebooks differ, then the exercise cell con-
tains the student solution and the other, the instruc-
tor solution. We consider these cells as potential
target cells, and to verify the instructor solution,
we confirm that the same notebook and solution
exist in at least 2 other Github repositories.

We find a total of 1,510 nbgrader assignment
problems and 2,215 in-class exercise problems
and split them randomly into the dev and test sets.
We perform the same checks on the target cell as
we do on the training set and additionally con-
vert any solutions written in Python 2 to Python
3. Table 2 shows the dataset statistics. We release
this, together with our training set, as the first large
scale dataset to study code generation with prior
NL and code history. Table 1 compares JuICe with
various recently released code generation datasets
on four different dimensions: interactive history,
domain specificity, scale, and human annotation.

4 Data Statistics

Our quantitative and qualitative analysis of exam-
ples in JuICe show that the NL is diverse, the code
broadly covers data science applications, and that
context is important for generating the target cells.

NL Analysis Since assignment prompts tend to
be more detailed in order to provide specific in-
structions for students, the average NL length in
dev/test is∼20 tokens longer than that in train (Ta-
ble 2). Table 3 presents statistics of 50 target NL
cells classified into overlapping categories. A high
percentage (43%) of the NL is abstract language in
the declarative or interrogative form, while 27%
explicitly state which variables/functions to use,
and 16% have a line-by-line correspondence be-

tween each line of language and code. For the lat-
ter two categories we believe that getting full ex-
act match is possible since the procedure is clearly
specified. The last three rows of Table 3 present
interesting NL phenomenon. 11% refer to mark-
down far above in the same notebook, 9% show
examples of the desired inputs and outputs of the
code to clarify challenging language, and 7% use
mathematical equations to formally specify the in-
tended mathematical operations to be performed.

Code Analysis Table 4 presents statistics of 50
code cells sampled from the dev set. Majority
of code cells are geared towards data science ap-
plications. The Data Exploration category cov-
ers scenarios for computing statistics or queries
to gain new insights about the data, and the Ma-
chine Learning category covers training models,
as well as tensor operations. 13% of code cells
are used for plotting figures and the Miscellaneous
category covers a broad range of utility functions.

Quality Evaluation We estimate the quality of
our dataset using a sample of 50 examples from
our train and dev splits. A good quality example
is one in which there is enough signal to generate
the full target code cell using the NL and the con-
text. We find that 68% examples from train and
96% examples from dev are solvable. Most of the
noise in the training set arises from the target NL
referring to another code cell (for example, the cell
above the NL). Other examples require sophisti-
cated background knowledge e.g. the mathemati-
cal processes behind music composition.

Contextual Reasoning An analysis of 50 exam-
ples reveals the diverse types of contextual reason-
ing required to generate the target cell. Most ex-
amples require using variables or methods defined
above (similar to statistics in Table 2). 39% re-
quire understanding the creation and usage of data
structures in the context. For example, in row 2 of
Table 5, knowing that unemployment stores the
rates for every quarter in the array, suggests the use
of the diff function which finds the difference
between every consecutive value. In other cases,
knowing the column names of tables is necessary
and these are often specified as positional argu-
ments while loading the data. Being able to condi-
tion on loaded table columns and values as in Kr-
ishnamurthy et al. (2017) using stored in-notebook
variable outputs is an interesting area for future
work. 25% examples require reusing idioms spe-
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NL Type % Example

High-level Declarative 43 Analyze the Average prices(open, high, low, close) for all stocks in the Month of May
Variables/Functions 27 Convert all categorical variables in bank features into indicator variables
Arguments Mentioned 20 Use unigrams, bigrams, trigrams ... english stopwords
Question 18 Which is the cheapest video game ?
Line-by-line 16 Create a histogram. Use default settings. Add the label...
Long References 11 3d ) Transform reviews...using the tfidf vectorizer we created in part 2 . Save the trans-

formed...
Input/Output 9 ...Given strings a and b, return a single string with a and b separated by a space, ex-

cept swap the first 2 chars of each string. e.g. (mix, pod → pox mid and (dog,
dinner→ dig, donner)

Equation 7 Solve the system Cεθε = bε for θε. Store the result in a variable, theta eps.

Table 3: Qualitative analysis of NL from the dev set of JuICe. A large percentage of the NL is abstract and
describes the code at a high level. Furthermore, instructors use a variety of additional modalities to elucidate the
prompt, including input-output examples and equations.

Code Type %

Data Exploration 25
Data Wrangling 23
Machine Learning 20
Miscellaneous 16
Visualization 13
Systems 3

Table 4: JuICe includes code for various real world ap-
plications, primarily for data science/machine learning.

cific to the notebook to tailor the code to the pro-
grammer’s style or to leverage efficient primitives
that the user has defined. For example, the imple-
mentation for countEvenDigits (row 3) can
reuse the efficient list comprehension defined in
a similar method above. Lastly, 23% of examples
require multi-cell reasoning where the model must
incorporate elements from at least 3 cells. In row
4 of Table 5, the GridSearch object created in
one cell needs to be used to select the best hyper-
parameter values, and retrain the model using the
same procedure found in another code cell.

Finally, using rule-based metrics, we find that
61% examples are contextual i.e. use a token from
the context (from Table 2), whereas 86% exam-
ples required contextual reasoning that includes
reasoning from data and idioms as well.

5 Problem formulation

We investigate two tasks for target cell generation
in notebooks, conditioned on the context cells up
to the target cell: (1) The Full code generation
task, which involves generating the entire code
snippet in the target cell. (2) The API sequence
task, which involves generating only the sequence
of constructor and method calls within the target

cell, without having to generate variables and ar-
guments. This task is more relaxed and can itself
be very helpful to developers under an interactive
setting. We do not aim to generate keyword func-
tions such as range as these are very commonly
used. Figure 1 presents an example for our code
generation task, where our goal is to learn models
that will map the NL Create and train the model,
together with the context cells above, into either
the the full code snippet (in blue) that reuses previ-
ously defined variables X train and y train,
or the API sequence, DecisionTreeClassifier fit.

Formally, let a(i) denote the API sequence, and
s(i) denote the code token sequence of the target
cell in the ith training example. Further, if c(i)d

represents the context cell at a distance d, d > 0,
above the target cell of example i, our tasks are to
generate a(i) and s(i), conditioned on the context
cells. Note that c(i)d can be a sequence of NL words
or code tokens. In models that we present in later
sections, we limit d to a maximum of K cells.

6 Baselines

We train and evaluate a selection of neural (using
fairseq: Ott et al. (2019)) and non-neural baselines
that are known to perform well for code generation
tasks, particularly on large scale datasets.

6.1 Retrieval

This baseline presents the programmer with an ex-
isting code cell from elsewhere in the training cor-
pus as a possible prediction for the target code cell,
located using only the NL markdown immediately
before the target cell i.e. c1. We evaluate two vari-
ants: (1) Ret-Train uses the code cell underneath
the NL markdown cell from the entire training set,
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Type % Example

Incorporates Variables
or Functions declared
or used above.

48

d = 2

d = 1

Target

NL: Find all prices in the following test sentence.

pattern = '\$\d+'
re.findall(pattern, test_string)

test_string = """The iPhone X costs over $999, while the Android 
competitor comes in at around $550"""

Requires understanding
the properties of the
data and its underly-
ing structure to perform
logic.

39 NL: **Question 3.** What was the biggest increase in the unemployment rate from one 
quarter to the next?

biggest_increase = max(np.diff(unemployment))

NL: Each number in the array `unemployment` is the unemployment rate at the start of 
one quarter (a 3-month period) of a year.

d = 6

d = 1

Target

Incorporates coding
patterns or idioms spe-
cific to the notebooks.

25

NL: Complete the function to output the sum of even number digits of the input 

number.

def countEvenDigits(number):

    listn = [int(i) for i in str(number)]

    count = 0

    for i in listn:

        if i%2 == 0:

    ...

def sumDigits(number):

    listn = [int(i) for i in str(number)]

    ...
d = 3

d = 1

Target

Multi-cell reasoning
involves reasoning over
at least 3 context cells.

23

NL: Assign to variable est the classifier obtained by fitting the entire training set using 

the best alpha found above.

alphawechoose = fitmodel.best_params_['alpha']

est = Ridge(alpha=alphawechoose).fit(Xtrain,ytrain)

fitmodel = cv_optimize_ridge(Xtrain, ytrain, n_folds=4)d = 3

def cv_optimize_ridge(X, y, n_folds=4):

    est = Ridge()

    parameters = {"alpha": [1e-8, 1e-6, 1e-4, 1e-3, 1e-2, 1e-1, 1.0]}

    gs = GridSearchCV(est, param_grid=parameters, cv=n_folds)

    gs.fit(X, y)

    return gs

d = 4

d = 1

Target

Table 5: Types of contextual reasoning required for target cell generation. Overall, 86% of examples require
contextual reasoning.

that is most similar to c1, (2) Ret-Context uses
the code cell underneath the most similar NL cell
amongst all cd (context above). The similarity be-
tween two NL cells is computed by representing
both NL sequences as vectors using tf-idf repre-
sentations for their dimensions and measuring the
cosine distance between these vectors. We convert
the retrieved code cell to an API sequence for the
API sequence task.

6.2 LSTM with Attention

This baseline is a neural encoder-decoder model
where the encoder computes contextualized rep-
resentations of input sequence embeddings using
an n-layer BiLSTM, and an LSTM-based decoder
produces a sequence of code (API) tokens, while
attending to the encoder representations at every
time step t. We make use of the general global

attention mechanism by Luong et al. (2015). To
use this model for our task, we concatenate all K
context cells, c1...K , using the type of each cell as
separator symbols i.e. CODE or MARKDOWN. The
output sequence is supervised to be either an API
sequence or a sequence of code tokens.

6.3 Transformer

This baseline utilizes the Transformer (Vaswani
et al., 2017) architecture where the encoder and
decoder consist of multiple layers of multi-headed
self-attention and position-wise feed forward lay-
ers. The inputs and outputs are the same as the
LSTM model described above.

7 Experiments

We run code generation experiments to evaluate
our baselines on JuICe and to study the effects of
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Dev Test
Full Code Full Code

Models K N Bleu EM Bleu EM

Ret-Train - 100,000 5.52 0.82 4.76 0.48
Ret-Context |c| - 3.42 0.12 3.24 0.00

Transformer 1 100,000 3.57 0.00 3.21 0.00
Transformer 3 100,000 10.90 0.27 11.08 0.38
LSTM 1 100,000 7.35 0.05 7.92 0.14
LSTM 3 100,000 15.88 1.42 17.03 1.33
LSTM 3 1,518,049 21.66 5.57 20.92 5.71

Table 6: Exact Match and BLEU score for the full code
generation task on both the dev and test sets of JuICe
for all baselines. All models benefit with additional
code context (K = 3), which permits conditioning on
variables and methods defined previously. Training on
additional data further pushes up performance.

Dev Test
API API

Models K N Precision Recall Precision Recall

LSTM 1 100,000 34.15 29.19 30.38 26.98
LSTM 3 100,000 37.09 31.48 37.44 33.23
LSTM 3 1,518,049 51.34 44.83 52.60 46.46

Table 7: Precision and Recall for the API sequence task
on the dev/test sets of JuICe for all baselines

context size K and dataset size N .
To study the effect of context, we consider two

configurations for our neural approaches, K = 1
which consists of only the NL markdown above
the target cell, and K = 3. For both cases, we
truncate the contents of each context cell to 75
tokens, except for the target NL cell, which re-
mains as is. We consider K = |c| for the re-
trieval baseline as it is allowed to access all con-
text cells above. We train these configurations for
the Seq2Seq models on a subset of 100K examples
from the training set, and use the best settings to
train on the full training set.

7.1 Hyperparameters

For Seq2Seq models, we use an embedding size
of 1024 for the input and output tokens. We con-
solidate the NL and code vocabularies and apply
BPE with 10,000 merges. Both encoder and de-
coder LSTMs use 2 layers with a hidden size of
1024. We use dropout p = 0.5 in between LSTM
layers and over the decoder output. The model is
trained for 40 epochs using gradient based meth-
ods using the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.001, and we use
beam search based decoding with a beam size of
5 during inference. The Transformer model uses
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Figure 3: (a) and (b) show the effects of training data on
LSTM(3-ctx) performance. Feeding the model more
JuICe consistently improves EM accuracy. (c) and (d)
show the effects of context cells on performance of
LSTM trained with 200K examples. Performance im-
proves for up to 3 cells, after which reasoning over long
contexts becomes challenging for current methods.

6 layers and 4 attention heads. The dimension of
the model is 512 and the dimension of the feed
forward network is 1024. We use a learning rate
of 0.0005 with 2,000 warmup steps, train for 200
epochs, and pick the model at the epoch with high-
est validation performance.

7.2 Metrics

Similar to prior code generation tasks, we use Ex-
act Match (EM) accuracy and corpus-level BLEU
score (Papineni et al., 2002) as performance met-
rics for full code generation. While EM is a strict
metric measuring the ability of models to generate
fully functioning code, BLEU serves as a measure
of partial credit for models that can provide users
with a partially correct snippet.

For the API sequence task, we find BLEU and
EM inadequately measure performance since the
average API sequence length for our target code is
3.8. We therefore treat the predicted API calls as a
set of values and compute precision/recall metrics
against the gold set of API calls.

8 Results and Discussion

We present EM and BLEU scores for the code
generation task in Table 6, and precision/recall for
the API sequence task in Table 7, on both the dev
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and test sets of JuICe for all our baselines.
All LSTM models outperform both retrieval

baselines by more than 2% BLEU score. We find
that increasing the amount of training data and the
context length helps all models for both tasks. Our
best model was trained on 1.5 million examples
with a context length of 3 (Table 6). The improve-
ment with context is most likely owing to the in-
teractive nature of the notebook, where variables
(methods) defined in previous code cells are oper-
ated upon (called) in future cells. However, note
that the retrieval model which is given access to
the full context performs significantly worse, sug-
gesting that the code above is different than the tar-
get code and the model needs to reason over which
pieces of it to incorporate.

Figure 3 illustrates the effects of varying train-
ing data size and context length on our LSTM
model. We find that increasing the amount of
training data helps significantly up to 200K exam-
ples, after which, performance begins to plateau.
Furthermore, the model improves with more con-
text up to 3 cells and then struggles to incorpo-
rate additional cells as the average input sequence
length exceeds 156 tokens.

Using student notebook solutions for a subset
of the test set, we estimate a human performance
of 60% BLEU and 23% EM (can be much higher
with identifier canonicalization) for the code gen-
eration task, and 84% precision and 85% recall for
the API sequence task.

8.1 Error Analysis

We conduct a qualitative error analysis using
50 erroneous predictions of our top performing
model - LSTM K=3, N=1,518,049 on dev set
examples (Table 8). We find that for 39% of
cases, the model misunderstands the core in-
tent of the NL and generates totally incorrect
code. In 17% cases, it misses some positional
arguments in the code. For example, Use un-
igrams, bigrams, and trigrams. Use English
stop words should result in a Vectorizer object
with arguments: stop words="english",
ngram range=(1,3). 26% of cases represent
an inadequate understanding of the context and
10% require more cells than the 3 presented to
the model. Retrieving relevant context cells far
above the target is an interesting area for future
work. 26% cases are partially correct i.e. they
contain some correct code lines but miss some de-

Error Category %

Challenging NL Reasoning 39
Arguments Missed 17
Contextual Reasoning 26
Needs Longer Context 10
Partially Correct 26
Semantically Equivalent 15

Table 8: Qualitative error analysis on 50 incorrectly
generated code cells from our dev set for our best per-
forming baseline. The first category represents cases
where the model output was totally incorrect. Over
30% of errors require deeper contextual reasoning.

tails. For example, for the NL Create a histogram
of all people’s ages. Use the default settings. Add
the label Age on the x-axis and Count on the y-
axis, the model generates the code for plotting the
histogram but misses labeling the axes. For 15%
of cases the model generates semantically equiv-
alent code but is different at the surface level. In
the future, executing the code to compare outputs
or verifying that the nbgrader tests pass would al-
leviate this issue but requires the model to generate
valid strings (currently strings are canonicalized).

9 Conclusion

In this paper, we introduced the task of code gen-
eration under the paradigm of interactive comput-
ing, conditioned on a context of interleaved code
snippet cells and NL markdown. To train mod-
els for this task, we collected a new large scale
open-domain dataset (JuICe) from publicly avail-
able Jupyter notebooks, consisting of target code
cells paired with sequences of NL and code con-
text. Furthermore, we gathered a high quality eval-
uation set using nbgrader and in-class program-
ming assignment notebooks with solutions to re-
liably test code generation models. We evalu-
ated a variety of baseline models for two context
dependent code generation tasks, API sequence
generation and full code generation. Experiments
showed that performance improves on using an in-
creased amount of code context and training data,
with significant room for improvement.
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