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Abstract

Recent neural network approaches to summa-
rization are largely either selection-based ex-
traction or generation-based abstraction. In
this work, we present a neural model for
single-document summarization based on joint
extraction and syntactic compression. Our
model chooses sentences from the document,
identifies possible compressions based on con-
stituency parses, and scores those compres-
sions with a neural model to produce the fi-
nal summary. For learning, we construct or-
acle extractive-compressive summaries, then
learn both of our components jointly with
this supervision. Experimental results on
the CNN/Daily Mail and New York Times
datasets show that our model achieves strong
performance (comparable to state-of-the-art
systems) as evaluated by ROUGE. More-
over, our approach outperforms an off-the-
shelf compression module, and human and
manual evaluation shows that our model’s out-
put generally remains grammatical.

1 Introduction

Neural network approaches to document sum-
marization have ranged from purely extractive
(Cheng and Lapata, 2016; Nallapati et al., 2017;
Narayan et al., 2018) to abstractive (Rush et al.,
2015; Nallapati et al., 2016; Chopra et al., 2016;
Tan et al., 2017; Gehrmann et al., 2018). Ex-
tractive systems are robust and straightforward to
use. Abstractive systems are more flexible for var-
ied summarization situations (Grusky et al., 2018),
but can make factual errors (Cao et al., 2018; Li
et al., 2018) or fall back on extraction in practice
(See et al., 2017). Extractive and compressive sys-
tems (Berg-Kirkpatrick et al., 2011; Qian and Liu,
2013; Durrett et al., 2016) combine the strengths
of both approaches; however, there has been lit-
tle work studying neural network models in this
vein, and the approaches that have been employed
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Figure 1: Diagram of the proposed model. Extraction
and compression are modularized but jointly trained
with supervision derived from the reference summary.

typically use seq2seq-based sentence compression
(Chen and Bansal, 2018).

In this work, we propose a model that can com-
bine the high performance of neural extractive
systems, additional flexibility from compression,
and interpretability given by having discrete com-
pression options. Our model first encodes the
source document and its sentences and then se-
quentially selects a set of sentences to further com-
press. Each sentence has a set of compression op-
tions available that are selected to preserve mean-
ing and grammaticality; these are derived from
syntactic constituency parses and represent an ex-
panded set of discrete options from prior work
(Berg-Kirkpatrick et al., 2011; Wang et al., 2013).
The neural model additionally scores and chooses
which compressions to apply given the context
of the document, the sentence, and the decoder
model’s recurrent state.

A principal challenge of training an extractive
and compressive model is constructing the ora-
cle summary for supervision. We identify a set
of high-quality sentences from the document with
beam search and derive oracle compression labels
in each sentence through an additional refinement
process. Our model’s training objective combines
these extractive and compressive components and
learns them jointly.

We conduct experiments on standard single
document news summarization datasets: CNN,
Daily Mail (Hermann et al., 2015), and the New
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Figure 2: Text compression example. In this case, “in-
timate”, “well-known”, “with their furry friends” and
“featuring ... friends” are deletable given compression
rules.

York Times Annotated Corpus (Sandhaus, 2008).
Our model matches or exceeds the state-of-the-art
on all of these datasets and achieves the largest
improvement on CNN (+2.4 ROUGE-F1 over our
extractive baseline) due to the more compressed
nature of CNN summaries. We show that our
model’s compression threshold is robust across
a range of settings yet tunable to give different-
length summaries. Finally, we investigate the flu-
ency and grammaticality of our compressed sen-
tences. The human evaluation shows that our
system yields generally grammatical output, with
many remaining errors being attributed to the
parser.1

2 Compression in Summarization

Sentence compression is a long-studied problem
dealing with how to delete the least critical infor-
mation in a sentence to make it shorter (Knight
and Marcu, 2000, 2002; Martins and Smith, 2009;
Cohn and Lapata, 2009; Wang et al., 2013; Li
et al., 2014). Many of these approaches are
syntax-driven, though end-to-end neural models
have been proposed as well (Filippova et al., 2015;
Wang et al., 2017). Past non-neural work on
summarization has used both syntax-based (Berg-
Kirkpatrick et al., 2011; Woodsend and Lapata,
2011) and discourse-based (Carlson et al., 2001;
Hirao et al., 2013; Li et al., 2016) compressions.
Our approach follows in the syntax-driven vein.

Our high-level approach to summarization is
shown in Figure 1. In Section 3, we describe the
models for extraction and compression. Our com-
pression depends on having a discrete set of valid
compression options that maintain the grammati-
cality of the underlying sentence, which we now
proceed to describe.

1The code, full model output, and the pre-trained
model are available at https://github.com/
jiacheng-xu/neu-compression-sum

Compression Rules We refer to the rules de-
rived in Li et al. (2014), Wang et al. (2013), and
Durrett et al. (2016) and design a concise set of
syntactic rules including the removal of: 1. Appos-
itive noun phrases; 2. Relative clauses and adver-
bial clauses; 3. Adjective phrases in noun phrases,
and adverbial phrases (see Figure 2); 4. Gerun-
dive verb phrases as part of noun phrases (see Fig-
ure 2); 5. Prepositional phrases in certain configu-
rations like on Monday; 6. Content within paren-
theses and other parentheticals.

Figure 2 shows examples of several compres-
sion rules applied to a short snippet. All com-
binations of compressions maintain grammatical-
ity, though some content is fairly important in this
context (the VP and PP) and should not be deleted.
Our model must learn not to delete these elements.

Compressability Summaries from different
sources may feature various levels of compres-
sion. At one extreme, a summary could be fully
sentence-extractive; at another extreme, the editor
may have compressed a lot of content in a sen-
tence. In Section 4, we examine this question on
our summarization datasets and use it to motivate
our choice of evaluation datasets.

Universal Compression with ROUGE While
we use syntax as a source of compression options,
we note that other ways of generating compression
options are possible, including using labeled com-
pression data. However, supervising compression
with ROUGE is critical to learn what information
is important for this particular source, and in any
case, labeled compression data is unavailable in
many domains. In Section 5, we compare our
model to off-the-shelf sentence compression mod-
ule and find that it substantially underperforms our
approach.

3 Model

Our model is a neural network model that encodes
a source document, chooses sentences from that
document, and selects discrete compression op-
tions to apply. The model architecture of sentence
extraction module and text compression module
are shown in Figure 3 and 4.

3.1 Extractive Sentence Selection

A single document consists of n sentences D =
{s1, s2, · · · , sn}. The i-th sentence is denoted
as si = {wi1, wi2, · · · , wim} where wij is the

https://github.com/jiacheng-xu/neu-compression-sum
https://github.com/jiacheng-xu/neu-compression-sum
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Too often cats can be overlooked in favour of their 
cuter canine counterparts.

But a new book, Artists And Their Cats, is putting 
felines back on the map.

Philadelphia-based artist and journalist Alison Nastasi 
has collated a collection of intimate portraits featuring 
well-known artists with their furry friends.

In this image, Spanish surrealist painter Salvador Dali 
poses with his cat Babou, a Colombian wild cat.

BLSTM

…
… CNN

BLSTM
…

…
…

…

…
…

CNN

…

h1
h2

h4

h3

…………

s1 s3
……

s4

D
oc BLSTM

…
…

Doc
CNN

Figure 3: Sentence extraction module of JECS. Words in input document sentences are encoded with BiLSTMs.
Two layers of CNNs aggregate these into sentence representations hi and then the document representation vdoc.
This is fed into an attentive LSTM decoder which selects sentences based on the decoder state d and the represen-
tations hi, similar to a pointer network.

j-th word in si. The content selection module
learns to pick up a subset of D denoted as D̂ =
{ŝ1, ŝ2, · · · , ŝk, |ŝi ∈ D} where k sentences are
selected.

Sentence & Document Encoder We first
use a bidirectional LSTM to encode words
in each sentence in the document separately
and then we apply multiple convolution lay-
ers and max pooling layers to extract the rep-
resentation of every sentence. Specifically,
[hi1, · · · , him] = BiLSTM([wi1, · · · , wim]) and
hi = CNN([hi1, · · · , him]) where hi is a rep-
resentation of the i-th sentence in the document.
This process is shown in the left side of Fig-
ure 3 illustrated in purple blocks. We then ag-
gregate these sentence representations into a doc-
ument representation vdoc with a similar BiLSTM
and CNN combination, shown in Figure 3 with or-
ange blocks.

Decoding The decoding stage selects a number
of sentences given the document representation
vdoc and sentences’ representations hi. This pro-
cess is depicted in the right half of Figure 3. We
use a sequential LSTM decoder where, at each
time step, we take the representation h of the
last selected sentence, the overall document vec-
tor vdoc, and the recurrent state dt−1, and produce
a distribution over all of the remaining sentences
excluding those already selected. This approach
resembles pointer network-style approaches used
in past work (Zhou et al., 2018). Formally, we
write this as:

dt = LSTM(dt−1, hk, vdoc)

scoret,i =Wmtanh(Wddt +Whhi)

p(ŝt = si|dt, hk, vdoc, hi) = softmax(scoret,i)

where hk is the representation of the sentence se-
lected at time step t− 1. dt−1 is the decoding hid-

Philadelphia … well-known artists with their furry friends .
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Figure 4: Text compression module. A neural classifier
scores the compression option (with their furry friends)
in the sentence and broader document context and de-
cides whether or not to delete it.

den state from last time step. Wd, Wh, Wm, and
parameters in LSTM are learned. Once a sentence
is selected, it cannot be selected again. At test
time, we use greedy decoding to identify the most
likely sequence of sentences under our model.2

3.2 Text Compression

After selecting the sentences, the text compres-
sion module evaluates our discrete compression
options and decides whether to remove certain
phrases or words in the selected sentences. Fig-
ure 4 shows an example of this process for decid-
ing whether or not to delete a PP in this sentence.
This PP was marked as deletable based on rules
described in Section 2. Our network then encodes
this sentence and the compression, combines this
information with the document context vdoc and
decoding context hdec, and uses a feedforward net-
work to decide whether or not to delete the span.

2For our experiments, we decode for a fixed number of
sentences, tuned for each dataset, as in prior extractive work
(Narayan et al., 2018). We experimented with dynamically
choosing a number of sentences and found this to make little
difference.
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Let Ci = {ci1, · · · , cil} denote the possible com-
pression spans derived from the rules described
in Section 2. Let yi,c be a binary variable equal
to 1 if we are deleting the cth option of the ith
sentence. Our text compression module models
p(yi,c|D, ŝt = si) as described in the following
section.

Compression Encoder We use a contextualized
encoder, ELMo (Peters et al., 2018) to compute
contextualized word representations. We then use
CNNs with max pooling to encode the sentence
(shown in blue in Figure 4) and the candidate com-
pression (shown in light green in Figure 4). The
sentence representation vsent and the compression
span representation vcomp are concatenated with
the hidden state in sentence decoder hdec and the
document representation vdoc.

Compression Classifier We feed the con-
catenated representation to a feedforward neu-
ral network to predict whether the compres-
sion span should be deleted or kept, which
is formulated as a binary classification prob-
lem. This classifier computes the final probability
p(yi,c|D, ŝt = si) = p(yi,c|hdec, vdoc, vcomp, si).
The overall probability of a summary (ŝ, ŷ),
where ŝ is the sentence oracle and ŷ is the
compression label, is the product of extrac-
tion and compression models: p(ŝ, ŷ|D) =∏T

t=1

[
p(ŝt|D, ŝ<t)

∏
c∈Ci

p(ŷt,c|D, ŝ)
]
.

Heuristic Deduplication Inspired by the tri-
gram avoidance trick proposed in Paulus et al.
(2018) to reduce redundancy, we take full advan-
tage of our linguistically motivated compression
rules and the constituent parse tree and allow our
model to compress deletable chunks with redun-
dant information. We therefore take our model’s
output and apply a postprocessing stage where we
remove any compression option whose unigrams
are completely covered elsewhere in the summary.
We perform this compression after the model pre-
diction and compression.

4 Training

Our model makes a series of sentence extraction
decisions ŝ and then compression decisions ŷ. To
supervise it, we need to derive gold-standard la-
bels for these decisions. Our oracle identification
approach relies on first identifying an oracle set
of sentences and then the oracle compression op-

Reference: Artist and journalist Alison Nastasi put to-
gether the portrait collection. Also features images of Pi-
casso, Frida Kahlo, and John Lennon. Reveals quaint per-
sonality traits shared between artists and their felines.
Document: ... Philadelphia-based artist and journal-
ist Alison Nastasi has collated a collection of intimate
portraits featuring well-known artists with their furry
friends. ...

Compression Rbf = 19.4 Raf Ratio Label

Philadelphia-based 19.8 1.02 DEL
intimate 19.8 1.02 DEL
well known 20.4 1.05 DEL
featuring ... their furry friends 18.1 0.93 KEEP

Table 1: Oracle label computation for the text com-
pression module. Rbf and Raf are the ROUGE scores
before and after compression. The ratio is defined as
Raf

Rbf
. ROUGE increases when words not appearing in

the reference are deleted. ROUGE can decrease when
terms appearing in the reference summary, like featur-
ing, are deleted.

tions.3

4.1 Oracle Construction

Sentence Extractive Oracle We first identify an
oracle set of sentences to extract using a beam
search procedure similar to Maximal Marginal
Relevance (MMR) (Carbonell and Goldstein,
1998). For each additional sentence we propose
to add, we compute a heuristic cost equal to the
ROUGE score of a given sentence with respect to
the reference summary. When pruning states, we
calculate the ROUGE score of the combination of
sentences currently selected and sort in descend-
ing order. Let the beam width be β. The time com-
plexity of the approximate approach is O(nkβ)
where in practice k � n and β � n. We set
β = 8 and n = 30 which means we only consider
the first 30 sentences in the document.

The beam search procedure returns a beam of β
different sentence combinations in the final beam.
We use the sentence extractive oracle for both
the extraction-only model and the joint extraction-
compression model.

Oracle Compression Labels To form our joint
extractive and compressive oracle, we need to give
the compression decisions binary labels yi,c in
each set of extracted sentences. For simplicity and
computational efficiency, we assign each sentence

3Depending on which sentences are extracted, different
compression decisions may be optimal; however, re-deriving
these with a dynamic oracle (Goldberg and Nivre, 2012) is
prohibitively expensive during training.
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Category CNN DM NYT

Bad 27% 48% 49%
Weak Positive 58% 43% 47%
Strong Positive 15% 10% 4%

Table 2: Compressibility: The oracle label distribution
over three datasets. Compressions in the “Bad” cate-
gory decrease ROUGE and are labeled as negative (do
not delete), while weak positive (less than 5% ROUGE
improvement) and strong positive (greater than 5%)
both represent ROUGE improvements. CNN features
much more compression than the other datasets.

a single yi,c independent of the context it occurs
in. For each compression option, we assess the
value of it by comparing the ROUGE score of the
sentence with and without this phrase. Any op-
tion that increases ROUGE is treated as a com-
pression that should be applied. When calculating
this ROUGE value, we remove stop words include
stemming.

We run this procedure on each of our oracle ex-
tractive sentences. The fraction of positive and
negative labels assigned to compression options
is shown for each of the three datasets in Table
2. CNN is the most compressable dataset among
CNN, DM and NYT.

ILP-based oracle construction Past work has
derived oracles for extractive and compressive
systems using integer linear programming (ILP)
(Gillick and Favre, 2009; Berg-Kirkpatrick et al.,
2011). Following their approach, we can directly
optimize for ROUGE recall of an extractive or
compressive summary in our framework if we
specify a length limit. However, we evaluate on
ROUGE F1 as is standard when comparing to neu-
ral models that don’t produce fixed-length sum-
maries. Optimizing for ROUGE F1 cannot be for-
mulated as an ILP, since computing precision re-
quires dividing by the number of selected words,
making the objective no longer linear. We ex-
perimented with optimizing for ROUGE F1 in-
directly by finding optimal ROUGE recall sum-
maries at various settings of maximum summary
length. However, these summaries frequently con-
tained short sentences to fill up the budget, and the
collection of summaries returned tended to be less
diverse than those found by beam search.

4.2 Learning Objective

Often, many oracle summaries achieve very sim-
ilar ROUGE values. We therefore want to

avoid committing to a single oracle summary for
the learning process. Our procedure from Sec-
tion 4.1 can generate m extractive oracles s∗i ;
let s∗i,t denote the gold sentence for the i-th or-
acle at timestep t. Past work (Narayan et al.,
2018; Chen and Bansal, 2018) has employed pol-
icy gradient in this setting to optimize directly
for ROUGE. However, because oracle summaries
usually have very similar ROUGE scores, we
choose to simplify this objective as Lsent =
− 1

m

∑m
i=1

∑T
t=1 log p(s

∗
i,t|D, s∗i,<t). Put another

way, we optimize the log likelihood averaged
across m different oracles to ensure that each has
high likelihood. We use m = 5 oracles during
training. The oracle sentence indices are sorted ac-
cording to the individual salience (ROUGE score)
rather than document order.

The objective of the compression module is de-
fined as Lcomp = −

∑m
i=1

∑C
c=1 log p(y

∗
i,c|D, ŝ)

where p(y∗i,c) is the probability of the target deci-
sion for the c-th compression options of the i-th
sentence. The joint loss function is L = Lsent +
αLcomp. We set α = 1 in practice.

5 Experiments

We evaluate our model on two axes. First, for con-
tent selection, we use ROUGE as is standard. Sec-
ond, we evaluate the grammaticality of our model
to ensure that it is not substantially damaged by
compression.

5.1 Experimental Setup

Datasets We evaluate the proposed method on
three popular news summarization datasets: the
New York Times corpus (Sandhaus, 2008), CNN
and Dailymail (DM) (Hermann et al., 2015).4

As discussed in Section 2, compression will
give different results on different datasets depend-
ing on how much compression is optimal from
the standpoint of reproducing the reference sum-
maries, which changes how measurable the impact
of compression is. In Table 2, we show the “com-
pressability” of these three datasets: how valuable
various compression options seem to be from the
standpoint of improving ROUGE. We found that
CNN has significantly more positive compression
options than the other two. Critically, CNN also
has the shortest references (37 words on average,

4More details about the experimental setup, implementa-
tion details, and human evaluation are provided in the Ap-
pendix.
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Model CNN
R-1 R-2 R-L

Lead (Ours) 29.1 11.1 25.8
Refresh* (Narayan et al., 2018) 30.3 11.6 26.9
LatSum* (Zhang et al., 2018) 28.8 11.5 25.4
BanditSum (Dong et al., 2018) 30.7 11.6 27.4

LEADDEDUP 29.7 10.9 26.2
LEADCOMP 30.6 10.8 27.2
EXTRACTION 30.3 11.0 26.5
EXTLSTMDEL 30.6 11.9 27.1
JECS 32.7 12.2 29.0

Table 3: Experimental results on the test sets of CNN. *
indicates models evaluates with our own ROUGE met-
rics. Our model outperforms our extractive model and
lead-based baselines, as well as prior work.

compared to 61 for Daily Mail; see Appendix). In
our experiments, we first focus on CNN and then
evaluate on the other datasets.

Models We present several variants of our
model to show how extraction and compression
work jointly. In extractive summarization, the
LEAD baseline (first k sentences) is a strong base-
line due to how newswire articles are written.
LEADDEDUP is a non-learned baseline that uses
our heuristic deduplication technique on the lead
sentences. LEADCOMP is a compression-only
model where compression is performed on the
lead sentences. This shows the effectiveness of the
compression module in isolation rather than in the
context of abstraction. EXTRACTION is the extrac-
tion only model. JECS is the full Joint Extractive
and Compressive Summarizer.

We compare our model with various abstractive
and extractive summarization models. NeuSum
(Zhou et al., 2018) uses a seq2seq model to pre-
dict a sequence of sentences indices to be picked
up from the document. Our extractive approach
is most similar to this model. Refresh (Narayan
et al., 2018), BanditSum (Dong et al., 2018) and
LatSum (Zhang et al., 2018) are extractive summa-
rization models for comparison. We also compare
with some abstractive models including PointGen-
Cov (See et al., 2017), FARS (Chen and Bansal,
2018) and CBDec (Jiang and Bansal, 2018).

We also compare our joint model with a pipeline
model with an off-the-shelf compression module.
We implement a deletion-based BiLSTM model
for sentence compression (Wang et al., 2017) and
run the model on top of our extraction output.5

5We reimplemented the authors’ model following their
specification and matched their accuracy. For fair compari-

Model CNNDM
R-1 R-2 R-L

Lead (Ours) 40.3 17.6 36.4
Refresh* (Narayan et al., 2018) 40.0 18.1 36.6
NeuSum 41.6 19.0 38.0
LatSum* (Zhang et al., 2018) 41.0 18.8 37.4
LatSum w/ Compression 36.7 15.4 34.3
BanditSum 41.5 18.7 37.6
CBDec (Jiang and Bansal, 2018) 40.7 17.9 37.1
FARS (Chen and Bansal, 2018) 40.9 17.8 38.5

LEADDEDUP 40.5 17.4 36.5
LEADCOMP 40.8 17.4 36.8
EXTRACTION 40.7 18.0 36.8
JECS 41.7 18.5 37.9

Table 4: Experimental results on the test sets of CN-
NDM. The portion of CNN is roughly one of tenth
of DM. Gains are more pronounced on CNN because
this dataset features shorter, more compressed refer-
ence summaries.

The pipeline model is denoted as EXTLSTMDEL.

5.2 Results on CNN

Table 3 shows experiments results on CNN. We
list performance of the LEAD baseline and the per-
formance of competitor models on these datasets.
Starred models are evaluated according to our
ROUGE metrics; numbers very closely match the
originally reported results.

Our model achieves substantially higher per-
formance than all baselines and past systems (+2
ROUGE F1 compared to any of these). On this
dataset, compression is substantially useful. Com-
pression is somewhat effective in isolation, as
shown by the performance of LEADDEDUP and
LEADCOMP. But compression in isolation still
gives less benefit (on top of LEAD) than when
combined with the extractive model (JECS) in
the joint framework. Furthermore, our model
beats the pipeline model EXTLSTMDEL which
shows the necessity of training a joint model with
ROUGE supervision.

5.3 Results on Combined CNNDM and NYT

We also report the results on the full CNNDM and
NYT although they are less compressable. Ta-
ble 4 and Table 5 shows the experimental results
on these datasets.

Our models still yield strong performance com-
pared to baselines and past work on the CNNDM

son, we tuned the deletion threshold to match the compres-
sion rate of our model; other choices did not lead to better
ROUGE scores.
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Model R-1 R-2 R-L

Lead 41.8 22.6 35.0
LEADDEDUP 42.0 22.8 35.0
LEADCOMP 42.4 22.7 35.4
EXTRACTION 44.3 25.5 37.1
JECS 45.5 25.3 38.2

Table 5: Experimental results on the NYT50 dataset.
ROUGE-1, -2 and -L F1 is reported. JECS substan-
tially outperforms our Lead-based systems and our ex-
tractive model.

dataset. The EXTRACTION model achieves com-
parable results to past successful extractive ap-
proaches on CNNDM and JECS improves on this
across the datasets. In some cases, our model
slightly underperforms on ROUGE-2. One pos-
sible reason is that we remove stop words when
constructing our oracles, which could underesti-
mate the importance of bigrams containing stop-
words for evaluation. Finally, we note that our
compressive approach substantially outperforms
the compression-augmented LatSum model. That
model used a separate seq2seq model for rewrit-
ing, which is potentially harder to learn than our
compression model.

On NYT, we see again that the inclusion of
compression leads to improvements in both the
LEAD setting as well as for our full JECS model.6

5.4 Grammaticality

We evaluate grammaticality of our compressed
summaries in three ways. First, we use Ama-
zon Mechanical Turk to compare different com-
pression techniques. Second, to measure absolute
grammaticality, we use an automated out-of-the-
box tool Grammarly. Finally, we conduct manual
analysis.

Human Evaluation We first conduct a human
evaluation on the Amazon Mechanical Turk plat-
form. We ask Turkers to rank different compres-
sion versions of a sentence in terms of grammat-
icality. We compare our full JECS model and
the off-the-shelf pipeline model EXTLSTMDEL,
which have matched compression ratios. We also
propose another baseline, EXTRACTDROPOUT,
which randomly drops words in a sentence to
match the compression ratio of the other two mod-

6Paulus et al. (2018) do not use the NYT50 dataset, so
our results are not directly comparable to theirs. Durrett et al.
(2016) use a different evaluation setup with a hard limit on
the summary length and evaluation on recall only.

Model Preference (%) ↑ Error ↓ R-1 ↑

EXT LEAD3 – 22 29.1
EXTDROP 12% 161 30.2
EXTLSTMDEL 43% 24 30.6
JECS 45% 31 32.7

Table 6: Human preference, ROUGE and Grammarly
grammar checking results. We asked Turkers to rank
the models’ output based on grammaticality. Error
shows the number of grammar errors in 500 sentences
reported by Grammarly. Our JECS model achieves the
highest ROUGE and is preferred by humans while still
making relatively few errors.

els. The results are shown in Table 6. Turk-
ers give roughly equal preference to our model
and the EXTLSTMDEL model, which was learned
from supervised compression data. However,
our JECS model achieves substantially higher
ROUGE score, indicating that it represents a more
effective compression approach.

We found that absolute grammaticality judg-
ments were hard to achieve on Mechanical Turk;
Turkers’ ratings of grammaticality were very
noisy and they did not consistently rate true article
sentences above obviously noised variants. There-
fore, we turn to other methods as described in the
next two paragraphs.

Automatic Grammar Checking We use Gram-
marly to check 500 sentences sampled from the
outputs of the three models mentioned above from
CNN. Both EXTLSTMDEL and JECS make a
small number of grammar errors, not much higher
than the purely extractive LEAD3 baseline. One
major source of errors for JECS is having the
wrong article after the deletion of an adjective like
an [awesome] style.

Manual Error Analysis To get a better sense of
our model’s output, we conduct a manual anal-
ysis of our applied compressions to get a sense
of how many are valid. We manually examined
40 model summaries, comparing the output with
the raw sentences before compression, and iden-
tified the following errors: 1. Eight bad deletions
due to parsing errors like a UK [JJ national] from
London. 2. Eight inappropriate adjective deletions
causing correctness issues with respect to the ref-
erence document like [former] president and [nu-
clear] weapon. 3. Three other errors: partial dele-
tion of slang, inappropriate PP attachment dele-
tion, and an unhandled grammatical construction:
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Reference Summary Prediction with Compressions

Mullah Omar, the reclusive founder
of the Afghan Taliban, is still in
charge, a new biography claims.
An ex-Taliban insider says there
have been rumors that the one-eyed
militant is dead.

(CNN) Mullah Mohammed Omar is “still the leader” of the Taliban’s self-
declared Islamic Emirate of Afghanistan. The Taliban’s “Cultural Commis-
sion” released the 11-page document in several different translations on the
movement’s website, ostensibly to commemorate the 19th anniversary of an
April 4, 1996, meeting in Afghanistan’s Kandahar province when an assembly
of Afghans swore allegiance to Omar.

Rebecca Francis’ photo with a gi-
raffe was shared by Ricky Gervais.
Francis was threatened on Twitter
for the picture. Francis, a hunter,
said the giraffe was ”close to death”
and became food for locals.

(CNN) Five years ago, Rebecca Francis posed for a photo while lying next to
a dead giraffe. The trouble started Monday, when comedian Ricky Gervais
tweeted the photo with a question. Francis, who has appeared on the NBC
Sports Network outdoor lifestyle show “Eye of the Hunter” and was the sub-
ject of an interview with Hunting Life in late March, responded in a statement
to HuntingLife.com on Tuesday, which was posted on its Facebook page.

Frida Ghitis: President Barack
Obama is right to want a deal,
but this one gives Iran too much.
She says the framework agreement
starts lifting Iran sanctions much
too soon.

(CNN) President Barack Obama tied himself to the mast of a nuclear deal with
Iran even before he became the Democratic candidate for president. Reaching
a good, solid agreement with Iran is a worthy, desirable goal. But the process
has unfolded under the destructive influence of political considerations, weak-
ening America’s hand and strengthening Iran.

Table 7: Examples of applied compressions. The top two are sampled from among the most compressed examples
in the dataset. Our JECS model is able to delete both large chunks (especially temporal PPs giving dates of events)
as well as individual modifiers that aren’t determined to be relevant to the summary (e.g., the specification of the
19th anniversary). The last example features more modest compression.

students [first], athletes [second].
Examples of output are shown in Table 7. The

first two examples are sampled from the top 25%
of the most compressed examples in the corpus.
We see a variety of compression options that are
used in the first two examples, including removal
of temporal PPs, large subordinate clauses, adjec-
tives, and parentheticals. The last example fea-
tures less compression, only removing a handful
of adjectives in a manner which slightly changes
the meaning of the summary.

Improving the parser and deriving a more
semantically-aware set of compression rules can
help achieving better grammaticality and readabil-
ity. However, we note that such errors are largely
orthogonal to the core of our approach; a more re-
fined set of compression options could be dropped
into our system and used without changing our
fundamental model.

6 Compression Analysis

Compression Threshold Compression in our
model is an imbalanced binary classification prob-
lem. The trained model’s natural classification
threshold (probability of DEL > 0.5) may not be
optimal for downstream ROUGE. We experiment
with varying the classification threshold from 0
(no deletion, only heuristic deduplication) to 1
(all compressible pieces removed). The results on
CNN are shown in Figure 5, where we show the
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Figure 5: Effect of changing the compression thresh-
old on CNN. The y-axis shows the average of the F1
of ROUGE-1,-2 and -L. The dotted line is the extrac-
tive baseline. The model outperforms the extractive
model and achieves nearly optimal performance across
a range of threshold values.

average ROUGE value at different compression
thresholds. The model achieves the best perfor-
mance at 0.45 but performs well in a wide range
from 0.3 to 0.55. Our compression is therefore
robust yet also provides a controllable parameter
to change the amount of compression in produced
summaries.

Compression Type Analysis We further break
down the types of compressions used in the model.
Table 8 shows the compressions that our model
ends up choosing at test time. PPs are often com-
pressed by the deduplication mechanism because
the compressible PPs tend to be temporal and loca-
tion adjuncts, which may be redundant across sen-
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Node Type Len % of comps Comp Acc Dedup

JJ 1.0 34% 72% 30%
PP 3.4 26% 47% 72%

ADVP 1.4 17% 79% 17%
PRN 2.2 6% 80% 5%

Table 8: The compressions used by our model on CNN;
average lengths and the fraction of that constituency
type among compressions taken by our model. Comp
Acc indicates how frequently that compression was
taken by the oracle; note that error, especially keeping
constituents that we shouldn’t, may have minimal im-
pact on summary quality. Dedup indicates the percent-
age of chosen compressions which arise from dedupli-
cation as opposed to model prediction.

tences. Without the manual deduplication mecha-
nism, our model matches the ground truth around
80% of the time. However, a low accuracy here
may not actually cause a low final ROUGE score,
as many compression choices only affect the final
ROUGE score by a small amount. More details
about compression options are in the Supplemen-
tary Material.

7 Related Work

Neural Extractive Summarization Neural net-
works have shown to be effective in extractive
summarization. Past approaches have structured
the decision either as binary classification over
sentences (Cheng and Lapata, 2016; Nallapati
et al., 2017) or classification followed by ranking
(Narayan et al., 2018). Zhou et al. (2018) used
a seq-to-seq decoder instead. For our model, text
compression forms a module largely orthogonal to
the extraction module, so additional improvements
to extractive modeling might be expected to stack
with our approach.

Syntactic Compression Prior to the explosion
of neural models for summarization, syntactic
compression (Martins and Smith, 2009; Wood-
send and Lapata, 2011) was relatively more com-
mon. Several systems explored the usage of con-
stituency parses (Berg-Kirkpatrick et al., 2011;
Wang et al., 2013; Li et al., 2014) as well as RST-
based approaches (Hirao et al., 2013; Durrett et al.,
2016). Our approach follows in this vein but could
be combined with more sophisticated neural text
compression methods as well.

Neural Text Compression Filippova et al.
(2015) presented an LSTM approach to deletion-
based sentence compression. Miao and Blunsom

(2016) proposed a deep generative model for text
compression. Zhang et al. (2018) explored the
compression module after the extraction model but
the separation of these two modules hurt the per-
formance. For this work, we find that relying on
syntax gives us more easily understandable and
controllable compression options.

Contemporaneously with our work, Mendes
et al. (2019) explored an extractive and com-
pressive approach using compression integrated
into a sequential decoding process; however, their
approach does not leverage explicit syntax and
makes several different model design choices.

8 Conclusion

In this work, we presented a neural network frame-
work for extractive and compressive summariza-
tion. Our model consists of a sentence extraction
model joined with a compression classifier that de-
cides whether or not to delete syntax-derived com-
pression options for each sentence. Training the
model involves finding an oracle set of extraction
and compression decision with high score, which
we do through a combination of a beam search
procedure and heuristics. Our model outperforms
past work on the CNN/Daily Mail corpus in terms
of ROUGE, achieves substantial gains over the
extractive model, and appears to have acceptable
grammaticality according to human evaluations.
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