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Abstract
Query-based open-domain NLP tasks require
information synthesis from long and diverse
web results. Current approaches extrac-
tively select portions of web text as input
to Sequence-to-Sequence models using meth-
ods such as TF-IDF ranking. We propose
constructing a local graph structured knowl-
edge base for each query, which compresses
the web search information and reduces re-
dundancy. We show that by linearizing the
graph into a structured input sequence, models
can encode the graph representations within a
standard Sequence-to-Sequence setting. For
two generative tasks with very long text in-
put, long-form question answering and multi-
document summarization, feeding graph rep-
resentations as input can achieve better perfor-
mance than using retrieved text portions.

1 Introduction

Effective information synthesis is at the core
of many Natural Language Processing applica-
tions, such as open-domain question answering
and multi-document summarization. In such tasks,
a fundamental challenge is the ability to distill rel-
evant knowledge from hundreds of thousands of
tokens of noisy and redundant input such as web-
pages. Current approaches predominantly conduct
TF-IDF-based information extraction to identify
key portions of the information, and then provide
this as sequential input to a Sequence-to-Sequence
(Seq2Seq) model. The sub-selected portions are
limited to a few thousand words, as models often
struggle to encode much longer sequences.

In this work, we propose a mechanism to re-
structure free text into local knowledge graphs
that are then linearized into sequences, creating a
canonical form in which information is presented
to models. By constructing a graph intermedi-
ary, redundant information can be merged or dis-
carded, producing substantially compressed input

Figure 1: Multi-Document Input to Linearized Graph
Multi-document input resulting from web search queries are
converted to a graph structured knowledge base using coref-
erence resolution and information extraction, then linearized
into a sequence for Seq2Seq models. Color indicates coref-
erence resolution. Node weight is indicated by circle radius
and edge weight by line thickness.

— small enough to be fully encoded by Seq2Seq
models. Such a method can be seen as merging
previous work on symbolic knowledge bases for
information extraction with newer approaches us-
ing deep neural networks to encode knowledge.

Our approach, shown in Figure 1, takes a query
and its corresponding multi-document web search
results and builds for each query a specific local
knowledge graph. We present several modeling
contributions to effectively encode the entire graph
as a sequence and attend to the most relevant por-
tions within this linearization. We demonstrate
the effectiveness of this approach on two large-
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scale generative tasks with both long and noisy
multi-document web input and paragraph length
output: long-form question answering on the ELI5
dataset (Fan et al., 2019) and Wikipedia lead para-
graph generation as a multi-document summariza-
tion problem (Liu et al., 2018b).

2 Related Work

Interest in generative sequence modeling has in-
tensified due to recent improvements (Peters et al.,
2018; Devlin et al., 2018; Radford et al., 2019),
making the challenge of information synthesis
more relevant. In contrast to extractive tasks
which only require models to identify spans and
can do so effectively on long documents by look-
ing at the paragraphs independently, generative se-
quence models must combine multiple pieces of
evidence from long and noisy multi-document in-
put to generate correct and convincing responses.

2.1 Multi-Document Input

Previous work in multi-document summarization
(Barzilay et al., 1999) applies various techniques
to handle long input, including clustering to find
similar information (Honarpisheh et al., 2008),
extractive methods to select relevant sentences
(Daumé III and Marcu, 2002; Gillick and Favre,
2009; Berg-Kirkpatrick et al., 2011; Di Fabbrizio
et al., 2014; Bing et al., 2015; Cao et al., 2017) in-
cluding maximal marginal relevance (Fabbri et al.,
2019), and incorporating queries (Baumel et al.,
2018) and graphs (Ganesan et al., 2010; Yasunaga
et al., 2017). However, there are few large scale
multi-document summarization datasets and many
approaches have focused on extractive selection or
hybrid extractive-abstractive models. In this work,
we use graph construction to re-structure multi-
document input for abstractive generation.

Advancements in question answering have ex-
amined performance on datasets with multi-
document input, such as TriviaQA (Joshi et al.,
2017). Various approaches have been proposed,
including leveraging TF-IDF and bigram hash-
ing with an RNN to find relevant information
(Chen et al., 2017), models that score individual
paragraphs for sub-selection (Clark and Gardner,
2017), and nearest neighbor search with paragraph
re-ranking (Das et al., 2018a). However, these
approaches have been applied to extractive ques-
tion answering tasks that require span identifica-
tion, rather than abstractive text generation in an

information synthesis setting.

2.2 Using Knowledge Bases

Previous work has explored various ways of rep-
resenting information in knowledge bases (Bor-
des et al., 2011) and improving these representa-
tions (Chen et al., 2013). Knowledge bases have
been leveraged to improve performance on various
tasks, from coreference resolution (Ng and Cardie,
2002) and question answering (Zheng, 2003; Bao
et al., 2014; Cui et al., 2017; Sun et al., 2018) to
signal processing (Bückner et al., 2002). Various
works convert text into Abstract Meaning Repre-
sentations (Liu et al., 2018a) for domains such as
news (Vossen et al., 2015; Rospocher et al., 2016)
and link nodes to large knowledge bases such as
DBPedia (Auer et al., 2007). Wities et al. (2017)
combine open information extraction with coref-
erence and lexical inference to build knowledge
representations. They apply this to tweets and
analyze the accuracy on various aspects of graph
construction. Das et al. (2018b) construct graphs
from procedural text to track entity position to an-
swer when and if entities are created, destroyed, or
moved. In contrast, we build graphs from substan-
tially longer multi-document input and use them
for multi-sentence text generation.

Recently, many have explored neural archi-
tectures that can encode graph structured input
(Bruna et al., 2013; Kipf and Welling, 2016; Beck
et al., 2018; Zhou et al., 2018; Xu et al., 2018; Lai
et al., 2019). These models often represent graphs
as adjacency matrices to generalize architectures
such as convolutional networks to graph inputs.
Rather than encoding a static knowledge graph or
leveraging external knowledge graphs, we build a
local graph for each query and model these using
standard Seq2Seq models. We leave the incorpo-
ration of graph networks for future work.

3 Graph Construction

We describe how symbolic graph representations
of knowledge can be constructed from text. Our
approach assumes a multi-document input (such
as web pages) resulting from the execution of a
query. The graph construction process (1) com-
presses the web search input to a significantly
smaller size, allowing models to encode the en-
tirety of the compression, and (2) reduces redun-
dancy through merge operations, allowing relevant
information to be more easily identified.
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Figure 2: Steps of Graph Construction. Color relates the
document sentence used to produce the graph output.

Text to Triples to Graph Graph construction
proceeds in several steps outlined in Figure 2.
We apply Coreference Resolution (Clark and Man-
ning, 2016a,b)1 and Open Information Extraction
(Stanovsky et al., 2018)2 to convert sentences into
a Triple of the form (subject, predicate, object).
The sentence Albert Einstein, a German theoreti-
cal physicist, won the Nobel Prize would become
(Albert Einstein, won, the Nobel Prize).

A graph is constructed using the triples by rep-
resenting subjects and objects as nodes connected
by predicates as directed edges. For example, the
triple would become Albert Einstein −−→

won
the No-

bel Prize. Nodes and edges have a name property
that is the text they represent. They also have a
weight property that denotes the number of times
that node or edge has appeared. For example, in
Figure 1, the node with name Albert Einstein has
weight 4 and edge with name won has weight 2.

Merging Nodes and Edges When subsequent
triples are added to the graph, they are merged
with the existing graph if they already exist to re-
duce information replication. To merge nodes, the
TF-IDF overlap of the new node’s name is calcu-
lated with the existing graph node names, and the
new node is merged into an existing node if the
TF-IDF is higher than some threshold (see Fig-
ure 2, steps 2 and 3 for example merge opera-

1We use the implementation available here: https://
github.com/huggingface/neuralcoref

2We use the implementation available here:
https://github.com/gabrielStanovsky/
supervised-oie

tions). Edges are merged similarly with existing
edges between the same two nodes. Such merge
operations allow strings such as the Nobel Prize
and Nobel Prize to be represented as one node
rather than separately. Similarly, coreference res-
olution aids in merging — by identifying that Al-
bert Einstein and He refer to the same entity and
thus merging them, the construction of the graph
reduces redundancy. The size of the graph can
be modified by controlling which triples are added
using TF-IDF overlap (see Figure 2, step 4). TF-
IDF overlap of the triple with the question can be
used to determine if the triple contains relevant in-
formation. This improves robustness to noisy web
search input and helps filter entirely irrelevant por-
tions, such as scraped HTML tags.

4 Modeling Graphs as Sequences

Current models for text generation often use
Seq2Seq architectures such as the Transformer
(Vaswani et al., 2017). These models are de-
signed to encode sequences rather than graphs.
We describe now how to convert a graph into a
structured input sequence. Our complete model
will take as input a linearized graph by en-
coding graph attributes such as node and edge
weight as embeddings. We add hierarchical
and memory-compressed attention mechanisms to
scale Seq2Seq models to encode the full graph and
attend to the most relevant information within it
(Figure 4), and finally we integrate the benefits of
language modeling using multi-task training.

4.1 Graph to Sequence

Linearization To represent the graph as a se-
quence for Seq2Seq, it is linearized into a struc-
tured standard form of subject node, object node,
and predicate edge, separated by indicator tokens,
as shown in Figure 1. For example, the lin-
earization <sub> Albert Einstein <obj> the No-
bel Prize <pred> won would be created. The lin-
earization is accomplished through graph traver-
sal in a breadth-first manner following the directed
edges formed by predicates and starting from the
node with the largest weight as the root. For
two nodes that are connected by multiple predi-
cates, the predicates are concatenated (shown in
Figure 1), so a linearization such as <pred> won
<s> received would indicate that Albert Einstein
both won and received the Nobel Prize.

https://github.com/huggingface/neuralcoref
https://github.com/huggingface/neuralcoref
https://github.com/gabrielStanovsky/supervised-oie
https://github.com/gabrielStanovsky/supervised-oie
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Figure 3: Graph Attribute Embeddings. In addition to word and position embeddings, models receive a Graph Weight
embedding to encode node and edge weight and a Query Relevance embedding that encodes search result rank.

Figure 4: Model Architecture. Gray indicates standard
Transformer elements, Green indicates modification.

Encoding Graph Information Transformer
Seq2Seq models have two embeddings: a word
embedding and a position embedding. Simply
linearizing the graph, however, loses attribute
information such as node and edge weight.
Instead, we encode these attributes as embeddings
in addition to the word and position embeddings.

To represent Graph Weight (GW), node and
edge weight is provided as an embedding for each
token. The node weight and edge weight are
equivalent to the number of merge operations + 1.
For example, if Albert Einstein occurred 4 times in
the text, the GW embedding for the tokens Albert
and Einstein would be 4, as shown in Figure 3.

We encode a Query Relevance (QR) embedding
to represent the relevance of the web search to the
query as ranked by the information retrieval sys-
tem (e.g. search engine). Information from the top
web search results is likely more relevant than in-
formation from the last web search results, so pro-
viding this embedding allows the model to distin-
guish between these different information sources.
In Figure 3, tokens representing sentences from
the first document have QR embedding 1, and to-
kens from the second document have value 2.

Models now have access to several different
types of embeddings, but all embedding infor-
mation contributes equally as there is no mecha-
nism to distinguish between them. We introduce a

mechanism for models to scale the graph embed-
dings. We denote the embedding for position t as
et, such that eword

t is the word embedding.
For the GW embedding, models learn a gating

function g based on the word and GW embed-
dings. Such a mechanism provides capacity for the
model to decide when the additional embeddings
are useful based on the words in the input. The
gate is calculated by applying an MLP W to the
concatenation of the word and GW embeddings.
The learned gate is then applied to GW embed-
dings to create the output h:

gGW
t = W [eGW

t ; eword
t ]

hGW
t = gGW

t ◦ eGW
t

Models learn a gating mechanism for the QR
embedding in a similar manner. The full embed-
ding the model receives is as follows:

eword
t + e

pos
t + [hGW

t ;hQR
t ]

4.2 Hierarchical Attention
One challenge in modeling long sequences is that
attention mechanisms struggle to make sharp se-
lections when softmax-ing over long sequences
(Fan et al., 2018). When attention is blurry, there
lacks a strong distinction between noise and rele-
vant information.

We assume that graphs are constructed from
query-based web search input and thus leverage
this query to learn a subselection operation using
hierarchical top-k attention, depicted in Figure 4.
The query is encoded with a Transformer encoder
and the linearized graph with another Transformer
encoder. We model the interaction between the
query and the input sequence (e.g. web search
results or linearized graph) by computing an at-
tention distribution between the question and the
input, then selecting the top k positions with the
most attention weight. Such a mechanism can be
thought of as building a query-dependent repre-
sentation of the most relevant knowledge, which
is commonly done in question answering architec-
tures like BiDAF (Seo et al., 2017). The top k
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operation limits the number of tokens, making the
attention mechanism sharper.

4.3 Scaling to Encode the Graph

Recent progress has improved the ability of
language models to process longer sequences
(Sukhbaatar et al., 2019; Dai et al., 2019), but
models remain limited in their capacity to en-
code long documents. The multi-document re-
sults of query-based web search have hundreds of
thousands of tokens, beyond the limit of current
Seq2Seq models to handle. For example, the ELI5
dataset provides an average of 200K tokens of web
search input. However, by compressing the web
search results into a knowledge graph, we signif-
icantly reduce the number of tokens by an order
of magnitude and make it possible for a model to
access the entirety of the search information.

To represent the full graph, models must scale
to encode around 10K input tokens. The attention
mechanism in Transformer architectures becomes
computationally expensive for sequences of this
length. Instead, we experiment with the Memory-
Compressed Attention (MCA) mechanism pro-
posed for language models in (Liu et al., 2018b)3

and apply it to the encoder side of Seq2Seq mod-
els. At each self-attention layer, MCA alternates
between (1) local attention, computed between
smaller chunks of tokens and (2) strided convolu-
tions to reduce the number of keys and values used
in attention computation. By adding the MCA
mechanism to the encoder (E-MCA), we are able
to encode the complete linearized graph.

4.4 Multi-tasking with KB Completion

Fan et al. (2019) used multi-task training on lan-
guage modeling and various Seq2Seq tasks to in-
corporate the benefits of language modeling in
Seq2Seq models. We extend this by training ad-
ditionally on knowledge graph completion. Mod-
els receive at training time sequences of a lin-
earized graph with nodes, edges, or both selec-
tively masked and must predict the missing con-
tent words. For example, models might receive
as input <sub> Albert Einstein <obj> [mask]
<pred> won and need to predict the Nobel Prize.
This can be seen as both a multi-word extension
of the masked language model training proposed
in (Devlin et al., 2018) and as learning the task of

3In (Liu et al., 2018b), the mechanism is termed DMCA
as it is applied on the decoder side

knowledge base completion (Lacroix et al., 2018;
Bordes et al., 2011). At training time, the tasks are
distinguished using an indicator token in the input.

5 Experimental Setup

We evaluate our approach on two datasets with
multi-document web input and multi-sentence ab-
stractive output. We use Seq2Seq models that
leverage a query concatenated with web search re-
sults that have been processed into a supporting
document — e.g. TF-IDF subselection, linearized
graph, etc. — to generate long output.

5.1 Datasets and Evaluation
ELI5 First, we experiment with the Explain Like
I’m Five (ELI5) (Fan et al., 2019) question answer-
ing dataset of 270K complex questions paired with
multi-sentence, explanatory answers (130 words
on average). To facilitate question answering,
the dataset provides the top 100 web search hits
from querying the question, which results in 200K
words on average. See Appendix for examples.

Previous work (Fan et al., 2019) used TF-IDF
to find sentences in the web search that have the
largest overlap with the question and created a TF-
IDF extraction of about 850 words as input for
Seq2Seq models. Instead, we construct a local
knowledge graph for each question from the 100
web search hits. Following the average length of
the TF-IDF support document constructed in (Fan
et al., 2019), we experiment with modeling the
first N = 850 tokens of the linearized graph, then
scale to encode the entire graph using E-MCA.

WikiSum Second, we experiment on the Wik-
iSum CommonCrawl (Liu et al., 2018b) summa-
rization dataset4 with 1.5 million examples. This
task formulates Wikipedia lead paragraph genera-
tion as a multi-document summarization problem,
where the paragraph must be generated using the
cited article references and other queried content
from web search. The query used is the title of the
Wikipedia article. See Appendix for examples.

Previous work (Liu et al., 2018b) applied TF-
IDF Ranking to order the paragraphs of web
search given a query. Models receive the re-
ordered paragraphs ranked by TF-IDF as input.
Liu et al. (2018b) model the first N = 500 words
of this re-ranking and then N = 11, 000 using

4https://github.com/tensorflow/
tensor2tensor/tree/master/tensor2tensor/
data_generators/wikisum

https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/data_generators/wikisum
https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/data_generators/wikisum
https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/data_generators/wikisum
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MCA. We construct the knowledge graph for each
Wikipedia article from the first 200K words of the
ranked web search results5, and experiment with
encoding 500 and 11, 000 tokens.

Evaluation Both tasks evaluate the multi-
sentence generation output against the gold output
using F1 ROUGE. On WikiSum, we report only
ROUGE-L following (Liu et al., 2018b).

We conduct a comparative human evaluation on
the ELI5 dataset. We use crowdworkers to exam-
ine the responses of two models on 300 different
questions from the test set. For each question, 3
evaluators are shown two answers and asked to
choose the one they prefer. To reduce variance,
answers are standardized at 150 words each.

5.2 Training and Generation

To reduce the vocabulary size of varied web doc-
ument content, we apply byte-pair encoding (Sen-
nrich et al., 2016) to generate 40K codes for each
dataset. We implement our models in fairseq-
py (Ott et al., 2019) using the Transformer Big
architecture and training schedule described in
(Vaswani et al., 2017). Detailed parameters are
listed in the Appendix. For generation, we use
beam search with beam size 5 and tune a minimum
and maximum length on the validation set.

5.3 Baselines

We compare our results to the Transformer se-
quence models presented in (Fan et al., 2019) for
ELI5 and (Liu et al., 2018b) for WikiSum.

We evaluate three additional baseline models:

• Sentence Selection with Maximal Marginal
Relevance: (Fan et al., 2019) used TF-IDF to
identify relevant sentences in the web docu-
ments to form a support document of around
850 words. However, recent work (Fabbri
et al., 2019) has shown that using maximal
marginal relevance is an effective strategy for
selecting relevant information while reducing
redundancy. We explore using MMR to se-
lect sentences from the web text to concate-
nate to form a support document.

• Seq2Seq Multi-task Triples: To examine the
impact of solely restructuring the input into
Open IE Triples but not leveraging graph

5Average length of provided web input is around 50K
words, and maximum length is around 900K words

Model Input ROUGE
Length 1 2 L

Q + D to A*, TF-IDF avg 850 28.3 5.1 22.8
Q + D to A, MMR avg 850 28.1 5.0 22.9
Multi-task* avg 850 28.9 5.4 23.1
Multi-task Triples 850 29.0 5.2 23.2
Multi-task Top20 Trip. avg 570 28.8 5.3 23.2
Q + D to A Graph 850 28.8 5.3 23.3
Multi-task Graph 850 29.5 5.6 23.6
+ Top-100 Attention 850 29.7 5.7 23.8
+ E-MCA 11K 30.0 5.8 24.0

Table 1: Answer Generation on ELI5 using Seq2Seq mod-
els receiving the Question and a support Document (e.g.
TF-IDF selection, Triples, Linearized Graph) to produce the
Answer. * denotes results from (Fan et al., 2019).

Model InputLen ROUGE-L
T + D to P* 500 34.2
LM + D-MCA* 11K 36.2
T + D to P 500 33.8
Multi-task 500 34.4
Multi-task Graph 500 34.9
+ Top-100 Attention 500 35.2
+ E-MCA 11K 36.5

LM + D-MCA + MoE-256* 7.5K 38.8

Table 2: Lead Paragraph Generation on WikiSum Com-
monCrawl using Seq2Seq models receiving the Title and a
support Document (e.g. TF-IDF ranking, Linearized Graph)
to produce the Lead Paragraph. * denotes results from (Liu
et al., 2018b) that use data scraped from unrestricted web
search, not the static CommonCrawl version.

construction to reduce redundancy, we ex-
periment with a Triples Only baseline. The
triples are concatenated to form the input.

• Seq2Seq Multi-task Top 20 Triples: As an al-
ternative to using graph construction to com-
press the full set of Open IE Triples, we ex-
plore using TF-IDF overlap with the query to
find the most relevant information. We select
the top 20 triples to concatenate as input.

6 Results

We examine the performance of our proposed ap-
proach and the choices made in graph construction
and modeling. We analyze the quality of the com-
pression created by graph construction and the ro-
bustness and interpretability of this process.

6.1 Linearized Graph Improves Performance

In Table 1, we compare our methods to various
baselines on the ELI5 dataset. Using MMR to se-
lect the most relevant non-redundant input is sim-
ilar to the TF-IDF baseline from Fan et al. (2019).
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The Seq2Seq Multi-task Triples baseline standard-
izes the input by forming triples but does not re-
move redundant triples. It produces marginally
better results compared to the baseline Multi-Task
model. Sub-selecting to the Top 20 Triples is
harmful, as similar text has high TF-IDF over-
lap with the query so redundant information is se-
lected. Creating the graph structure brings an im-
provement of around 0.6 ROUGE-1.

Similar trends are seen for the WikiSum dataset
in Table 2, where graph construction improves the
Multi-task model by 0.5 ROUGE-1. These im-
provements are statistically significant at the 95%
confidence level.

For both datasets, a further improvement is seen
by using the hierarchical attention mechanism to
attend to only the most relevant information in the
linearized graph input. For ELI5, it brings an ad-
ditional 0.2 ROUGE-1 improvement and on Wik-
iSum a 0.3 ROUGE-1 improvement.

By using MCA to scale Seq2Seq models to en-
code the entire graph, further gains can be seen.
Particularly in information synthesis tasks, prior
work has shown the importance of reading more
information. Liu et al. (2018b) achieved a 2-point
ROUGE improvement by reading 11K tokens in-
stead of 500. In our setting, E-MCA improves
our results around 0.3 ROUGE on ELI5 and 1.3
ROUGE on WikiSum. We display random gener-
ations from both datasets in the Appendix.

We use human evaluation to compare the Multi-
task baseline to the Multi-task Graph + Top-k At-
tention model. 57.4% of evaluations prefer the
Multi-task Graph + Top-k Attention model. We
conduct a two-tailed binomial test and find this re-
sult is statistically significant with p = 0.003.

6.2 Analysis of Modeling Choices

Ablation on Model Components Table 3(a) se-
quentially removes the graph embeddings, the
knowledge-base completion multi-tasking, and the
multi-tasking from (Fan et al., 2019) and reveals
that each of these is important for performance.

Graph Attribute Embeddings Table 3(b) dis-
plays the effect of removing the graph attribute
embeddings and gating mechanism. Removing
each is slightly harmful, and the combination of
all three together provide the best performance.

More Web Search Documents Figure 7 (right)
shows that graph construction with more web

Model ROUGE-1

(a) Iterative Removal of Model Components

Multi-task Graph 29.4
- Graph Embeddings 29.1
- KB Completion Multi-tasking 28.9
- LM Multi-tasking from (Fan et al., 2019) 28.4

(b) Removing Graph Embedding Components

Graph
+ Gated Graph Weight + Query Relevance 28.6
No Graph Weight Embedding 28.4
No Query Relevance Embedding 28.3
No Gating 28.4

(c) Varying Number of Hits in Graph

Multi-task Graph + Top-k Attention + E-MCA
with Graph on 5 Search Hits 28.8
with Graph on 10 Search Hits 29.3
with Graph on 50 Search Hits 29.6
with Graph on 100 Search Hits 29.9

(d) Varying k in Hierarchical Top-k Atttention

Multi-task Graph + E-MCA +
Top-k = 50 29.1
Top-k = 100 29.5
Top-k = 250 29.4
Top-k = 500 29.3
Top-k = 1000 29.2

Table 3: Ablations on the ELI5 Validation Set

Model Input ROUGE-1
Seq2Seq Q + D to A TF-IDF 28.3
Seq2Seq Q + D to A Web 25.9
+ Shuffle Web Shuffle 24.4
Seq2Seq Q + D to A Graph Web 28.5
+ Shuffle Web Shuffle 28.2

Table 4: Importance of Web Search Relevance on Valida-
tion for ELI5, modeling 850 input words.

search information is important for answer token
coverage. The graph on the top search hit alone
is missing 64% of the answer tokens, but this de-
creases as more search hits are used. Table 3(c)
indicates that this lack of coverage of the answer
tokens correlates with generation quality. Models
receiving a graph built on the first 5 search hits
alone are substantially worse than all 100 hits.

Top-k Attention Table 3(d) shows the effect of
the Top-k Hierarchical Attention mechanism for
various values of k. Attending to too many tokens
lowers ROUGE — for the ELI5 task of writing ap-
proximately 130 word answers, attending to 1000
input tokens likely means the model is focusing on
irrelevant information and 50 tokens is too few.
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Figure 5: Interpretable Attention of Seq2Seq models on a subgraph when answering a question in ELI5

Figure 6: (Left) Distribution of Number of Nodes, (Middle) Number of Edges, (Right) Weight of the Largest Node in graph
construction on the ELI5 training set.

Figure 7: (Left) Graph construction drastically reduces input
size by an order of magnitude. (Right) Graph construction
encodes more tokens present in the answer compared to TF-
IDF extraction and building the graph from more search hits
increases answer token coverage. Analysis on ELI5 for both
plots.

6.3 Graph Improves Answer Token Coverage
Despite Compression

Figure 6 displays the distribution of the number
of nodes, edges, and the largest node weight for
each local graph built on the ELI5 dataset. The
100 web search results are compressed to a few
hundred nodes. By merging redundancy and trim-
ming irrelevant triples from the graph, the input is
reduced by an order of magnitude (Figure 7, left).

Despite compression, the graph retains more
answer tokens than TF-IDF subselection. Fig-
ure 7 (right) displays the percentage of answer to-
kens not present in the input. The TF-IDF Ex-
traction from (Fan et al., 2019) is missing 38%
of tokens. The graph constructed on all 100 web

search results is only missing 8.7% of tokens, but
has around 10K words. When analyzing just the
first 850 tokens to match the average length of the
TF-IDF extraction, the graph is better (only miss-
ing 35% of tokens). Further, the merging and dis-
carding operations done during graph construction
do not have a large effect on answer token cover-
age — the full set of triples marginally reduces
the percentage of answer tokens missing to 7.3%
instead of 8.7%. This indicates that much of the
information in the full set triples is redundant and
unnecessary for good answer token coverage.

6.4 Graph Representation is More Robust to
Poor Search Relevance Ordering

We analyze the robustness of our approach to the
ordering of web search results in Table 4. Instead
of constructing the graph from the first web search
result to the last, we shuffle the web search results
and construct the graph on this shuffled input. We
compare this to modeling the web search results
directly (no TF-IDF retrieval) and a model that re-
ceives this shuffled web search input. The graph
is more robust to shuffling — as more information
can be encoded in the graph due to its compression
effect, the search hit ordering is less critical.
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6.5 Interpretable Attention on Subgraphs

Figure 5 shows an example of the nodes and edges
the model focuses upon most when answering a
question on ELI5. To construct this visualiza-
tion, we calculate the top nodes the model attends
to and then their top edges. The model atten-
tion on a sub-portion of the linearized input can
be visualized as an interpretable graph that corre-
sponds well to the model’s generated answer. For
example, the relationship General Relativity −→

is
Einstein’s theory becomes the generated sentence
General Relativity is a theory of Albert Einstein.

7 Conclusion

Many open-domain NLP tasks rely upon multi-
document input from the web to facilitate tasks
such as answering questions or writing summaries,
but current approaches struggle to encode the en-
tirely of this information. We propose construct-
ing one knowledge graph per query and show that
this method compresses information and reduces
redundancy. We show on two abstractive genera-
tion tasks that using the linearized graph achieves
better performance than TF-IDF retrieval.
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and Ido Dagan. 2017. A consolidated open knowl-
edge representation for multiple texts. In Proceed-
ings of the 2nd Workshop on Linking Models of Lexi-
cal, Sentential and Discourse-level Semantics, pages
12–24.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,
Michael Witbrock, and Vadim Sheinin. 2018.
Graph2seq: Graph to sequence learning with
attention-based neural networks. arXiv preprint
arXiv:1804.00823.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu,
Ayush Pareek, Krishnan Srinivasan, and Dragomir
Radev. 2017. Graph-based neural multi-document
summarization. arXiv preprint arXiv:1706.06681.

Zhiping Zheng. 2003. Question answering using web
news as knowledge base. In Proceedings of the
tenth conference on European chapter of the As-
sociation for Computational Linguistics-Volume 2,
pages 251–254. Association for Computational Lin-
guistics.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2018. Graph neu-
ral networks: A review of methods and applications.
arXiv preprint arXiv:1812.08434.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

