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Abstract

The exploding cost and time needed for data
labeling and model training are bottlenecks for
training DNN models on large datasets. Identi-
fying smaller representative data samples with
strategies like active learning can help mit-
igate such bottlenecks. Previous works on
active learning in NLP identify the problem
of sampling bias in the samples acquired by
uncertainty-based querying and develop costly
approaches to address it. Using a large em-
pirical study, we demonstrate that active set
selection using the posterior entropy of deep
models like FastText.zip (FTZ) is robust to
sampling biases and to various algorithmic
choices (query size and strategies) unlike that
suggested by traditional literature. We also
show that FTZ based query strategy pro-
duces sample sets similar to those from more
sophisticated approaches (e.g ensemble net-
works). Finally, we show the effectiveness
of the selected samples by creating tiny high-
quality datasets, and utilizing them for fast
and cheap training of large models. Based
on the above, we propose a simple baseline
for deep active text classification that outper-
forms the state-of-the-art. We expect the pre-
sented work to be useful and informative for
dataset compression and for problems involv-
ing active, semi-supervised or online learn-
ing scenarios. Code and models are available
at: https://github.com/drimpossible/Sampling-
Bias-Active-Learning

1 Introduction

Deep neural networks (DNNs) trained on large
datasets provide state-of-the-art results on various
NLP problems (Devlin et al., 2019) including text
classification (Howard and Ruder, 2018). How-
ever, the cost and time needed to get labeled data
and to train models is a serious impediment to
creating new and/or better models. This problem
can be mitigated by creating smaller representative
datasets with active learning which can be used for
training DNNs to achieve similar test accuracy as

∗ indicates equal contribution
†Work done at Verisk | AI

that using the full training dataset . In other words,
the smaller sample can be considered a surrogate
for the full data.

However, there is lack of clarity in the active
learning literature regarding sampling bias in such
surrogate datasets created using active learning
(Settles, 2009): its dependence on models, func-
tions and parameters used to acquire the sample.
Indeed, what constitutes a good sample? In this
paper, we perform an empirical investigation us-
ing active text classification as the application.

Early work in active text classification (Lewis
and Gale, 1994) suggests that greedy query gen-
eration using label uncertainty may lead to ef-
ficient representative samples (Nonetheless, the
same test accuracy). Subsequent concerns regard-
ing sampling bias has lead to explicit use of expen-
sive diversity measures (Brinker, 2003; Hoi et al.,
2006) in acquisition functions or using ensemble
approaches (Liere and Tadepalli, 1997; McCallum
and Nigam, 1998) to improve diversity implicitly.

Deep active learning approaches adapt the dis-
cussed framework above to train DNNs on large
data. However, it is not clear if the properties
of deep approaches mirror those of their shallow
counterparts and if the theory and the empirical
evidence regarding sampling efficiency and bias
translates from shallow to deep models. For exam-
ple, (Sener and Savarese, 2018) and (Ducoffe and
Precioso, 2018) find that uncertainty based strate-
gies perform no better than random sampling even
if ensembles are used and using diversity mea-
sures outperform both. On the other hand, (Beluch
et al., 2018; Gissin and Shalev-Shwartz, 2019) find
that uncertainty measures computed with ensem-
bles outperform diversity based approaches while
(Gal et al., 2017; Beluch et al., 2018; Siddhant
and Lipton, 2018) find them to outperform un-
certainty measures computed using single models.
A recent empirical study (Siddhant and Lipton,
2018) investigating active learning in NLP sug-
gests that Bayesian active learning outperforms
classical uncertainty sampling across all settings.
However, the approaches have been limited to rel-
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atively small datasets.

1.1 Sampling Bias in Active Classification

In this paper, we investigate the issues of sampling
bias and sample efficiency, the stability of the ac-
tively collected query and train sets and the impact
of algorithmic factors - i.e. the setup chosen while
training the algorithm, in the context of deep active
text classification on large datasets. In particular,
we consider two sampling biases: label and distri-
butional bias, three algorithmic factors: initial set
selection, query size and query strategy along with
two trained models and four acquisition functions
on eight large datasets.

To isolate and evaluate the impact of the above
(combinatorial) factors, a large experimental
study was necessary. Consequently, we conducted
over 2.3K experiments on 8 popular, large,
datasets of sizes ranging from 120K-3.6M. Note
that the current trend in deep learning is to train
large models on very large datasets. However, the
aforementioned issues have not yet been investi-
gated in the literature in such a setup. As shown in
Table 1, the datasets used in latest such analysis on
active text classification by (Siddhant and Lipton,
2018) are quite small in comparison. The datasets
used by us are two orders of magnitude larger, our
query samples often being the size of the entire
datasets used, and the presented empirical study is
more extensive (20x experiments).

Our findings are as follows:
(i) We find that utilizing the uncertainty query

strategy using a deep model like FastText.zip
(FTZ)1 to actively construct a representative sam-
ple provides query and train sets with remarkably
good sampling properties.

(ii) We finds that a single deep model (FTZ)
used for querying provides a sample set similar
to more expensive approaches using ensemble of
models. Additionally, the sample set has a large
overlap with support vectors of an SVM trained
on the entire dataset largely invariant to a variety
of algorithmic factors, thus indicating the robust-
ness of the acquired sample set.

(iii) We demonstrate that the actively acquired
training datasets can be utilized as small, surro-
gate training sets with a 5x-40x compression for
training large, deep text classification models. In

1We use FastText.zip (FTZ) to optimize the time and re-
sources needed for this study.

particular, we can train the ULMFiT (Howard and
Ruder, 2018) model to state of the art accuracy at
25x-200x speedups.

(iv) Finally, we create a novel, state-of-the-art
baseline for active text classification which outper-
forms recent work (Siddhant and Lipton, 2018),
using Bayesian dropout, utilizing 4x less training
data. We also outperform (Sener and Savarese,
2018) at all training data sizes. The latter uses an
expensive diversity based query strategy (coreset
sampling).

The rest of the paper is organized as follows:
in Section 2, the experimental methodology and
setup are described. Section 3 presents the exper-
imental study on sampling biases as well as the
impact of various algorithmic factors. In Section
4, we compare with prior literature in active text
classification. Section 5 presents a downstream
use case - fast bootstrapping of the training of very
large models like ULMFiT. Finally, we discuss the
current literature in light of our work in Section 6
and summarize the conclusions in Section 7.

2 Methodology

This section describes the experimental approach
and the setup used to empirically investigate the
issues of (i) sampling bias and (ii) sampling ef-
ficiency in creating small samples to train deep
models.

2.1 Approach

A labelled training set is incrementally built from
a pool of unlabeled data by selecting & acquiring
labels from an oracle in sequential increments. In
this, we follow the standard approach found in the
active learning literature. We use the following
terminology:

Queries & Query Strategy: We refer to the
(incremental) set of points selected to be labeled
and added to the training as the query and the (ac-
quisition) function used to select the samples as
the query strategy.

Pool & Train Sets: The pool is the unlabeled
data from which queries are iteratively selected,
labeled and added to the (labeled) train set.

LetDS = (xi, yi) denote a dataset consisting of
|S| = n i.i.d samples of data/label pairs, where |.|
denotes the cardinality. Let S0 ⊂ S denote an ini-
tial randomly drawn sample from the initial pool.
At each iteration, we train the model on the current
train set and use a model-dependent query strategy
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to acquire new samples from the pool, get them
labeled by an oracle and add them to the train set.
Thus, a sequence of training sets: [S1,S2 . . . ,Sb]
is created by sampling b queries from the pool
set, each of size K. The b queries are given
by [S1 − S0,S2 − S1 . . . ,Sb − Sb−1]. Note that
|Si| = (|S0|+ i×K) and S1 ⊂ S2 . . . ⊂ Sb ⊂ S.

In this paper, we investigate the efficiency and
bias of sample sets S1b ,S2b , . . . ,Stb obtained by dif-
ferent query strategies Q1, Q2, . . . Qt. We exclude
the randomly acquired initial set and perform com-
parisons on the actively acquired sample sets de-
fined as Ŝij = (Sij − Si0).

2.2 Experimental Setup

In this section, we share details of the experimen-
tal setup, and present and explain the choice of the
datasets, models and query strategies used.

Datasets: We used eight, large, representative
datasets widely used for text classification: AG-
News (AGN), DBPedia (DBP), Amazon Review
Polarity (AMZP), Amazon Review Full (AMZF),
Yelp Review Polarity (YRP), Yelp Review Full
(YRF), Yahoo Answers (YHA) and Sogou News
(SGN). Please refer to Section 4 of (Zhang et al.,
2015) for details regarding the collection and char-
acteristics of these datasets. Table 1 provides a
comparison regarding the choice of datasets, mod-
els and number of experiments between our study
and (Siddhant and Lipton, 2018) which investi-
gates a variety of NLP tasks including text clas-
sification while we focus only on the latter.

Models: We reported two text classification
models as representatives of classical and deep
learning approaches respectively which were fast
to train and also had good performance on text
classification: Multinomial Naive Bayes (MNB)
with TF-IDF (Wang and Manning, 2012) and Fast-
Text.zip (FTZ) (Joulin et al., 2016). The FTZ
model provides results competitive with VDC-
NNs (a 29 layer CNN) (Conneau et al., 2017) but
with over 15,000× speedup (Joulin et al., 2017).
This allowed us to conduct a thorough empiri-
cal study on large datasets. Multinomial Naive
Bayes (MNB) with TF-IDF features is a popularly
claimed baseline for text classification (Wang and
Manning, 2012).

Query Strategies: Uncertainty based query
strategies are widely used and well studied in the
active learning literature. Those strategies typi-
cally use a scoring function on the (softmax) out-

Paper #Exp Datasets (#Train) Models (Full Acc)

DAL 120
TREC-QA (6k),

MAReview (10.5k)

SVM (89%),
CNN (91%),
LSTM (92%)

Ours 2.3K

AGN (120k), SGN (450k),
DBP (560k), YRP (560k),

YRF (650k), YHA (1400k),
AMZP (3600k), AMZF (3000k)

FTZ (97%), MNB (90%)

Table 1: Comparison of active text classification
datasets and models (Acc on Trec-QA) used in (Sid-
dhant and Lipton, 2018) and our work. We use signif-
icantly larger datasets (two orders larger), perform 20x
more experiments, and use more efficient and accurate
models.

put of a single model. We evaluate the follow-
ing ones: Least Confidence (LC) and Entropy
(Ent). Independently training ensembles of mod-
els (Lakshminarayanan et al., 2017) is another
principled approach to obtain uncertainties associ-
ated with the output estimate.Then, we tried four
query strategies - LC and Ent computed using
single and ensemble models and evaluated them
against random sampling (chance) as a baseline.
For ensembles, we used five FTZ ensembles (Lak-
shminarayanan et al., 2017). In contrast, (Siddhant
and Lipton, 2018) used Bayesian ensembles using
Dropout, proposed in (Gal et al., 2017). Please re-
fer to Section 4 for a comparison.

Implementation Details: We performed 2304
active learning experiments. We obtained our re-
sults on three random initial sets and three runs
per seed (to account for stochasticity in FTZ) for
each of the eight datasets. The query sizes were
0.5% of the dataset for AGN, AMZF, YRF and
YHA and 0.25% for SGN, DBP, YRP and AMZP
respectively for b = 39 sequential, active queries.
We also experimented with different query sizes
keeping the size of the final training data b × K
constant. The default query strategy uses a single
model with output Entropy (Ent) unless explicitly
stated otherwise. Results in the chance column are
obtained using random query strategy.

We used Scikit-Learn (Pedregosa et al., 2011)
implementation for MNB and original implemen-
tation for FastText.zip (FTZ) 2. We required 3
weeks of running time for all FTZ experiments on
a x1.16xlarge AWS instance with Intel Xeon E7-
8880 v3 processors and 1TB RAM to obtain re-
sults presented in this work. The experiments are
deterministic beyond the stochasticity involved in
training the FTZ model, random initialization and

2https://github.com/facebookresearch/
fastText

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText
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Dsets Limit FTZ (∩Q) MNB (∩Q) FTZ (∩S) MNB (∩S)
SGN 1.61 1.56± 0.03 1.15± 0.32 1.59± 0.01 1.57± 0.01
DBP 2.64 2.50± 0.02 2.27± 0.11 2.51± 0.0 2.58± 0.01
YHA 2.30 2.25± 0.01 2.22± 0.02 2.25± 0.0 2.28± 0.0
YRP 0.69 0.69± 0.0 0.56± 0.13 0.69± 0.0 0.69± 0.01
YRF 1.61 1.56± 0.02 1.42± 0.21 1.56± 0.0 1.57± 0.01
AGN 1.39 1.33± 0.04 1.13± 0.17 1.33± 0.0 1.35± 0.01
AMZP 0.69 0.69± 0.0 0.69± 0.0 0.69± 0.0 0.69± 0.0
AMZF 1.61 1.58± 0.02 1.6± 0.01 1.59± 0.0 1.61± 0.0

Table 2: Label entropy with a large query size (b = 9
queries). ∩Q denotes averaging across queries of a sin-
gle run, ∩S denotes the label entropy of the final col-
lected samples, averaged across seeds. Naive Bayes
(∩Q) has biased (inefficient) queries while FastText
(∩Q) shows stable, high label entropy showing a rich
diversity in classes despite the large query size. Over-
all, the resultant sample (∩S) becomes balanced in both
cases.

SGD updates. The entire list of hyperparameters
and metrics affecting uncertainty such as calibra-
tion error (Guo et al., 2017) is given in the sup-
plementary material. The experimental logs and
models are available on our github link3.

3 Results

In this section, we study several aspects of sam-
pling bias (class bias, feature bias) and the impact
of relevant algorithmic factors (initial set selec-
tion, query size and query strategy.

We evaluated the actively acquired queries and
sample set for sampling bias, and for the stabil-
ity as measured by %intersection of collected sets
across a critical influencing factor. Higher sample
intersections indicate more stability increase to the
chosen influencing factor.

3.1 Aspects of Sampling Bias

We study two types of sampling biases: (a) Class
Bias and (b) Feature Bias.

3.1.1 Class Bias
Greedy uncertainty based query strategies are said
to pick disproportionately from a subset of classes
per query (Sener and Savarese, 2018; Ebert et al.,
2012), developing a lopsided representation in
each query. However, its effect on the resulting
sample set is not clear. We test this by measur-
ing the Kullback-Leibler (KL) divergence between
the ground-truth label distribution and the distribu-
tion obtained per query as one experiment (∩Q),

3https://github.com/drimpossible/Sampling-Bias-Active-
Learning

and over the resulting sample (∩S) as the sec-
ond. Let us denote P as the true distribution of
labels, P̂ the sample distribution and C the to-
tal number of classes. Since P follows a uni-
form distribution, we can use Label entropy in-
stead (L = −KL(P ||P̂ ) + log(C)). Label en-
tropy L is an intuitive measure. The maximum la-
bel entropy is reached when sampling is uniform,
P̂ (x) = P (x), i.e. L = log(C).

We present our results in Table 2. We ob-
serve that across queries (∩Q), FTZ with entropy
strategy has a balanced representation from all
classes (high mean) with a high probability (low
std) while Multinomial Naive Bayes (MNB) re-
sults in more biased queries (lower mean) with
high probability (high std) as studied previously.
However, we did not find evidence of class bias in
the resulting sample (∩S) in both models: Fast-
Text and Naive Bayes (column 5 and 6 from Table
2).

We conclude that entropy as a query strategy
can be robust to class bias even with large query
sizes.

3.1.2 Feature Bias
Uncertainty sampling can lead to undesirable sam-
pling bias in feature space (Settles, 2009) by re-
peating redundant samples and picking outliers
(Zhu et al., 2008). Diversity-based query strate-
gies (Sener and Savarese, 2018) are used to ad-
dress this issue, by selecting a representative sub-
set of the data. In the context of active classifica-
tion, it is good to pick the most informative sam-
ples to be the ones closer to class boundaries4.

Indeed, recent work suggests that the learning
in deep classification networks may focus on small
part of the data closer to class boundaries, thus re-
sembling support vectors (Xu et al., 2018; Toneva
et al., 2019). To investigate whether uncertainty
sampling also exhibits this behavior, we perform
below a direct comparison with support vectors
from a SVM. For this, we train a FTZ model on the
full training data and train a SVM on the resulting
features (sentence embeddings) to obtain the sup-
port vectors and compute the intersection of sup-
port vectors with each selected set. The percent-
age intersections are shown in Table 3. The high
percentage overlap is a surprising result which
shows that the sampling is indeed biased but in

4In this work, we assume ergodicity in the setup. We do
not consider incremental, online modeling scenarios where
new modes or new classes are sequentially encountered.

https://github.com/drimpossible/Sampling-Bias-Active-Learning
https://github.com/drimpossible/Sampling-Bias-Active-Learning
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Figure 1: Accuracy across different number of queries b for FastText and Naive Bayes, with b × K constant.
FastText is robust to increase in query size and significantly outperforms random in all cases. Naive Bayes: (Left)
All including b=39 perform worse than random, (Center) All including b=9 eventually perform better than random
(Right) b = 39 performs better than random but larger query sizes perform worse than random. Uncertainty
sampling with Naive Bayes suffers from sampling size bias.

Dsets Common% Chance% #SV
SGN 71.3± 0.5 9.3± 0.5 13184
DBP 86.3± 0.5 9.7± 0.5 1479
YRP 57.3± 0.5 9.7± 0.5 31750
AGN 45.0± 0.8 21.0± 1.6 1032

Table 3: Proportion of Support Vectors intersecting
with our actively selected set calculated by |SSV ∩Ŝb|

|SSV | .
Actively selected sets share large overlap with supports
of an SVM (critical for classification).

a desirable way. Since the support vectors rep-
resent the class boundaries, a large percentage of
selected data consists of samples around the class
boundaries. This overlap indicates that the ac-
tively acquired training sample covers the support
vectors well which are important for good classifi-
cation performance. The overlap with the support
vectors of an SVM (a fixed algorithm) also sug-
gests that uncertainty sampling using deep models
might generalize beyond FastText, to other learn-
ing algorithms.

Experimental Details: We used a fast GPU im-
plementation for training an SVM with a linear
kernel (Wen et al., 2018) with default hyperparam-
eters. Please refer to supplementary material for
additional details. We ensured the SVM achieves
similar accuracies as original FTZ model.

Dsets Chance FTZD FTZS MNBD MNBS
SGN 0.8 77.8 81.0 55.5 100.0
DBP 0.9 79.7 81.3 79.7 100.0
YHA 3.7 69.0 73.6 89.5 100.0
YRP 0.9 42.9 43.7 16.0 100.0
YRF 3.6 67.7 71.6 13.6 100.0
AGN 3.7 68.7 70.1 79.8 100.0
AMZP 0.9 48.4 48.8 15.0 100.0
AMZF 3.6 56.8 63.1 57.8 100.0

Table 4: % Intersection of samples obtained with dif-
ferent seeds (ModelD) compared to same seeds (Mod-
elS) and chance intersection for b = 39 queries. We
see that FastText is initialization independent (FTZD
≈ FTZS � Chance). NaiveBayes shows significant
dependency on the initial set sometimes, while other
times performs comparable to FastText.

3.2 Algorithmic Factors

We analyze three algorithmic factors of relevance
to sampling bias: (a) Initial set selection (b) Query
size, and, (c) Query strategy.

3.2.1 Initial Set Selection
To investigate the dependence of the actively ac-
quired train set on the initial set, we compare the
overlap (intersection) of the incrementally con-
structed sets from different random initial sets ver-
sus the same initial set. The results are shown
in Table 4. We first observe that chance overlaps
(column 2) are very low - less than 4%. Columns
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Dsets Chance FTZ 9 ∩ 19 ∩ 39 FTZ 39 ∩ 39 ∩ 39 MNB 9 ∩ 19 ∩ 39 MNB 39 ∩ 39 ∩ 39
SGN 0.83 ±0.0 77.0± 0.5 77.9± 0.2 31.9± 0.0 55.5± 0.0
DBP 0.9 ±0.0 80.0± 0.1 79.6± 0.2 82.3± 0.0 79.7± 0.0
YHA 3.7 ±0.0 68.3± 0.1 69.0± 0.0 92.1± 0.0 89.5± 0.0
YRP 0.9 ±0.0 46.0± 0.9 42.7± 1.0 10.8± 0.0 16.0± 0.0
YRF 3.6 ±0.0 68.4± 0.2 67.6± 0.1 14.2± 0.0 13.6± 0.0
AGN 3.7 ±0.0 70.3± 0.2 68.7± 0.1 81.6± 0.0 79.8± 0.0
AMZP 0.9 ±0.0 45.8± 0.1 48.2± 0.2 11.5± 0.0 15.0± 0.0
AMZF 3.6 ±0.0 55.2± 0.4 57.0± 0.2 28.4± 0.0 57.8± 0.0

Table 5: Intersection of samples obtained with different values of b. We see the intersection of samples selected
with different number of intersections comparable to highest possible (different seeds) in FastText, far higher
compared to chance intersection. This indicates similar samples are selected regardless of sample size. NaiveBayes
does not show clear trends but occasionally the queried percentage drops significantly when increasing iterations,
occasionally it remains unaffected.

Dsets Chance FTZ Ent-Ent FTZ Ent-LC FTZ Ent-DelEnt FTZ DelEnt-DelLC FTZ DelEnt-DelEnt
SGN 9.4± 0.0 84.6± 0.2 83.1± 0.3 81.7± 0.1 82.6± 0.1 84.2± 0.1

DBP 9.3± 0.0 85.7± 0.2 85.5± 0.3 83.3± 0.1 83.0± 0.4 83.2± 0.2

YHA 19.0± 0.0 79.0± 0.0 71.6± 0.2 76.3± 0.1 69.6± 0.7 75.6± 3.9

YRP 9.3± 0.0 58.4± 0.6 59.0± 0.3 59.0± 0.6 61.6± 0.7 62.1± 0.1

YRF 19.0± 0.0 77.8± 0.2 66.6± 0.3 75.8± 0.1 65.4± 0.3 80.1± 0.2

AGN 19.1± 0.0 78.3± 0.1 77.3± 0.1 77.1± 0.3 78.2± 0.4 79.0± 0.3

AMZP 9.5± 0.0 63.5± 0.2 63.5± 0.3 66.1± 0.4 70.0± 0.1 70.0± 0.1

AMZF 19.0± 0.0 70.3± 0.1 64.3± 0.2 69.6± 0.1 65.6± 0.2 72.6± 0.2

Table 6: Intersection of query strategies across acquisition functions. We observe that the % intersection among
samples in the Ent-LC is comparable to those Ent-Ent. Similarly, the Ent-DelEnt (entropy with deletion) is compa-
rable to both DelEnt-DelLC and DelEnt-DelEnt showing robustness of FastText to query functions (beyond minor
variation). DelEnt-DelEnt obtains similar intersections as compared to Ent-Ent, showing the robustness of the
acquired samples to deletion.

3 and 5 present overlaps from different initial sets
while 4 and 6 from same initial sets. We note from
column 4 and 6 that due to the stochasticity of
training in FTZ, we expect non-identical final sets
even with same initial samples as well. The results
demonstrate that samples obtained using FastText
are largely initialization independent (low varia-
tion between columns 3 and 4) consistently across
datasets while the samples obtained with Naive
Bayes can be vastly different showing relatively
heavy dependence on the initial seed. This indi-
cates the relative stability of train set obtained with
the posterior uncertainty of the actively trained
FTZ as an acquisition function.

3.2.2 Query size
Since the sampled data is sequentially constructed
by training models on previously sampled data,
large query sizes were expected to impact sam-
ples collected by uncertainty sampling and the per-
formance thereof (Hoi et al., 2006). We exper-
iment with various query sizes - (0.25%, 0.5%,
1%) for DBP, SGN, YRP and AMZP and (0.5%,
1%, 2%) for the rest corresponding to 9, 19 and
39 iterations. Figure 1 shows that FastText (top

row) has very stable performance across sample
sizes while MNB (bottom row) show more erratic
performance. Table 5 presents the intersection of
samples obtained with different query sizes across
multiple runs. We observe a high overlap of the
acquired samples across different query sizes indi-
cating that the performance is independent of the
query size (compare column 3 to column 4 where
the size is held constant) while MNB results in
lower overlap with more erratic behavior due to
change in the query size (compare column 5 com-
pared to column 6).

3.2.3 Query strategy
We now investigate the impact of various query
strategies using FastText by evaluating and com-
paring the correlation between the respective ac-
tively selected sample sets.

Acquisition Functions: We compare four un-
certainty query strategies: Least Confidence (LC)
and Entropy (Ent), with and without deletion
of least uncertain samples from the training set.
Deletion of least uncertain samples reduces the de-
pendence on the initial randomly selected set. The
results are presented in Table 6. We present five of
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Dsets Chance
FTZ-FTZ

Ent
FTZ-5F
TZ Ent

5FTZ-5FTZ
Ent-LC

5FTZ-5FTZ
Ent-Ent

SGN 9.4± 0.0 84.6± 0.2 86.3± 0.2 85.4± 0.4 85.8± 0.0

DBP 9.3± 0.0 85.7± 0.2 86.6± 0.3 86.78± 0.1 87.8± 0.2

YRP 9.3± 0.0 58.4± 0.6 58.1± 0.7 58.3± 0.3 58.2± 0.2

YRF 19.0± 0.0 77.8± 0.2 79.0± 0.3 68.5± 1.1 77.6± 0.3

AGN 19.1± 0.0 78.3± 0.1 79.0± 0.2 79.1± 0.2 77.9± 0.2

Table 7: Intersection of query strategies across single
and ensemble of 5FTZ models. We observe that the
% intersection of samples selected by ensembles and
single models is comparable to intersection among ei-
ther. The 5-model committee does not seem to add any
additional value over selection by a single model.

the ten possible combinations and again observe
the high degree of overlap in the collected sam-
ples. It can be concluded that the approach is fairly
robust to these variations in the query strategy.

Ensembles versus Single Models: A similar
experiment was conducted to investigate the over-
lap between a single FTZ model and a probabilis-
tic committee of models (5-model ensemble with
FTZ (Lakshminarayanan et al., 2017)) to identify
comparative advantages of using ensemble meth-
ods. The results are presented in Table 7 showing
little to no difference in sample overlaps. 5 We
conclude that more expensive sampling strategies
commonly used, like ensembling, may offer lit-
tle benefit compared to using a single FTZ model
with posterior uncertainty as a query function.

The experiments in this section demonstrate
that uncertainty based sampling using deep mod-
els like FTZ show no class bias or an undesirable
feature bias (and favorable bias to class bound-
aries). There is also a high degree of robustness
to algorithmic factors, especially query size, a sur-
prisingly high degree of overlap in the resulting
training samples and stable performances (classi-
fication accuracy). Additionally, all uncertainty
query strategies perform well, and expensive sam-
pling strategies like ensembling offer little benefit.
We conclude that sampling biases demonstrated in
active learning literature do hold well with tradi-
tional models, however, they do not seem to trans-
late to deep models like FTZ using (posterior) un-
certainty.

4 Application: Active Text Classification

Experimental results from the previous sections
suggest that entropy function with a single FTZ

5The ensembles were too costly to run on larger datasets,
so the results for YHA, AMZP and AMZF could not be ob-
tained.

Figure 2: Active text classification: Comparison with
K-Center Coreset, BALD and SVM algorithms. Ac-
curacy is plotted against percentage data sampled. We
reach full-train accuracy using 12% of the data, com-
pared to BALD which requires 50% data and perform
significantly worse in terms of accuracy. We also out-
perform K-center greedy Coreset at all sampling per-
centages without utilizing additional diversity-based
augmentation.

model would be a good baseline for active text
classification. We compare our baseline with the
latest work in deep active learning for text clas-
sification - BALD (Siddhant and Lipton, 2018)
and with the recent diversity based Coreset query
function (Sener and Savarese, 2018) which uses
a costly K-center algorithm to build the query.
Experiments are performed on TREC-QA for a
fair comparison (used by (Siddhant and Lipton,
2018)). Table 8 shows that the results of our study
generalize to small datasets like TREC-QA.

The results are shown in Figure 2 using the
baseline with the query size of 2% of the full
dataset (b=9 queries). Note that uncertainty
sampling converges to full accuracy using just
12% of the data, whereas (Siddhant and Lipton,
2018) required 50% of the data. There is also
a remarkable accuracy improvement over (Sid-
dhant and Lipton, 2018) which can be largely at-
tributed to the models used (FastText versus 1-
layer CNN/BiLSTM). Also, uncertainty sampling
outperforms diversity-based augmentations like
Coreset Sampling (Sener and Savarese, 2018) be-
fore convergence. Thus, we establish a new state-
of-the-art baseline for further research in deep ac-
tive text classification.

5 Application: Training of Large Models

The cost and time needed to get and label vast
amounts of data to train large DNNs is a serious
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Dsets Chance FTZ-Ent-Ent FTZ Ent-LC SV Chce% SV Com%
TQA 15.1± 0.0 59.7± 0.5 56.3± 1.4 18.7± 6.1 79.0± 3.6

Table 8: Results of sample selection from previous investigations on small datasets (Trec-QA).

Model AGN DBP SGN YRF YRP YHA AMZP AMZF
VDCNN (Conneau et al., 2017) 91.3 98.7 96.8 64.7 95.7 73.4 95.7 63.0
DPCNN (Johnson and Zhang, 2017) 93.1 99.1 98.1 69.4 97.3 76.1 96.7 65.2
WC-Reg (Qiao et al., 2018) 92.8 98.9 97.6 64.9 96.4 73.7 95.1 60.9
DC+MFA (Wang et al., 2018) 93.6 99.2 - 66.0 96.5 - - 63.0
DRNN (Wang, 2018) 94.5 99.2 - 69.1 97.3 70.3 96.5 64.4
ULMFiT (Howard and Ruder, 2018) 95.0 99.2 - 70.0 97.8 - - -
EXAM (Du et al., 2019) 93.0 99.0 - - - 74.8 95.5 61.9
Ours: ULMFiT (Small data) 93.7 (20) 99.2 (10) 97.0 (10) 67.6 (20) 97.1 (10) 74.3 (20) 96.1 (10) 64.1 (20)
Ours: ULMFiT (Tiny data) 91.7 (8) 98.6 (2.3) 97.4 (6.3) 66.3 (8) 96.7 (4) 73.3 (8) 95.8 (4) 62.9 (8)

Table 9: Comparison of accuracies with state-of-the-art approaches (earliest-latest) for text classification (%dataset
in brackets). We are competitive with state-of-the-art models while using 5x-40x compressed datasets.

ULMFiT AGN DBP YRP YRF
Full 95.0 99.2 97.8 70.0
Ours-Small 93.7 (20) 99.2 (10) 97.1 (10) 67.6 (20)
Ours-Tiny 91.7 (8) 98.6 (2.3) 96.7 (4) 66.3(8)

Table 10: ULMFiT: Resulting sample Ŝb compared
to reported accuracies in (Howard and Ruder, 2018)
(%dataset in brackets). We observe that using our
cheaply obtained compressed datasets, we can achieve
similar accuracies with 25x-200x speedup (5x less
epochs, 5x-40x less data). Transferability to other mod-
els is evidence of the generalizability of the subset col-
lected using FTZ to other deep models.

impediment to creating new and/or better models.
Our study suggests that the training samples col-
lected with uncertainty sampling (entropy) on a
single model FTZ may provide a good represen-
tation (surrogate) for the entire dataset. Buoyed
by this, we investigate if we can speedup training
of ULMFiT (Howard and Ruder, 2018) using the
surrogate dataset. We show these results in Ta-
ble 10. We achieve 25x-200x speedup6 (5x fewer
epochs, 5x-40x smaller training size). We also
benchmark the performance against the state-of-
the-art on text classification as shown in Table 9.
We conclude that we can significantly compress
the training datasets and speedup classifier train-
ing time with little tradeoff in accuracy.

Implementation Details: We use the official
github repository for ULMFiT7, use default hyper-
parameters and train on one NVIDIA Tesla V100
16GB GPU. Further details are provided in sup-

6The cost of acquiring the training data using FTZ-Ent is
negligible in comparison.

7https://github.com/fastai/fastai/
tree/master/courses/dl2/imdb_scripts

plementary material.

6 Related Work

We now expand on the brief literature review in
Section 1 to better contextualize our work. We di-
vide the past works into (i) Traditional Models and
(ii) Deep Models.

Sampling Bias in Classical AL in NLP: Ac-
tive learning (AL) in text classification started with
greedy uncertainty query strategy from a pool us-
ing decision trees (Lewis and Gale, 1994), which
was shown to be effective and led to widespread
adoption with classifiers like SVMs (Tong and
Koller, 2001), Naive Bayes (Roy and McCallum,
2001) and KNN (Fujii et al., 1998). This strategy
was also applied to other NLP tasks like parse se-
lection (Baldridge and Osborne, 2004), sequence
labeling (Settles and Craven, 2008) and informa-
tion extraction (Thompson and Mooney, 1999).
These early papers popularized two greedy uncer-
tainty query methods: Least Confident and En-
tropy.

Issues of lack of diversity (large reduduncy in
sampling) (Zhang and Oles, 2000) and lack of ro-
bustness (high variance in sample quality)(Krogh
and Vedelsby, 1994) guided subsequent efforts.
The two most popular directions were: (i) aug-
menting uncertainty with diversity measures (Hoi
et al., 2006; Brinker, 2003; Tang et al., 2002)
and (ii) using query-by-committee (McCallum and
Nigam, 1998; Liere and Tadepalli, 1997). For a
comprehensive survey of classical AL methods for
NLP, please refer to (Settles, 2009).

Sampling Bias in Deep AL: Deep active learn-
ing approach adapt the above framework to the

https://github.com/fastai/fastai/tree/master/courses/dl2/imdb_scripts
https://github.com/fastai/fastai/tree/master/courses/dl2/imdb_scripts
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training of DNNs on large data. Two main query
strategies are used: (i) ensemble based greedy un-
certainty, which represents a probabilistic query-
by-committee paradigm (Gal et al., 2017; Beluch
et al., 2018), and (ii) diversity based measures
(Sener and Savarese, 2018; Ducoffe and Pre-
cioso, 2018). Papers proposing diversity based ap-
proaches find that greedy uncertainty based sam-
pling (using ensemble and single model) perform
significantly worse than random (See Figures 4
and 2 respectively in (Sener and Savarese, 2018;
Ducoffe and Precioso, 2018)). They attribute the
poor performance to redundant, highly correlated
sampling selected using uncertainty based meth-
ods and justify the need for prohibitively expen-
sive diversity-based approaches (Refer section 2
of (Sener and Savarese, 2018) for details on the
expensiveness of various diversity sampling meth-
ods). However, K-center greedy coreset sampling
scales poorly: we were only able to use it on
TREC-QA (a small dataset). On the other hand,
ensemble-based greedy uncertainty methods find
that probabilistic averaging from a committee (Gal
et al., 2017; Beluch et al., 2018) performs better
than single model as with on diversity based meth-
ods like coreset(Gissin and Shalev-Shwartz, 2019;
Beluch et al., 2018). Current approaches in text
classification literature mostly adopt the ensem-
ble based greedy uncertainty framework (Siddhant
and Lipton, 2018; Lowell et al., 2018; Zhang et al.,
2017).

However, our work demonstrates the problems
of sampling bias and efficiency may not translate
from shallow to deep approaches. Recent evidence
from image domain (Gissin and Shalev-Shwartz,
2019) demonstrates atleast a subset of our findings
generalize to other DNNs (class bias and query
functions). Uncertainty sampling using a deep
model like FTZ demonstrates surprisingly good
sampling properties without using ensembles or
bayesian methods. Ensembles do not seem to sig-
nificantly affect sampling. Whether this behavior
generalizes to other deep models and tasks is yet
to be seen.

Other Related Works: An interesting set of
papers (Soudry et al., 2018; Xu et al., 2018) show
that deep neural networks trained with SGD con-
verge to the maximum margin solution in the lin-
early separable case. Several works investigate
the possibility that deep networks give high im-
portance to a subset of the training dataset (Toneva

et al., 2019; Vodrahalli et al., 2018; Birodkar et al.,
2019), resembling supports in support vector ma-
chines. In our experiments, we find that ac-
tive learning with uncertainty sampling with deep
models like FTZ has a (surprisingly) large over-
lap with the support vectors of an SVM. Thus, it
seems to have a inductive bias for class bound-
aries, similar to the above works. Whether this
property generalizes to other deep models is yet to
be seen.

7 Conclusion

We conducted a large empirical study of sam-
pling bias and efficiency, along with algorithmic
factors which impacting active text classification.
We conclude that uncertainty sampling with deep
models like FastText.zip exhibits negligible class
bias, seems to be favorably biased to sampling
data points near class boundaries, is robust to
various algorithmic factors and expensive sam-
pling strategies like ensembling offer little bene-
fit. Also, we find a surprisingly large overlap of
actively acquired points with supports of a SVM.
We additionally show that uncertainty sampling
can be effectively used to bootstrap the training of
large DNN models by generating compact surro-
gate datasets (5x-40x compression). Finally, FTZ-
Ent provides a strong baseline for deep active text
classification, outperforming previous results by a
margin of 4x less data.

The current work opens up several directions
for future investigations. To list a few: (a) a
deeper look into the nature of sampled data - their
distribution in the feature space, as well as their
importance for the task at hand; (b) the creation
of surrogate datasets for a variety of applications,
including hyperparameter and architecture search,
etc; (c) an extension to other deep models (beyond
FTZ) and beyond classification models; and,
(d) an extension to semi-supervised, online and
continual learning.
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