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Abstract

Most existing work on adversarial data gen-
eration focuses on English. For example,
PAWS (Paraphrase Adversaries from Word
Scrambling) (Zhang et al., 2019) consists of
challenging English paraphrase identification
pairs from Wikipedia and Quora. We rem-
edy this gap with PAWS-X, a new dataset
of 23,659 human translated PAWS evaluation
pairs in six typologically distinct languages:
French, Spanish, German, Chinese, Japanese,
and Korean. We provide baseline numbers for
three models with different capacity to cap-
ture non-local context and sentence structure,
and using different multilingual training and
evaluation regimes. Multilingual BERT (De-
vlin et al., 2019) fine-tuned on PAWS En-
glish plus machine-translated data performs
the best, with a range of 83.1-90.8 accuracy
across the non-English languages and an av-
erage accuracy gain of 23% over the next
best model. PAWS-X shows the effectiveness
of deep, multilingual pre-training while also
leaving considerable headroom as a new chal-
lenge to drive multilingual research that better
captures structure and contextual information.

1 Introduction

Adversarial examples have effectively highlighted
the deficiencies of state-of-the-art models for
many natural language processing tasks, e.g. ques-
tion answering (Jia and Liang, 2017; Chen et al.,
2018; Ribeiro et al., 2018), textual entailment
(Zhao et al., 2018; Glockner et al., 2018), and text
classification (Alzantot et al., 2018; Iyyer et al.,
2018). Zhang et al. (2019) introduce PAWS, which
has adversarial paraphrase identification pairs with
high lexical overlap, like flights from New York
to Florida and flights from Florida to New York.
Such pairs stress the importance of modeling sen-
tence structure and context because they have high
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word overlap ratio but different semantic meaning.
In addition to revealing failures of state-of-the-art
models, research on adversarial examples has gen-
erally shown that augmenting training data with
good adversarial examples can boost performance
for some models—providing greater clarity to the
modeling landscape as well providing new head-
room for further improvements.

Most previous work focuses only on English de-
spite the fact that the problems highlighted by ad-
versarial examples are shared by other languages.
Existing multilingual datasets for paraphrase iden-
tification, e.g. Multi30k (Elliott et al., 2016) and
Opusparcus (Creutz, 2018), lack challenging ex-
amples like PAWS. The lack of high-quality ad-
versarial examples in other languages makes it
difficult to benchmark model improvements. We
bridge this gap by creating Cross-lingual PAWS
(PAWS-X), an extension of the Wikipedia por-
tion of the PAWS evaluation and test examples
to six languages: Spanish, French, German, Chi-
nese, Japanese, and Korean. This new corpus con-
sists of 23,659 human translated example pairs
with paraphrase judgments in each target lan-
guage. Like previous work on multilingual cor-
pus creation (Conneau et al., 2018), we machine
translate the original PAWS English training set
(49,401 pairs). Note that all translated pairs still
have high word overlap and they inherit seman-
tic similarity labels from the original PAWS ex-
amples; thus, the resulting dataset preserves the
ability of probing structure and context sensitiv-
ity for models. We also machine translate the
evaluation pairs of each language into English to
establish the baseline performance of a translate-
then-predict strategy. The PAWS-X dataset, in-
cluding both the new human translated pairs
and the machine translated examples, is avail-
able for download at https://github.com/
google-research-datasets/paws.

https://github.com/google-research-datasets/paws
https://github.com/google-research-datasets/paws
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Language Text
Original Pair (id: 000005309 9438, label: not-paraphrasing)

en However, in order to defeat Slovak, Derek must become a vampire attacker.
However, in order to become Slovak, Derek must defeat a vampire assassin.

Human Translated Pairs

fr Toutefois, pour battre Slovak, Derek doit devenir un vampire attaquant.
Cependant, pour devenir Slovak, Derek doit vaincre un vampire assassin.

es Sin embargo, para derrotar a Slovak, Derek debe convertirse en un atacante vampiro.
Sin embargo, para poder convertirse en Slovak, Derek debe derrotar a un asesino de vampiros.

de Um Slovak zu besiegen, muss Derek jedoch zum Vampirjäger werden.
Um jedoch Slowake zu werden, muss Derek einen Vampirjäger besiegen.

zh 但为击败斯洛伐克，德里克必须成为吸血鬼攻击者。
然而，为了成为斯洛伐克人，德里克必须击败吸血鬼刺客。

ja ただし、スロバークを倒すためには、デレクは吸血鬼アタッカーになる必要があります。
しかし、デレクがスロバックになるには、バンバイア・アサシンを倒さなければならない。

ko 하지만 Slovak이되기위해 Derek은반드시뱀파이어암살자를물리쳐야만합니다.
하지만 Slovak을물리치기위해 Derek은뱀파이어사냥꾼이되어야만했습니다.

Table 1: Examples of human translated pairs for each of the six languages.

Our experiments show that PAWS-X effectively
measures the multilingual adaptability of models
and how well they capture context and word or-
der. The state-of-the-art multilingual BERT model
(Devlin et al., 2019) obtains a 32% (absolute) ac-
curacy improvement over a bag-of-words model.
We also show that machine translation helps and
works better than a zero-shot strategy. We find
that performance on German, French, Spanish is
overall better than Chinese, Japanese and Korean.

2 PAWS-X Corpus

The core of our corpus creation procedure is to
translate the Wikipedia portion of the original
PAWS corpus from English (en) to six languages:
French (fr), Spanish (es), German (de), Chinese
(zh), Japanese (ja), and Korean (ko). To this end,
we hire human translators to translate the develop-
ment and test sets, and use a neural machine trans-
lation (NMT) service1 to translate the training set.

We choose translation instead of repeating the
PAWS data generation approach (Zhang et al.,
2019) to other languages. This has at least three
advantages. First, human translation does not re-
quire high-quality multilingual part-of-speech tag-
gers or named entity recognizers, which play a
key role in the data generation process used in
Zhang et al. (2019). Second, human translators
are trained to produce the target sentence while
preserving meaning, thereby ensuring high data
quality. Third, the resulting data can provide a
new testbed for cross-lingual transfer techniques
because examples in all languages are translated
from the same sources. For example, PAWS-X

1https://cloud.google.com/translate/

fr es de zh ja ko
dev 1,992 1,962 1,932 1,984 1,980 1,965
test 1,985 1,999 1,967 1,975 1,946 1,972

Table 2: Examples translated per language.

could be used to evaluate whether a German or
French sentence is a paraphrase of a Chinese or
Japanese one.

Translating Evaluation Sets We obtain human
translations on a random sample of 4,000 sentence
pairs from the PAWS development set for each
of the six languages (48,000 translations). The
manual translation is performed by 10-20 in-house
professionals that are native speakers of each lan-
guage. A randomly sampled subset is presented
and validated by a second worker. The final de-
livery is guaranteed to have less than 5% word
level error rate. The sampled 4,000 pairs are split
into new development and test sets, 2,000 pairs for
each.

Due to time and cost constraints, we could not
translate all 16,000 examples in both of original
PAWS development and test set. Each sentence
in a pair is presented independently so that trans-
lation is not affected by context. In our initial
studies we noticed that sometimes it was difficult
to translate an entity mention. We therefore ask
translators to translate entity mentions, but differ-
ent translators may have different preferences ac-
cording to their background knowledge. Table 1
gives example translated pairs in each language.

Resulting Corpus Some sentences could not be
be translated. Table 2 shows the final counts trans-
lated to each language. Most of the untranslated

https://cloud.google.com/translate/
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sentences were due to incompleteness or ambigu-
ities, such as It said that Easipower was, and Park
Green took over No. These sentences are likely
from the adversarial generation process when cre-
ating PAWS. On average less than 2% of the pairs
are not translated, and we simply exclude them.

The authors further verified translation quality
for a random sample of ten pairs in each language.
PAWS-X includes 23,459 human-translated pairs,
including 11,815 and 11,844 pairs in development
and test, respectively. Finally, original PAWS la-
bels (paraphrase or not paraphrase) are mapped
to the translations. Positive pairs account for
44.0% of development sets and 45.4% of test
respectively–close to the PAWS label distribution.

Translation brings new challenges to the para-
phrasing identification task. An entity can be
translated differently, such as Slovak and Slowake
(Table 1) and models need to capture that these
refer to the same entity. In a more challenging ex-
ample, Four Rivers, Audubon and Shawnee Trails
are translated in just one of the sentences:

en s1 From the merger of the Four Rivers Council and the
Audubon Council, the Shawnee Trails Council was
born.

s2 Shawnee Trails Council was formed from the merger
of the Four Rivers Council and the Audubon Council.

zh s1 Four Rivers 委员会与 Audubon 委员会合并
后，Shawnee Trails委员会得以问世.

s2 肖尼小径(Shawnee Trails) 委 员 会 由 合 并

四河 (Four Rivers) 委员会和 奥杜邦 (Audubon) 委
员会成立.

In the zh-s2 example, the parentheses give English
glosses of Chinese entity mentions.

3 Evaluated Methods

The goal of PAWS-X is to probe models’ ability to
capture structure and context in a multilingual set-
ting. We consider three models with varied com-
plexity and expressiveness. The first baseline is a
simple bag-of-words (BOW) encoder with cosine
similarity. It uses unigram to bigram token en-
coding as input features and takes a cosine value
above 0.5 as a paraphrase. The second model
is ESIM, Enhanced Sequential Inference Model
(Chen et al., 2017). Following Zhang et al. (2019),
ESIM encodes each sentence using a BiLSTM,
and passes the concatenation of encodings through
a feed-forward layer for classification. The addi-
tional layers allow ESIM to capture more complex
sentence interaction than cosine similarity. Third,

BOW ESIM BERT
Non-local context × X X
Word interaction × × X
Translate Train X X X
Translate Test X X X
Zero Shot × × X
Merged × × X

Table 3: Complexity of each evaluated model and the
training/evaluation strategies being tested.

we evaluate BERT, Bidirectional Encoder Repre-
sentations from Transformers (Devlin et al., 2019),
which recently achieved state-of-the-art results on
eleven natural language processing tasks.

We evaluate all models with two strategies
(Conneau et al., 2018): (1) Translate Train: the
English training data is machine-translated into
each target language to provide data to train each
model and (2) Translate Test: train a model using
the English training data, and machine-translate
all test examples to English for evaluation.

Multilingual BERT is a single model trained on
104 languages, which enables experiments with
cross-lingual training regimes. (1) Zero Shot: the
model is trained on the PAWS English training
data, and then directly evaluated on all others. Ma-
chine translation is not involved in this strategy.
(2) Merged: train a multilingual model on all lan-
guages, including the original English pairs and
machine-translated data in all other languages.

Table 3 summarizes the models with respect to
whether they represent non-local contexts or sup-
port cross-sentential word interaction, plus which
strategies are evaluated for each model.

4 Experiments and Results

We use the latest public multilingual BERT base
model with 12 layers2 and apply the default fine-
tuning strategy with batch size 32 and learning rate
1e-5. For BOW and ESIM, we use our own im-
plementations and 300 dimensional multilingual
word embeddings from fastText.3 We allow fine-
tuning word embeddings during training, which
gives better empirical performance.

We use two metrics: classification accuracy and
area-under-curve scores of precision-recall curves
(AUC-PR). For BERT, probability scores for the
positive class is used to compute AUC-PR. For
BOW and ESIM a cosine threshold of 0.5 is used
to compute accuracy. In all experiments, the best

2http://goo.gl/language/bert
3https://fasttext.cc/

http://goo.gl/language/bert
https://fasttext.cc/
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Method Accuracy AUC-PR
en fr es de zh ja ko en fr es de zh ja ko

BOW
Translate Train 55.8 51.7 47.9 50.2 54.5 55.1 56.7 41.1 48.9 46.8 46.4 50.0 48.7 49.3
Translate Test – 54.9 54.7 55.2 55.3 55.9 55.2 – 46.3 45.5 45.8 50.9 46.8 48.5

ESIM
Translate Train 67.2 66.2 66.0 63.7 60.3 59.6 54.2 69.6 67.0 64.2 59.2 58.2 56.3 50.5
Translate Test – 66.2 66.3 66.0 62.0 62.3 60.6 – 68.4 69.5 68.2 62.3 61.8 60.3

BERT
Translate Train 93.5 89.3 89.0 85.3 82.3 79.2 79.9 97.1 93.6 92.4 92.0 87.4 81.4 82.4
Translate Test – 88.7 89.3 88.4 79.3 75.3 72.6 – 93.8 93.1 92.9 85.1 80.9 80.1
Zero shot – 85.2 86.0 82.2 75.8 70.5 71.7 – 91.0 90.5 89.4 79.6 72.7 75.5
Merged 93.8 90.8 90.7 89.2 85.4 83.1 83.9 96.5 94.0 92.9 92.9 88.9 86.0 86.3

Table 4: Accuracy (%) and AUC-PR (%) of each approach. Best numbers in each column are marked in bold.

Method Averaged
Accuracy AUC-PR

BOW Translate Train 52.7 48.4
Translate Test 55.2 47.3

ESIM Translate Train 61.7 59.2
Translate Test 63.9 65.1

BERT

Translate Train 84.2 88.2
Translate Test 82.3 87.6
Zero Shot 78.6 83.1
Merged 87.2 90.2

Table 5: Average Accuracy (%) and AUC-PR (%) over
the six languages.

model checkpoint is chosen based on accuracy on
development sets and report results on testing sets.

Results Table 4 shows the performance of all
methods and languages. Table 5 summarizes the
average results for the six non-English languages.

Model Comparisons: On both Translate Train
and Translate Test, BERT consistently outper-
forms both BOW and ESIM by a substantial mar-
gin (>15% absolute accuracy gains) across all
seven languages. BERT Translate Train achieves
an average 20% accuracy gain. This result demon-
strates that PAWS-X effectively measures models’
sensitivity to word order and syntactic structure.

Training/Evaluation Strategies: As Table 4
and 5 show, the Zero Shot strategy yields the low-
est performance compared to other strategies on
BERT. This is evidence that machine-translated
data helps in the multilingual scenario. Indeed,
when training on machine-translated examples in
all languages (Merged), the model achieves the
best performance, with 8.6% accuracy and 7.1%
AUC-PR average gains over Zero Shot.

BERT and ESIM show different performance
patterns on Translate Train and Translate Test.
Translate Test appears to give consistently bet-
ter performance then Translate Train on ESIM,
but not on BERT. This may be because multilin-

0 1-2 3-4 5-6 7
# 32 52 140 542 1234
% 1.6 2.6 7.0 27.1 61.7

Table 6: The count of examples by number of lan-
guages (of 7) that agree with the gold label in test set.

gual BERT is pre-trained on over one hundred lan-
guages; hence BERT provides better initialization
for non-English languages than ESIM (which re-
lies on fastText embeddings). The gap between
training on English and on other languages is
therefore smaller on BERT than on ESIM, which
makes Translate Train work better on BERT.

Language Difference: Across all models and
approaches, performance on Indo-European lan-
guages (German, French, Spanish) is consistently
better than CJK (Chinese, Japanese, Korean). The
performance difference is particularly noticeable
on Zero Shot. This can be explained from two
perspectives. First, the MT system we used works
better on Indo-European languages than on CJK.
Second, the CJK family is more typologically and
syntactically different from English. For example,
in table 1, Slowake in German is much closer to the
original term Slovak in English, compared with its
Chinese translation斯洛伐克. This at least partly
explains why performance on CJK is particularly
poor in Zero Shot.

Error Analysis: To gauge the difficulty of each
example for the best model (BERT-merged), Table
6 shows the count of examples based on how many
languages for the same pair are assigned the cor-
rect label in test set. The majority of the examples
are easy, with 61.7% correct in all languages. Of
the 32 examples that failed in all languages, most
are hard or highly ambiguous. Some have incor-
rect gold labels or were generated incorrectly in
the original PAWS data.

The following is a sample of these.
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a1 On July 29, 1791, Sarah married Lea Thomas Wright Hill
(1765–1842) at St. Martin’s Church in Birmingham and
had 8 children.

a2 Thomas Wright Hill married Sarah Lea (1765–1842) on
29 July 1791 at St Martin’s Church, Birmingham and had
8 children. match

b1 He established himself eventually in the northwest of
Italy, apparently supported by Guy, where he probably
comes “title”.

b2 He eventually established himself in northwestern Italy,
apparently supported by Guy, where he probably received
the title of “comes”. not match

We also considered examples that are correctly
predicted in just half of the languages. Some of
these failed because of translation noise, e.g. in-
consistent entity translations (as shown in §2).

5 Conclusion

We introduce PAWS-X, a challenging paraphrase
identification dataset with 23,659 human trans-
lated evaluation pairs in six languages. Our exper-
imental results showed that PAWS-X effectively
measures sensitivity of models to word order and
the efficacy of cross-lingual learning approaches.
It also leaves considerable headroom as a new
challenging benchmark to drive multilingual re-
search on the problem of paraphrase identification.
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