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Abstract
Pronoun resolution is a major area of natural
language understanding. However, large-scale
training sets are still scarce, since manually la-
belling data is costly. In this work, we intro-
duce WIKICREM (Wikipedia CoREferences
Masked) a large-scale, yet accurate dataset
of pronoun disambiguation instances. We
use a language-model-based approach for pro-
noun resolution in combination with our WI-
KICREM dataset. We compare a series of
models on a collection of diverse and challeng-
ing coreference resolution problems, where
we match or outperform previous state-of-the-
art approaches on 6 out of 7 datasets, such
as GAP, DPR, WNLI, PDP, WINOBIAS, and
WINOGENDER. We release our model to be
used off-the-shelf for solving pronoun disam-
biguation.

1 Introduction

Pronoun resolution, also called coreference or ana-
phora resolution, is a natural language processing
(NLP) task, which aims to link the pronouns with
their referents. This task is of crucial importance
in various other NLP tasks, such as information
extraction (Nakayama, 2019) and machine trans-
lation (Guillou, 2012). Due to its importance, pro-
noun resolution has seen a series of different ap-
proaches, such as rule-based systems (Lee et al.,
2013) and end-to-end-trained neural models (Lee
et al., 2017; Liu et al., 2019). However, the re-
cently released dataset GAP (Webster et al., 2018)
shows that most of these solutions perform worse
than naı̈ve baselines when the answer cannot be
deduced from the syntax. Addressing this draw-
back is difficult, partially due to the lack of large-
scale challenging datasets needed to train the data-
hungry neural models.

As observed by Trinh and Le (2018), language
models are a natural approach to pronoun resolu-
tion, by selecting the replacement for a pronoun

that forms the sentence with highest probability.
Additionally, language models have the advantage
of being pre-trained on a large collection of un-
structured text and then fine-tuned on a specific
task using much less training data. This proce-
dure has obtained state-of-the-art results on a se-
ries of natural language understanding tasks (De-
vlin et al., 2018).

In this work, we address the lack of large train-
ing sets for pronoun disambiguation by introduc-
ing a large dataset that can be easily extended.
To generate this dataset, we find passages of text
where a personal name appears at least twice and
mask one of its non-first occurrences. To make
the disambiguation task more challenging, we also
ensure that at least one other distinct personal
name is present in the text in a position before the
masked occurrence. We instantiate our method on
English Wikipedia and generate the Wikipedia Co-
REferences Masked (WIKICREM) dataset with
2.4M examples, which we make publicly available
for further usage1. We show its value by using it to
fine-tune the BERT language model (Devlin et al.,
2018) for pronoun resolution.

To show the usefulness of our dataset, we train
several models that cover three real-world sce-
narios: (1) when the target data distribution is
completely unknown, (2) when training data from
the target distribution is available, and (3) the
transductive scenario, where the unlabeled test
data is available at the training time. We show
that fine-tuning BERT with WIKICREM consis-
tently improves the model in each of the three
scenarios, when evaluated on a collection of 7
datasets. For example, we outperform the state-of-

1The code can be found at https://github.com/
vid-koci/bert-commonsense.
The dataset and the models can be obtained from
https://ora.ox.ac.uk/objects/uuid:
c83e94bb-7584-41a1-aef9-85b0e764d9e3

https://github.com/vid-koci/bert-commonsense
https://github.com/vid-koci/bert-commonsense
https://ora.ox.ac.uk/objects/uuid:c83e94bb-7584-41a1-aef9-85b0e764d9e3
https://ora.ox.ac.uk/objects/uuid:c83e94bb-7584-41a1-aef9-85b0e764d9e3
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the-art approaches on GAP (Webster et al., 2018),
DPR (Rahman and Ng, 2012), and PDP (Davis
et al., 2017) by 5.9%, 8.4%, and 12.7%, respec-
tively. Additionally, models trained with WIKI-
CREM show increased performance and reduced
bias on the gender diagnostic datasets WINOGEN-
DER (Rudinger et al., 2018) and WINOBIAS (Zhao
et al., 2018).

2 Related Work

There are several large and commonly used bench-
marks for coreference resolution, such as (Prad-
han et al., 2012; Schäfer et al., 2012; Ghaddar and
Langlais, 2016). However, Webster et al. (2018)
argue that a high performance on these datasets
does not correlate with a high accuracy in practice,
because examples where the answer cannot be de-
duced from the syntax (we refer to them as hard
pronoun resolution) are underrepresented. There-
fore, several hard pronoun resolution datasets have
been introduced (Webster et al., 2018; Rahman
and Ng, 2012; Rudinger et al., 2018; Davis et al.,
2017; Zhao et al., 2018; Emami et al., 2019).
However, they are all relatively small, often cre-
ated only as a test set.

Therefore, most of the pronoun resolution mod-
els that address hard pronoun resolution rely on
little (Liu et al., 2019) or no training data, via un-
supervised pre-training (Trinh and Le, 2018; Rad-
ford et al., 2019). Another approach involves us-
ing external knowledge bases (Emami et al., 2018;
Fähndrich et al., 2018), however, the accuracy of
these models still lags behind that of the aforemen-
tioned pre-trained models.

A similar approach to ours for unsupervised
data generation and language-model-based eval-
uation has been recently presented in our pre-
vious work (Kocijan et al., 2019). We gener-
ated MASKEDWIKI, a large unsupervised dataset
created by searching for repeated occurrences of
nouns. However, training on MASKEDWIKI on its
own is not always enough and sometimes makes
a difference only in combination with additional
training on the DPR dataset (called WSCR) (Rah-
man and Ng, 2012). In contrast, WIKICREM
brings a much more consistent improvement over
a wider range of datasets, strongly improving
models’ performance even when they are not fine-
tuned on additional data. As opposed to our previ-
ous work (Kocijan et al., 2019), we evaluate mod-
els on a larger collection of test sets, showing the

usefulness of WIKICREM beyond the Winograd
Schema Challenge.

Moreover, a manual comparison of WIKI-
CREM and MASKEDWIKI (Kocijan et al., 2019)
shows a significant difference in the quality of
the examples. We annotated 100 random exam-
ples from MASKEDWIKI and WIKICREM. In
MASKEDWIKI, we looked for examples where
masked nouns can be replaced with a pronoun,
and only in 7 examples, we obtained a natural-
sounding and grammatically correct sentence. In
contrast, we estimated that 63% of the anno-
tated examples in WIKICREM form a natural-
sounding sentence when the appropriate pronoun
is inserted, showing that WIKICREM consists of
examples that are much closer to the target data.
We highlight that pronouns are not actually in-
serted into the sentences and thus none of the ex-
amples sound unnatural. This analysis was per-
formed to show that WIKICREM consists of ex-
amples with data distribution closer to the target
tasks than MASKEDWIKI.

3 The WIKICREM Dataset

In this section, we describe how we obtained WI-
KICREM. Starting from English Wikipedia2, we
search for sentences and pairs of sentences with
the following properties: at least two distinct per-
sonal names appear in the text, and one of them is
repeated. We do not use pieces of text with more
than two sentences to collect concise examples
only. Personal names in the text are called “can-
didates”. One non-first occurrence of the repeated
candidate is masked, and the goal is to predict the
masked name, given the correct and one incorrect
candidate. In case of more than one incorrect can-
didate in the sentence, several datapoints are con-
structed, one for each incorrect candidate.

We ensure that the alternative candidate appears
before the masked-out name in the text, in order
to avoid trivial examples. Thus, the example is
retained in the dataset if:
(a) the repeated name appears after both candi-

dates, all in a single sentence; or
(b) both candidates appear in a single sentence,

and the repeated name appears in a sentence
directly following.

Examples where one of the candidates appears in
the same sentence as the repeated name, while the

2https://dumps.wikimedia.org/enwiki/
dump id: enwiki-20181201

https://dumps.wikimedia.org/enwiki/
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other candidate does not, are discarded, as they are
often too trivial.

We illustrate the procedure with the following
example:

When asked about Adams’ report, Powell found
many of the statements to be inaccurate, including
a claim that Adams first surveyed an area that was
surveyed in 1857 by Joseph C.

The second occurrence of “Adams” is masked.
The goal is to determine which of the two candi-
dates (“Adams”,“Powell”) has been masked out.
The masking process resembles replacing a name
with a pronoun, but the pronoun is not inserted to
keep the process fully unsupervised and error-free.

We used the Spacy Named Entity Recognition
library3 to find the occurrences of names in the
text. The resulting dataset consists of 2, 438, 897
samples. 10, 000 examples are held out to serve as
the validation set. Two examples from our dataset
can be found on Figure 1.

Gina arrives and she is furious with Denise for not
protecting Jody from Kingsley, as [MASK] was
meant to be the parent.
Candidates: Gina, Denise
When Ashley falls pregnant with Victor’s child,
Nikki is diagnosed with cancer, causing Victor to
leave [MASK], who secretly has an abortion.
Candidates: Ashley, Nikki

Figure 1: WIKICREM examples. Correct answers are
given in bold.

We note that our dataset contains hard exam-
ples. To resolve the first example, one needs to
understand that Denise was assigned a task and
“meant to be the parent” thus refers to her. To
resolve the second example, one needs to under-
stand that having an abortion can only happen if
one falls pregnant first. Since both candidates
have feminine names, the answer cannot be de-
duced just on the common co-occurrence of fe-
male names and the word “abortion”.

We highlight that our example generation
method, while having the advantage of being un-
supervised, also does not give incorrect signals,
since we know the ground truth reference.

Even though WIKICREM and GAP both use
text from English Wikipedia, they produce dif-
fering examples, because their generating pro-

3https://spacy.io/usage/
linguistic-features#named-entities

cesses differ. In GAP, passages with pronouns
are collected and the pronouns are manually anno-
tated, while WIKICREM is generated by masking
names that appear in the text. Even if the same
text is used, different masking process will result
in different inputs and outputs, making the exam-
ples different under the transductive hypothesis.

WIKICREM statistics. We analyze our dataset
for gender bias. We use the Gender guesser li-
brary4 to determine the gender of the candidates.
To mimic the analysis of pronoun genders per-
formed in the related works (Webster et al., 2018;
Rudinger et al., 2018; Zhao et al., 2018), we ob-
serve the gender of the correct candidates only.
There were 0.8M “male” or “mostly male” names
and 0.42M “female” or “mostly female” names,
the rest were classified as “unknown”. The ratio
between female and male candidates is thus esti-
mated around 0.53 in favour of male candidates.
We will see that this gender imbalance does not
have any negative impact on bias, as shown in Sec-
tion 6.2.

However, our unsupervised generating proce-
dure sometimes yields examples where the cor-
rect answer cannot be deduced given the available
information, we refer to these as unsolvable ex-
amples. To estimate the percentage of unsolvable
examples, we manually annotated 100 randomly
selected examples from the WIKICREM dataset.
In order to prevent guessing, the candidates were
not visible to the annotators. For each example,
we asked them to state whether it was solvable or
not, and to answer the solvable examples. In 100
examples, we found 18 unsolvable examples and
achieved 95.1% accuracy on the rest, showing that
the annotation error rate is tolerable. These anno-
tations can be found in Appendix A.

However, as shown in Section 6.2, training on
WIKICREM alone does not match the perfor-
mance of training on the data from the target dis-
tribution. The data distribution of WIKICREM
differs from the data distribution of the datasets
for evaluation. If we replace the [MASK] token
with a pronoun instead of the correct candidate,
the resulting sentence sometimes sounds unnatural
and would not occur in a human-written text. On
the annotated 100 examples, we estimated the per-
centage of natural-sounding sentences to be 63%.
While the these sentences are not incorrect, the

4https://pypi.org/project/gender-guesser/

https://spacy.io/usage/linguistic-features#named-entities
https://spacy.io/usage/linguistic-features#named-entities
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distribution of the training data differ from the tar-
get data.

4 Model

We use a simple language-model-based approach
to anaphora resolution to show the value of the in-
troduced dataset. In this section, we first introduce
BERT (Devlin et al., 2018), a language model that
we use throughout this work. In the second part,
we describe the utilization of BERT and the fine-
tuning procedures employed.

4.1 BERT

The Bidirectional Encoder Representations from
Transformers (BERT) language model is based on
the transformer architecture (Vaswani et al., 2017).
We choose this model due to its strong language-
modeling abilities and high performance on sev-
eral NLU tasks (Devlin et al., 2018).

BERT is initially trained on two tasks: next
sentence prediction and masked token prediction.
In the next sentence prediction task, the model
is given two sentences and is asked to predict
whether the second sentence follows the first one.
In the masked token prediction task, the model is
given text with approximately 15% of the input
tokens masked, and it is asked to predict these to-
kens. The details of the pre-training procedure can
be found in Devlin et al. (2018).

In this work, we only focus on the masked token
prediction. We use the PyTorch implementation of
BERT5 and the pre-trained weights for BERT-large
released by Devlin et al. (2018).

4.2 Pronoun Resolution with BERT

This section introduces the procedure for pronoun
resolution used throughout this work. Let S be
the sentence with a pronoun that has to be re-
solved. Let a be a candidate for pronoun res-
olution. The pronoun in S is replaced with a
[MASK] token and used as the input to the model
to compute the log-probability logP(a|S). If a
consists of more than one token, the same number
of [MASK] tokens is inserted into S, and the log-
probability logP(a|S) is computed as the average
of log-probabilities of all tokens in a.

The candidate-finding procedures are dataset-
specific and are described in Section 6. Given
a sentence S and several candidates a1, . . . ,an,

5https://github.com/huggingface/
pytorch-pretrained-BERT

we select the candidate ai with the largest
logP(ai|S).

4.3 Training
When training the model, the setup is similar to
testing. We are given a sentence with a name or
a pronoun masked out, together with two candi-
dates. The goal is to determine which of the candi-
dates is a better fit. Let a be the correct candidate,
and b be an incorrect candidate. Following our
previous work (Kocijan et al., 2019) we minimize
the negative log-likelihood of the correct candi-
date, while additionally imposing a max-margin
between the log-likelihood of the correct and in-
correct terms. We observe that this combined loss
consistently yields better results on validation sets
of all experiments than negative log-likelihood or
max-margin loss on their own.

L =− logP(a|S)+ (1)

+α ·max(0, logP(b|S)− logP(a|S) + β),

where α and β are hyperparameters controlling
the influence of the max-margin loss term and the
margin between the log-likelihood of the correct
and incorrect candidates, respectively.

The hyperparameter settings for fine-tuning
BERT on WIKICREM were the same as by De-
vlin et al. (2018), except for the learning rate and
introduced constants α and β. For our hyperpa-
rameter search, we used learning rate lr ∈ {3 ·
10−5, 1·10−5, 5·10−6, 3·10−6} and hyperparame-
ters α ∈ {5, 10, 20}, β ∈ {0.1, 0.2, 0.4} with grid
search. The hyperparameter search is performed
on a subset of WIKICREM with 105 datapoints
to reduce the searching time. We compare the in-
fluence of hyperparameters on the validation set
of WIKICREM dataset. The best validation score
was achieved with lr = 1 · 10−5, α = 10, and
β = 0.2. We used batches of size 64.

Since WIKICREM is large and one epoch takes
around two days even when parallelized on 8 Tesla
P100 GPUs, we only fine-tune BERT on WIKI-
CREM for a single epoch. We note that better
results may be achieved with further fine-tuning
and improved hyperparameter search.

Fine-tuning on other datasets is performed in
the same way as training except for two differ-
ences. Firstly, in fine-tuning, the model is trained
for 30 epochs due to the smaller size of datasets.
Secondly, we do not sub-sample the training set
for hyperparameter search. We validate the model

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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after every epoch, retaining the model that per-
forms best on the WIKICREM validation set.

5 Evaluation Datasets

We now introduce the 7 datasets that were used
to evaluate the models. We decide not to use the
CONLL2012 and WINOCOREF (Pradhan et al.,
2012; Peng et al., 2015) datasets, because they
contain more general coreference examples than
just pronouns. We did not evaluate on the KNOW-
REF dataset (Emami et al., 2019), since it was not
yet publicly available at the time of writing.

GAP. GAP (Webster et al., 2018) is a collection
of 4, 454 passages from Wikipedia containing am-
biguous pronouns. It focuses on the resolution of
personal pronouns referring to human names and
has a 1 : 1 ratio between masculine and feminine
pronouns. In addition to the overall performance
on the dataset, each model is evaluated also on its
performance on the masculine subset (FM

1 ), fem-

inine subset (FF
1 ), and its gender bias ( FF

1

FM
1

). The
best performance was exhibited by the Referen-
tial Reader (Liu et al., 2019), a GRU-based model
with additional external memory cells.

For each example, two candidates are given
with the goal of determining whether they are the
referent. In approximately 10% of the training ex-
amples, none of the candidates are correct. When
training on the GAP dataset, we discard such ex-
amples from the training set. We do not discard
any examples from the validation or test set.

When testing the model, we use the Spacy NER
library to find all candidates in the sentence. Since
the GAP dataset mainly contains examples with
human names, we only retain named entities with
the tag PERSON. We observe that in 18.5% of the
test samples, the Spacy NER library fails to ex-
tract the candidate in question, making the answer
for that candidate “FALSE” by default, putting our
models at disadvantage. Because of this, 7.25% of
answers are always false negatives, and 11.25%
are always true negatives, regardless of the model.
Taking this into account, we compute that the
maximal F1-score achievable by our models is
capped at 91.1%.

We highlight that, when evaluating our models,
we are stricter than previous approaches (Liu et al.,
2019; Webster et al., 2018). While they count the
answer as “correct” if the model returns a sub-
string of the correct answer, we only accept the

full answer. The aforementioned models return the
exact location of the correct candidate in the input
sentence, while our approach does not. This strict-
ness is necessary, because a substring of a correct
answer could be a substring of several answers at
once, making it ambiguous.

WSC. The Winograd Schema Challenge (Leves-
que et al., 2011) is a hard pronoun resolution
challenge inspired by the example from Wino-
grad (1972):

The city councilmen refused the demonstrators a
permit because they [feared/advocated] violence.
Question: Who [feared/advocated] violence?
Answer: the city councilmen / the demonstrators

A change of a single word in the sentence
changes the referent of the pronoun, making it
very hard to resolve. An example of a Winograd
Schema must meet the following criteria (Leves-
que et al., 2011):

1. Two entities appear in the text.
2. A pronoun or a possessive adjective appears

in the sentence and refers to one of the enti-
ties. It would be grammatically correct if it
referred to the other entity.

3. The goal is to find the referent of the pronoun
or possessive adjective.

4. The text contains a “special word”. When
switched for the “alternative word”, the sen-
tence remains grammatically correct, but the
referent of the pronoun changes.

The Winograd Schema Challenge is specifically
made up from challenging examples that require
commonsense reasoning for resolution and should
not be solvable with statistical analysis of co-
occurence and association.

We evaluate the models on the collection of
273 problems used for the 2016 Winograd Schema
Challenge (Davis et al., 2017), also known as
WSC273. The best known approach to this prob-
lem uses the BERT language model, fine-tuned on
the DPR dataset (Kocijan et al., 2019).

DPR. The Definite Pronoun Resolution (DPR)
corpus (Rahman and Ng, 2012) is a collection
of problems that resemble the Winograd Schema
Challenge. The criteria for this dataset have
been relaxed, and it contains examples that might
not require commonsense reasoning or examples
where the “special word” is actually a whole
phrase. We remove 6 examples in the DPR train-
ing set that overlap with the WSC dataset. The
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dataset was constructed manually and consists of
1316 training and 564 test samples after we re-
moved the overlapping examples. The best result
on the dataset was reported by Peng et al. (2015)
using external knowledge sources and integer lin-
ear programming.

PDP. The Pronoun Disambiguation Problem
(PDP) is a small collection of 60 problems that was
used as the first round of the Winograd Schema
Challenge in 2016 (Davis et al., 2017). Unlike
WSC, the examples do not contain a “special
word”, however, they do require commonsense
reasoning to be answered. The examples were
manually collected from books. Despite its small
size, there have been several attempts at solving
this challenge (Fähndrich et al., 2018; Trinh and
Le, 2018), the best result being held by the Marker
Passing algorithm (Fähndrich et al., 2018).

WNLI. The Winograd Natural Language Infer-
ence (WNLI) is an inference task inspired by the
Winograd Schema Challenge and is one of the 9
tasks on the GLUE benchmark (Wang et al., 2019).
WNLI examples are obtained by rephrasing Wino-
grad Schemas. The Winograd Schema is given as
the “premise”. A “hypothesis” is constructed by
repeating the part of the premise with the pronoun
and replacing the pronoun with one of the candi-
dates. The goal is to classify whether the hypoth-
esis follows from the premise.

A WNLI example obtained by rephrasing one of
the WSC examples looks like this:

Premise: The city councilmen refused the demon-
strators a permit because they feared violence.
Hypothesis: The demonstrators feared violence.
Answer: true / false

The WNLI dataset is constructed manually.
Since the WNLI training and validation sets over-
lap with WSC, we use the WNLI test set only. The
test set of WNLI comes from a separate source and
does not overlap with any other dataset.

The currently best approach transforms exam-
ples back into the Winograd Schemas and solves
them as a coreference problem (Kocijan et al.,
2019). Following our previous work (Kocijan
et al., 2019), we reverse the process of example
generation in the same way. We automatically de-
tect which part of the premise has been copied to
construct the hypothesis. This locates the pronoun
that has to be resolved, and the candidate in ques-
tion. All other nouns in the premise are treated

as alternative candidates. We find nouns in the
premise with the Stanford POS tagger (Manning
et al., 2014).

WINOGENDER. WINOGENDER (Rudinger
et al., 2018) is a dataset that follows the WSC

format and is aimed to measure gender bias.
One of the candidates is always an occupation,
while the other is a participant, both selected
to be gender neutral. Examples intentionally
contain occupations with strong imbalance in the
gender ratio. Participant can be replaced with the
neutral “someone”, and three different pronouns
(he/she/they) can be used. The aim of this dataset
is to measure how the change of the pronoun
gender affects the accuracy of the model.

Our models mask the pronoun and are thus not
affected by the pronoun gender. They exhibit no
bias on this dataset by design. We mainly use this
dataset to measure the accuracy of different mod-
els on the entire dataset. According to Rudinger
et al. (2018), the best performance is exhibited by
Durrett and Klein (2013) when used on the male
subset of the dataset. We use this result as the
baseline.

WINOBIAS. Similarly to the WINOGENDER

dataset, WINOBIAS (Zhao et al., 2018) is a WSC-
inspired dataset that measures gender bias in the
coreference resolution algorithms. Similarly to
WINOGENDER, it contains instances of occupa-
tions with high gender imbalance. It contains
3, 160 examples of Winograd Schemas, equally
split into validation and test set. The test set exam-
ples are split into 2 types, where examples of type
1 are “harder” and should not be solvable using the
analysis of co-occurrence, and examples of type 2
are easier. Additionally, each of these subsets is
split into anti-stereotypical and pro-stereotypical
subsets, depending on whether the gender of the
pronoun matches the most common gender in the
occupation. The difference in performance be-
tween pro- and anti-stereotypical examples shows
how biased the model is. The best performance
is exhibited by Lee et al. (2017) and Durrett and
Klein (2013), as reported by Zhao et al. (2018).

6 Evaluation

We quantify the impact of WIKICREM on the in-
troduced datasets.
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6.1 Experiments

We train several different models to evaluate the
contribution of the WIKICREM dataset in differ-
ent real-world scenarios. In Scenario A, no infor-
mation of the target distribution is available. In
Scenario B, the distribution of the target data is
known and a sample of training data from the tar-
get distribution is available. Finally, Scenario C is
the transductive scenario where the unlabeled test
samples are known in advance. All evaluations on
the GAP test-set are considered to be Scenario C,
because BERT has been pre-trained on the English
Wikipedia and has thus seen the text in the GAP

dataset at the pre-training time.
We describe the evaluated models below.

BERT. This model, pretrained by Devlin
et al. (2018), is the starting point for all models
and serves as the soft baseline for Scenario A.

BERT WIKIRAND. This model serves as an
additional baseline for Scenario A and aims to
eliminate external factors that might have worked
against the performance of BERT. To eliminate
the effect of sentence lengths, loss function, and
the percentage of masked tokens during the train-
ing time, we generate the RANDOMWIKI dataset.
It consists of random passages from Wikipedia
and has the same sentence-length distribution and
number of datapoints as WIKICREM. However,
the masked-out word from the sentence is selected
randomly, while the alternative candidate is se-
lected randomly from the vocabulary. BERT is
then trained on this dataset in the same way as
BERT WIKICREM, as described in Section 4.3.

BERT WIKICREM. BERT, additionally train-
ed on WIKICREM. Its evaluation on non-GAP

datasets serves as the evaluation of WIKICREM
under Scenario A.

BERT DPR. BERT, fine-tuned on DPR. We hold
out 10% of the DPR train set (131 examples) to
use them as the validation set. All datasets, other
than GAP, were inspired by the Winograd Schema
Challenge and come from a similar distribution.
We use this model as the baseline for Scenario B.

BERT WIKICREM DPR. This model is ob-
tained by fine-tuning BERT WIKICREM on DPR

using the same split as for BERT DPR. It serves
as the evaluation of WIKICREM under Sce-
nario B.

BERT GAP DPR. This model serves as an addi-
tional comparison to the BERT WIKICREM DPR

model. It is obtained by fine-tuning BERT GAP on
the DPR dataset.

BERT GAP. This model is obtained by fine-
tuning BERT on the GAP dataset. It serves as the
baseline for Scenario C, as explained at the begin-
ning of Section 6.1.

BERT WIKICREM GAP. This model serves
as the evaluation of WIKICREM for Scenario C
and is obtained by fine-tuning BERT WIKICREM
on GAP.

BERT ALL. This model is obtained by fine-
tuning BERT on all the available data from the
target datasets at once. Combined GAP-train and
DPR-train data are used for training. The model
is validated on the GAP-validation set and the
WINOBIAS-validation set separately. Scores on
both sets are then averaged to obtain the validation
performance. Since both training sets and both
validation sets have roughly the same size, both
tasks are represented equally.

BERT WIKICREM ALL. This model is ob-
tained in the same way as the BERT ALL model,
but starting from BERT WIKICREM instead.

6.2 Results

The results of the evaluation of the models on the
test sets are shown in Table 1. We notice that ad-
ditional training on WIKICREM consistently im-
proves the performance of the models in all sce-
narios and on most tests. Due to the small size of
some test sets, some of the results are subject to
deviation. This especially applies to PDP (60 test
samples) and WNLI (145 test samples).

We observe that BERT WIKIRAND generally
performs worse than BERT, with GAP and PDP be-
ing notable exceptions. This shows that BERT is
a strong baseline and that improved performance
of BERT WIKICREM is not a consequence of
training on shorter sentences or with different loss
function. BERT WIKICREM consistently out-
performs both baselines on all tests, showing that
WIKICREM can be used as a standalone dataset.

We observe that training on the data from the
target distribution improves the performance the
most. Models trained on GAP-train usually show
more than a 20% increase in their F1-score on
GAP-test. Still, BERT WIKICREM GAP shows



4310

Transductive scenario

GAP F1 GAP FF
1 GAP FM

1 Bias FF
1

FM
1

DPR WSC WNLI

SOTA 72.1% 71.4% 72.8% 0.98 76.4% 72.5% 74.7%

BERT 50.0% 47.2% 52.7% 0.90 59.8% 61.9% 65.8% no
train
data

BERT WIKIRAND 55.1% 51.8% 58.2% 0.89 59.2% 59.3% 65.8%
BERT WIKICREM 59.0% 57.5% 60.5% 0.95 67.4% 63.4% 67.1%

BERT GAP 75.2% 75.1% 75.3% 1.00 66.8% 63.0% 68.5%

existing
train
data

BERT WIKICREM GAP 77.4% 78.4% 76.4% 1.03 71.1% 64.1% 70.5%
BERT DPR 60.9% 61.3% 60.6% 1.01 83.3% 67.0% 71.9%
BERT GAP DPR 70.0% 70.4% 69.5% 1.01 79.4% 65.6% 72.6%
BERT WIKICREM DPR 64.2% 64.2% 64.1% 1.00 80.0% 71.8% 74.7%
BERT ALL 76.0% 77.4% 74.7% 1.04 80.1% 70.0% 74.0%
BERT WIKICREM ALL 78.0% 79.4% 76.7% 1.04 84.8% 70.0% 74.7%

WB T1-a WB T1-p WB T2-a WB T2-p WINOGENDER PDP

SOTA 60.6% 74.9% 78.0% 88.6% 50.9% 74.0%

BERT 61.3% 60.3% 76.2% 75.8% 59.2% 71.7% no
train
data

BERT WIKIRAND 53.5% 52.5% 64.6% 65.2% 57.9% 73.3%
BERT WIKICREM 65.2% 64.9% 95.7% 94.9% 66.7% 76.7%

BERT GAP 64.6% 63.8% 88.1% 87.9% 67.5% 85.0%

existing
train
data

BERT WIKICREM GAP 71.2% 70.5% 97.2% 98.2% 75.4% 83.3%
BERT DPR 78.0% 78.2% 85.6% 86.4% 79.2% 81.7%
BERT GAP DPR 77.8% 76.5% 89.6% 89.1% 75.8% 86.7%
BERT WIKICREM DPR 76.0% 76.3% 81.3% 80.3% 82.1% 76.7%
BERT ALL 77.8% 77.2% 94.7% 94.9% 78.8% 81.7%
BERT WIKICREM ALL 76.8% 75.8% 98.7% 99.0% 76.7% 86.7%

Table 1: Evaluation of trained models on all test sets. GAP and WINOBIAS (abbreviated WB) are additionally split
into subsets, as introduced in Section 5. Double lines in the table separate results from three different scenarios:
when no training data is available, when additional training data exists, and the transductive scenario. The table
is further split into sections separated with single horizontal lines. Each section contains a model that has been
trained on WIKICREM and models that have not been. The best result in each section is in bold. The best overall
result is underlined. Scores on GAP are measured as F1-scores, while the performance on other datasets is given
in accuracy. The source of each SOTA is listed in Section 5.

a consistent improvement over BERT GAP on all
subsets of the GAP test set. This confirms that WI-
KICREM works not just as a standalone dataset,
but also as an additional pre-training in the trans-
ductive scenario.

Similarly, BERT WIKICREM DPR outper-
forms BERT DPR on the majority of tasks,
showing the applicability of WIKICREM to the
scenario where additional training data is avail-
able. However, good results of BERT GAP DPR

show that additional training on a manually con-
structed dataset, such as GAP, can yield similar
results as additional training on WIKICREM. The
reason behind this difference is the impact of the
data distribution. GAP, DPR, and WIKICREM
contain data that follows different distributions
which strongly impacts the trained models. This

can be seen when we fine-tune BERT GAP on
DPR to obtain BERT GAP DPR, as the model’s
performance on GAP-test drops by 8.2%. WIKI-
CREM’s data distribution strongly differs from
the test sets’ as described in Section 3.

However, the best results are achieved when
all available data is combined, as shown by the
models BERT ALL and BERT WIKICREM ALL.
BERT WIKICREM ALL achieves the high-
est performance on GAP, DPR, WNLI, and
WINOBIAS among the models, and sets the
new state-of-the-art result on GAP, DPR, and
WINOBIAS. The new state-of-the-art result
on the WINOGENDER dataset is achieved by
the BERT WIKICREM DPR model, while
BERT WIKICREM ALL and BERT GAP DPR

set the new state-of-the-art on the PDP dataset.
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7 Conclusions and Future Work

In this work, we introduced WIKICREM, a large
dataset of training instances for pronoun resolu-
tion. We use our dataset to fine-tune the BERT

language model. Our results match or outper-
form state-of-the-art models on 6 out of 7 evalu-
ated datasets.

The employed data-generating procedure can be
further applied to other large sources of text to
generate more training sets for pronoun resolution.
In addition, both variety and size of the generated
datasets can be increased if we do not restrict our-
selves to personal names. We hope that the com-
munity will make use of our released WIKICREM
dataset to further improve the pronoun resolution
task.
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