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Abstract
In this paper, we present a novel method for
measurably adjusting the semantics of text
while preserving its sentiment and fluency, a
task we call semantic text exchange. This is
useful for text data augmentation and the se-
mantic correction of text generated by chat-
bots and virtual assistants. We introduce a
pipeline called SMERTI that combines entity
replacement, similarity masking, and text in-
filling. We measure our pipeline’s success by
its Semantic Text Exchange Score (STES): the
ability to preserve the original text’s sentiment
and fluency while adjusting semantic content.
We propose to use masking (replacement) rate
threshold as an adjustable parameter to con-
trol the amount of semantic change in the text.
Our experiments demonstrate that SMERTI
can outperform baseline models on Yelp re-
views, Amazon reviews, and news headlines.

1 Introduction

There has been significant research on style
transfer, with the goal of changing the style of
text while preserving its semantic content. The
alternative where semantics are adjusted while
keeping style intact, which we call semantic
text exchange (STE), has not been investi-
gated to the best of our knowledge. Consider
the following example, where the replace-
ment entity defines the new semantic context:

Original Text: It is sunny outside! Ugh, that
means I must wear sunscreen. I hate being
sweaty and sticky all over.
Replacement Entity: weather = rainy
Desired Text: It is rainy outside! Ugh, that
means I must bring an umbrella. I hate being
wet and having to carry it around.

The weather within the original text is sunny,
∗Authors contributed equally

whereas the actual weather may be rainy. Not
only is the word sunny replaced with rainy, but
the rest of the text’s content is changed while
preserving its negative sentiment and fluency.

With the rise of natural language processing
(NLP) has come an increased demand for mas-
sive amounts of text data. Manually collecting and
scraping data requires a significant amount of time
and effort, and data augmentation techniques for
NLP are limited compared to fields such as com-
puter vision. STE can be used for text data aug-
mentation by producing various modifications of
a piece of text that differ in semantic content.

Another use of STE is in building emotionally
aligned chatbots and virtual assistants. This is
useful for reasons such as marketing, overall en-
joyment of interaction, and mental health therapy.
However, due to limited data with emotional con-
tent in specific semantic contexts, the generated
text may contain incorrect semantic content. STE
can adjust text semantics (e.g. to align with reality
or a specific task) while preserving emotions.

One specific example is the development of
virtual assistants with adjustable socio-emotional
personalities in the effort to construct assistive
technologies for persons with cognitive disabili-
ties. Adjusting the emotional delivery of text in
subtle ways can have a strong effect on the adop-
tion of the technologies (Robillard et al., 2018). It
is challenging to transfer style this subtly due to
lack of datasets on specific topics with consistent
emotions. Instead, large datasets of emotionally
consistent interactions not confined to specific top-
ics exist. Hence, it is effective to generate text with
a particular emotion and then adjust its semantics.

We propose a pipeline called SMERTI (pro-
nounced ‘smarty’) for STE.1 Combining entity re-
placement (ER), similarity masking (SM), and text

1Code for SMERTI (including Google Colab links) can
be found at https://github.com/styfeng/SMERTI

https://github.com/styfeng/SMERTI
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infilling (TI), SMERTI can modify the semantic
content of text. We define a metric called the
Semantic Text Exchange Score (STES) that eval-
uates the overall ability of a model to perform
STE, and an adjustable parameter masking (re-
placement) rate threshold (MRT/RRT) that can be
used to control the amount of semantic change.

We evaluate on three datasets: Yelp and Ama-
zon reviews (He and McAuley, 2016), and Kag-
gle news headlines (Misra, 2018). We imple-
ment three baseline models for comparison: Noun
WordNet Semantic Text Exchange Model (NWN-
STEM), General WordNet Semantic Text Ex-
change Model (GWN-STEM), and Word2Vec Se-
mantic Text Exchange Model (W2V-STEM).

We illustrate the STE performance of two
SMERTI variations on the datasets, demonstrat-
ing outperformance of the baselines and pipeline
stability. We also run a human evaluation support-
ing our results. We analyze the results in detail
and investigate relationships between the seman-
tic change, fluency, sentiment, and MRT/RRT. Our
major contributions can be summarized as:

• We define a new task called semantic text ex-
change (STE) with increasing importance in NLP
applications that modifies text semantics while
preserving other aspects such as sentiment.
• We propose a pipeline SMERTI capable of
multi-word entity replacement and text infilling,
and demonstrate its outperformance of baselines.
• We define an evaluation metric for overall per-
formance on semantic text exchange called the
Semantic Text Exchange Score (STES).

2 Related Work

2.1 Word and Sentence-level Embeddings

Word2Vec (Mikolov et al., 2013a,b) allows for
analogy representation through vector arithmetic.
We implement a baseline (W2V-STEM) using
this technique. The Universal Sentence Encoder
(USE) (Cer et al., 2018) encodes sentences and is
trained on a variety of web sources and the Stan-
ford Natural Language Inference corpus (Bowman
et al., 2015). Flair embeddings (Akbik et al., 2018)
are based on architectures such as BERT (Devlin
et al., 2019). We use USE for SMERTI as it is de-
signed for transfer learning and shows higher per-
formance on textual similarity tasks compared to
other models (Perone et al., 2018).

2.2 Text Infilling
Text infilling is the task of filling in missing parts
of sentences called masks. MaskGAN (Fedus
et al., 2018) is restricted to a single word per mask
token, while SMERTI is capable of variable length
infilling for more flexible output. Zhu et al. (2019)
uses a transformer-based architecture. They fill
in random masks, while SMERTI fills in masks
guided by semantic similarity, resulting in more
natural infilling and fulfillment of the STE task.

2.3 Style and Sentiment Transfer
Notable works in style/sentiment transfer in-
clude (Shen et al., 2017; Fu et al., 2018; Li et al.,
2018; Xu et al., 2018). They attempt to learn latent
representations of various text aspects such as its
context and attributes, or separate style from con-
tent and encode them into hidden representations.
They then use an RNN decoder to generate a new
sentence given a targeted sentiment attribute.

2.4 Review Generation
Hovy (2016) generates fake reviews from scratch
using language models. (Lipton et al., 2015; Dong
et al., 2017; Juuti et al., 2018) generate reviews
from scratch given auxiliary information (e.g. the
item category and star rating). Yao et al. (2017)
generates reviews using RNNs with two compo-
nents: generation from scratch and review cus-
tomization (Algorithm 2 in Yao et al. (2017)).
They define review customization as modifying
the generated review to fit a new topic or con-
text, such as from a Japanese restaurant to an Ital-
ian one. They condition on a keyword identify-
ing the desired context, and replace similar nouns
with others using WordNet (Miller, 1995). They
require a “reference dataset” (required to be “on
topic”; easy enough for restaurant reviews, but
less so for arbitrary conversational agents). As
noted by Juuti et al. (2018), the method of Yao
et al. (2017) may also replace words indepen-
dently of context. We implement their review cus-
tomization algorithm (NWN-STEM) and a modi-
fied version (GWN-STEM) as baseline models.

3 SMERTI

3.1 Overview
The task is to transform a corpus C of lines of
text Si and associated replacement entities REi :
C = {(S1, RE1), (S2, RE2), . . . , (Sn, REn)} to
a modified corpus Ĉ = {Ŝ1, Ŝ2, . . . , Ŝn}, where
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Figure 1: Overall architecture and example, showing
the three modules: Entity Replacement (ERM), Simi-
larity Masking (SMM), and Text Infilling (TIM)

Ŝi are the original text lines Si replaced with REi
and overall semantics adjusted. SMERTI consists
of the following modules, shown in Figure 1:

1. Entity Replacement Module (ERM): Identify
which word(s) within the original text are best re-
placed with the RE, which we call the Original
Entity (OE). We replace OE in S with RE. We
call this modified text S′.

2. Similarity Masking Module (SMM): Identify
words/phrases in S′ similar to OE and replace
them with a [mask]. Group adjacent [mask]s into
a single one so we can fill a variable length of text
into each. We call this masked text S′′.

3. Text Infilling Module (TIM): Fill in [mask] to-
kens with text that better suits the RE. This will
modify semantics in the rest of the text. This final
output text is called Ŝ.

3.2 Entity Replacement Module (ERM)

For entity replacement, we use a combination of
the Universal Sentence Encoder (Cer et al., 2018)
and Stanford Parser (Chen and Manning, 2014).

Stanford Parser
The Stanford Parser is a constituency parser that
determines the grammatical structure of sentences,
including phrases and part-of-speech (POS) la-
belling. By feeding our RE through the parser,
we are able to determine its parse-tree. Iterat-
ing through the parse-tree and its sub-trees, we
can obtain a list of constituent tags for the RE.
We then feed our input text S through the parser,
and through a similar process, we can obtain a list
of leaves (where leaves under a single label are
concatenated) that are equal or similar to any of
the RE constituent tags. This generates a list of
entities having the same (or similar) grammatical
structure as the RE, and are likely candidates for

theOE. We then feed these entities along with the
RE into the Universal Sentence Encoder (USE).

Universal Sentence Encoder (USE)

The USE is a sentence-level embedding model
that comes with a deep averaging network (DAN)
and transformer model (Cer et al., 2018). We
choose the transformer model as these embed-
dings take context into account, and the exact
same word/phrase will have a different embedding
depending on its context and surrounding words.

We compute the semantic similarity between
two embeddings u and v: sim(u, v), using the an-
gular (cosine) distance, defined as: cos(θu,v) =
(u · v)/(||u||||v||), such that sim(u, v) = 1 −
1
πarccos(cos(θu,v)). Results are in [0, 1], with
higher values representing greater similarity.

Using USE and the above equation, we can
identify words/phrases within the input text S
which are most similar to RE. To assist with this,
we use the Stanford Parser as described above to
obtain a list of candidate entities. In the rare case
that this list is empty, we feed in each word of
S into USE, and identify which word is the most
similar to RE. We then replace the most similar
entity or word (OE) with theRE and generate S′.

An example of this entity replacement process
is in Figure 2. Two parse-trees are shown: for RE
(a) and S (b) and (c). Figure 2(d) is a semantic
similarity heat-map generated from the USE em-
beddings of the candidate OEs and RE, where
values are similarity scores in the range [0, 1].

As seen in Figure 2(d), we calculate seman-
tic similarities between RE and entities within S
which have noun constituency tags. Looking at the
row for our RE restaurant, the most similar entity
(excluding itself) is hotel. We can then generate:
S′ = i love this restaurant ! the beds are com-

fortable and the service is great !

3.3 Similarity Masking Module (SMM)

Next, we mask words similar to OE to gener-
ate S′′ using USE. We look at semantic similari-
ties between every word in S and OE, along with
semantic similarities between OE and the candi-
date entities determined in the previous ERM step
to broaden the range of phrases our module can
mask. We ignore RE, OE, and any entities or
phrases containing OE (for example, ‘this hotel’).

After determining words similar to theOE (dis-
cussed below), we replace each of them with a
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(a) (b) (c)

(d)

Figure 2: ERM example with S = i love this hotel ! the
beds are comfortable and the service is great ! andRE
= restaurant showing (a) Parse tree for RE; (b) and (c)
Parse tree for S; (d) Semantic similarity heat map

[mask] token. Next, we replace [mask] tokens ad-
jacent to each other with a single [mask].

We set a base similarity threshold (ST) that se-
lects a subset of words to mask. We compare the
actual fraction of masked words to the masking
rate threshold (MRT), as defined by the user, and
increase ST in intervals of 0.05 until the actual
masking rate falls below the MRT.2 Some sample
masked outputs (S′′) using various MRT-ST com-
binations for the previous example are shown in
Table 1 (more examples in Appendix A).

The MRT is similar to the temperature param-
eter used to control the “novelty” of generated
text in works such as Yao et al. (2017). A high
MRT means the user wants to generate text very
semantically dissimilar to the original, and may
be desired in cases such as creating a lively chat-
bot or correcting text that is heavily incorrect se-

2There are certain cases where two or more outputs for
different MRT may be equal. This occurs when a valid ST
cannot be found that masks a larger portion of the sentence
without going over MRT.

Table 1: Masked outputs for different masking rate
thresholds (MRT) and base similarity thresholds (ST)

mantically. A low MRT means the user wants to
generate text semantically similar to the original,
and may be desired in cases such as text recov-
ery, grammar correction, or correcting a minor se-
mantic error in text. By varying the MRT, vari-
ous pieces of text that differ semantically in subtle
ways can be generated, assisting greatly with text
data augmentation. The MRT also affects senti-
ment and fluency, as we show in Section 6.5.

3.4 Text Infilling Module (TIM)

We use two seq2seq models for our TIM: an RNN
(recurrent neural network) model (Sutskever et al.,
2014) (called SMERTI-RNN), and a transformer
model (called SMERTI-Transformer).

Bidirectional RNN with Attention
We use a bidirectional variant of the GRU (Cho
et al., 2014), and hence two RNNs for the encoder:
one reads the input sequence in standard sequen-
tial order, and the other is fed this sequence in re-
verse. The outputs are summed at each time step,
giving us the ability to encode information from
both past and future context.

The decoder generates the output in a sequential
token-by-token manner. To combat information
loss, we implement the attention mechanism (Bah-
danau et al., 2015). We use a Luong attention
layer (Luong et al., 2015) which uses global atten-
tion, where all the encoder’s hidden states are con-
sidered, and use the decoder’s current time-step
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hidden state to calculate attention weights. We use
the dot score function for attention, where ht is the
current target decoder state and h̄s is all encoder
states: score(ht, h̄s) = hTt h̄s.

Transformer
Our second model makes use of the transformer
architecture, and our implementation replicates
Vaswani et al. (2017). We use an encoder-decoder
structure with a multi-head self-attention token de-
coder to condition on information from both past
and future context. It maps a query and set of key-
value pairs to an output. The queries and keys are
of dimension dk, and values of dimension dv. To
compute the attention, we pack a set of queries,
keys, and values into matrices Q, K, and V , re-
spectively. The matrix of outputs is computed as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

Multi-head attention allows the model to jointly
attend to information from different positions. The
decoder can make use of both local and global se-
mantic information while filling in each [mask].

4 Experiment

4.1 Datasets
We train our two TIMs on the three datasets. The
Amazon dataset (He and McAuley, 2016) contains
over 83 million user reviews on products, with
duplicate reviews removed. The Yelp dataset in-
cludes over six million user reviews on businesses.
The news headlines dataset from Kaggle contains
approximately 200, 000 news headlines from 2012
to 2018 obtained from HuffPost (Misra, 2018).

We filter the text to obtain reviews and headlines
which are English, do not contain hyperlinks and
other obvious noise, and are less than 20 words
long. We found that many longer than twenty
words ramble on and are too verbose for our pur-
poses. Rather than filtering by individual sen-
tences we keep each text in its entirety so SMERTI
can learn to generate multiple sentences at once.
We preprocess the text by lowercasing and remov-
ing rare/duplicate punctuation and space.

For Amazon and Yelp, we treat reviews greater
than three stars as containing positive sentiment,
equal to three stars as neutral, and less than three
stars as negative. For each training and testing set,
we include an equal number of randomly selected

positive and negative reviews, and half as many
neutral reviews. This is because neutral reviews
only occupy one out of five stars compared to pos-
itive and negative which occupy two each. Our
dataset statistics can be found in Appendix B.

4.2 Experiment Details

To set up our training and testing data for text in-
filling, we mask the text. We use a tiered mask-
ing approach: for each dataset, we randomly mask
15% of the words in one-third of the lines, 30% of
the words in another one-third, and 45% in the re-
maining one-third. These masked texts serve as
the inputs, while the original texts serve as the
ground-truth. This allows our TIM models to learn
relationships between masked words and relation-
ships between masked and unmasked words.

The bidirectional RNN decoder fills in blanks
one by one, with the objective of minimizing
the cross entropy loss between its output and the
ground-truth. We use a hidden size of 500, two
layers for the encoder and decoder, teacher-forcing
ratio of 1.0, learning rate of 0.0001, dropout of 0.1,
batch size of 64, and train for up to 40 epochs.

For the transformer, we use scaled dot-
product attention and the same hyperparameters as
Vaswani et al. (2017). We use the Adam optimizer
(Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.98,
and ε = 10−9. As in Vaswani et al. (2017), we
increase the learning rate linearly for the first
warmup steps training steps, and then decrease
the learning rate proportionally to the inverse
square root of the step number. We set factor = 1
and use warmup steps = 2000. We use a batch
size of 4096, and we train for up to 40 epochs.

4.3 Baseline Models

We implement three models to benchmark
against.3 First is NWN-STEM (Algorithm 2
from Yao et al. (2017)). We use the training sets as
the “reference review sets” to extract similar nouns
to the RE (using MINsim = 0.1). We then replace
nouns in the text similar to the RE with nouns ex-
tracted from the associated reference review set.

Secondly, we modify NWN-STEM to work for
verbs and adjectives4, and call this GWN-STEM.
From the reference review sets, we extract simi-
lar nouns, verbs, and adjectives to the RE (using

3See Appendix C for more implementation details
4WordNet can only work for single words (and not

phrases). Also, it turns out that it cannot work for most ad-
jective REs, as discussed in Appendix C
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MINsim = 0.1), where the RE is now not restricted
to being a noun. We replace nouns, verbs, and ad-
jectives in the text similar to the RE with those
extracted from the associated reference review set.

Lastly, we implement W2V-STEM using Gen-
sim (Řehůřek and Sojka, 2010). We train uni-gram
Word2Vec models for single word REs, and four-
gram models for phrases. Models are trained on
the training sets. We use cosine similarity to deter-
mine the most similar word/phrase in the input text
to RE, which is the replaced OE. For all other
words/phrases, we calculate w′i = wi − wOE +
wRE , where wi is the original word/phrase’s em-
bedding vector, wOE is the OE’s, wRE is the
RE’s, and w′i is the resulting embedding vec-
tor. The replacement word/phrase is w′i’s near-
est neighbour. We use similarity thresholds to ad-
just replacement rates (RR) and produce text under
various replacement rate thresholds (RRT).

5 Evaluation

5.1 Evaluation Setup
We manually select 10 nouns, 10 verbs, 10 adjec-
tives, and 5 phrases from the top 10% most fre-
quent words/phrases in each test set as our eval-
uation REs. We filter the verbs and adjectives
through a list of sentiment words (Hu and Liu,
2004) to ensure we do not choose REs that would
obviously significantly alter the text’s sentiment.5

For each evaluation RE, we choose one-
hundred lines from the corresponding test set that
does not already contain RE. We choose lines
with at least five words, as many with less carry lit-
tle semantic meaning (e.g. ‘Great!’, ‘It is okay’).
For Amazon and Yelp, we choose 50 positive and
50 negative lines per RE.6 We repeat this process
three times, resulting in three sets of 1000 lines
per dataset per POS (excluding phrases), and three
sets of 500 lines per dataset for phrases. Our final
results are averaged metrics over these three sets.

For SMERTI-Transformer, SMERTI-RNN, and
W2V-STEM, we generate four outputs per text for
MRT/RRT of 20%, 40%, 60%, and 80%, which
represent upper-bounds on the percentage of the
input that can be masked and/or replaced. Note
that NWN-STEM and GWN-STEM can only eval-
uate on limited POS and their maximum replace-

5A list of the chosen REs along with more detailed ex-
planation of how they were selected is in Appendix D

6We don’t test on neutral reviews as evaluation of accu-
racy in sentiment is less well defined (i.e. most “neutral” re-
views actually carry more positive or negative sentiment)

ment rates are limited.7 We select MINsim values
of 0.075 and 0 for nouns and 0.1 and 0 for verbs,
as these result in replacement rates approximately
equal to the actual MR/RR of the other models’
outputs for 20% and 40% MRT/RRT, respectively.

5.2 Key Evaluation Metrics
Fluency (SLOR) We use syntactic log-odds ratio
(SLOR) (Kann et al., 2018) for sentence level flu-
ency and modify from their word-level formula to
character-level (SLORc). We use Flair perplexity
values from a language model trained on the One
Billion Words corpus (Chelba et al., 2013):

SLORc(S) =
1

|S| (ln(pM (S))−
ln(
∏

w∈S pM (w))∑
w∈S |w|

(2)

= −ln(PPLs) +

∑
w∈S |w|ln(PPLW )∑

w∈S |w|
(3)

where |S| and |w| are the character lengths of the
input text S and the word w, respectively, pM (S)
and pM (w) are the probabilities of S and w under
the language model M , respectively, and PPLS
and PPLw are the character-level perplexities of
S and w, respectively. SLOR (from hereon we
refer to character-level SLOR as simply SLOR)
measures aspects of text fluency such as grammat-
icality. Higher values represent higher fluency.

We rescale resulting SLOR values to the inter-
val [0,1] by first fitting and normalizing a Gaussian
distribution. We then truncate normalized data
points outside [-3,3], which shifts approximately
0.69% of total data. Finally, we divide each data
point by six and add 0.5 to each result.

Sentiment Preservation Accuracy (SPA) is
defined as the percentage of outputs that carry
the same sentiment as the input. We use
VADER (Hutto and Gilbert, 2014) to evaluate sen-
timent as positive, negative, or neutral. It handles
typos, emojis, and other aspects of online text.

Content Similarity Score (CSS) ranges from 0
to 1 and indicates the semantic similarity between
generated text and the RE. A value closer to 1 in-
dicates stronger semantic exchange, as the output
is closer in semantic content to the RE. We also
use the USE for this due to its design and strong
performance as previously mentioned.

5.3 Semantic Text Exchange Score (STES)
We come up with a single score to evaluate over-
all performance of a model on STE that combines

7See Appendix C for explanations
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Table 2: Overall average results by model (with %
changes from the input)

the key evaluation metrics. It uses the harmonic
mean, similar to the F1 score (or F-score) (Chin-
chor, 1992; Rijsbergen, 1979), and we call it the
Semantic Text Exchange Score (STES):

STES =
3 ∗A ∗B ∗ C

A ∗B +A ∗ C +B ∗ C
(4)

where A is SPA, B is SLOR, and C is CSS. STES
ranges between 0 and 1, with scores closer to 1
representing higher overall performance. Like the
F1 score, STES penalizes models which perform
very poorly in one or more metrics, and favors bal-
anced models achieving strong results in all three.

5.4 Automatic Evaluation Results

Table 2 shows overall average results by model.8

Table 3 shows outputs for a Yelp example.9

As observed from Table 3 (see also Appendix
F), SMERTI is able to generate high quality out-
put text similar to the RE while flowing better
than other models’ outputs. It can replace entire
phrases and sentences due to its variable length
infilling. Note that for nouns, the outputs from
GWN-STEM and NWN-STEM are equivalent.10

5.5 Human Evaluation Setup

We conduct a human evaluation with eight partic-
ipants, 6 males and 2 females, that are affiliated
project researchers aged 20-39 at the University
of Waterloo.11 We randomly choose one evalua-
tion line for a randomly selected word or phrase
for each POS per dataset. The input text and each
model’s output (for 40% MRT/RRT - chosen as
a good middle ground) for each line is presented
to participants, resulting in a total of 54 pieces of
text, and rated on the following criteria from 1-5:

8See Appendix E for tables and graphs of detailed results
broken down by POS, dataset, and MRT/RRT

9See Appendix F for many more example outputs from
each model for various POS and datasets

10See Appendix C for explanations
11The authors are not part of the human evaluation

• RE Match: “How related is the entire text to the
concept of [X]”, where [X] is a word or phrase (1
- not at all related, 3 - somewhat related, 5 - very
related). Note here that [X] is a given RE.
• Fluency: “Does the text make sense and flow
well?” (1 - not at all, 3 - somewhat, 5 - very)
• Sentiment: “How do you think the author of the
text was feeling?” (1 - very negative, 3 - neutral,
5 - very positive)

Each participant evaluates every piece of text.
They are presented with a single piece of text at a
time, with the order of models, POS, and datasets
completely randomized.

5.6 Human Evaluation Results

Average human evaluation scores are displayed in
Table 4. Sentiment Preservation (between 0 and 1)
is calculated by comparing the average Sentiment
rating for each model’s output text to the Sentiment
rating of the input text, and if both are less than 2.5
(negative), between 2.5 and 3.5 inclusive (neutral),
or greater than 3.5 (positive), this is counted as a
valid case of Sentiment Preservation. We repeat
this for every evaluation line to calculate the final
values per model. Harmonic means of all three
metrics (using rescaled 0-1 values of RE Match
and Fluency) are also displayed.

6 Analysis

6.1 Performance by Model

As seen in Table 2, both SMERTI variations
achieve higher STES and outperform the other
models overall, with the WordNet models per-
forming the worst. SMERTI excels especially on
fluency and content similarity. The transformer
variation achieves slightly higher SLOR, while the
RNN variation achieves slightly higher CSS.

The WordNet models perform strongest in sen-
timent preservation (SPA), likely because they
modify little of the text and only verbs and nouns.
They achieve by far the lowest CSS, likely in part
due to this limited text replacement. They also
do not account for context, and many words (e.g.
proper nouns) do not exist in WordNet. Overall,
the WordNet models are not very effective at STE.

W2V-STEM achieves the lowest SLOR, espe-
cially for higher RRT, as supported by the example
in Table 3 (see also Appendix F). W2V-STEM and
WordNet models output grammatically incorrect
text that flows poorly. In many cases, words are
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Input text: great food , large portions ! my family and i really enjoyed our saturday morning breakfast .
Replacement entity: pizza
MRT/RRT Generated Output
SMERTI-Transformer
20% great pizza , large slices ! my family and i really enjoyed our saturday morning lunch .
40%,60% great pizza , large slices ! service was terrific and i really enjoyed our saturday morning lunch .
80% great pizza , chewy crust ! nice ambiance and i really enjoyed it .
SMERTI-RNN
20% great pizza , large delivery ! my family and i really enjoyed our saturday morning place .
40%,60% great pizza , large delivery ! good beer and i really enjoyed our saturday morning place .
80% great pizza , amazing pizza ! reasonable and i really enjoyed everyone .
W2V-STEM
20% great pizza , large portions ! my family and i really enjoyed our saturday morning breakfast .
40% great pizza , large slices ! my family dough i crust enjoyed our saturday morning breakfast .
60% awesome pizza , large slices ! my mom dough i crust enjoyed our saturday morning bagel .
80% awesome pizza , slices slices ! my mom dough we crust liked our sunday morning bagel .
GWN / NWN-STEM
20% great food , large stuff ! my family and i really enjoyed our saturday i breakfast .
40% great food , large stuff ! my i and i really enjoyed our saturday i breakfast .

Table 3: Generated output text by model for various masking rates on a Yelp evaluation example

Table 4: Average human evaluation scores by model

Table 5: Average TTR values by model

repeated multiple times. We analyze the average
Type Token Ratio (TTR) values of each model’s
outputs, which is the ratio of unique divided by
total words. As shown in Table 5, the SMERTI
variations achieve the highest TTR, while W2V-
STEM and NWN-STEM the lowest.

Note that while W2V-STEM achieves lower
CSS than SMERTI, it performs comparably in this
aspect. This is likely due to its vector arithmetic
operations algorithm, which replaces each word
with one more similar to the RE. This is also
supported by the lower TTR, as W2V-STEM fre-
quently outputs the same words multiple times.

6.2 Performance By Model - Human Results

As seen in Table 4, the SMERTI variations out-
perform all baseline models overall, particularly
in RE Match. SMERTI-Transformer performs the
best, with SMERTI-RNN second. The WordNet
models achieve high Sentiment Preservation, but
much lower on RE Match. W2V-STEM achieves

Table 6: Input text’s avg. SLOR, CSS, and SMERTI’s
avg. SPA, SLOR, CSS, and STES by POS

comparably high RE Match, but lowest Fluency.
These results correspond well with our auto-

matic evaluation results in Table 2. We look at
the Pearson correlation values between RE Match,
Fluency, and Sentiment Preservation with CSS,
SLOR, and SPA, respectively. These are 0.9952,
0.9327, and 0.8768, respectively, demonstrating
that our automatic metrics are highly effective and
correspond well with human ratings.

6.3 SMERTI’s Performance By POS

As seen from Table 612 , SMERTI’s SPA values
are highest for nouns, likely because they typi-
cally carry little sentiment, and lowest for adjec-
tives, likely because they typically carry the most.

SLOR is lowest for adjectives and highest for
phrases and nouns. Adjectives typically carry less
semantic meaning and SMERTI likely has more
trouble figuring out how best to infill the text. In
contrast, nouns typically carry more, and phrases
the most (since they consist of multiple words).

SMERTI’s CSS is highest for phrases then
nouns, likely due to phrases and nouns carrying

12Note that the SMERTI values in Tables 6 to 8 refer to the
average between SMERTI-Transformer and SMERTI-RNN
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Table 7: Input text’s avg. SLOR, CSS, and SMERTI’s
avg. SPA, SLOR, CSS, and STES by dataset

Table 8: SMERTI’s avg. SPA, SLOR, CSS, STES, and
BLEU by MRT/RRT

more semantic meaning, making it easier to gen-
erate semantically similar text. Both SMERTI’s
and the input text’s CSS are lowest for adjectives,
likely because they carry little semantic meaning.

Overall, SMERTI appears to be more effective
on nouns and phrases than verbs and adjectives.

6.4 SMERTI’s Performance By Dataset

As seen in Table 7, SMERTI’s SPA is lowest for
news headlines. Amazon and Yelp reviews nat-
urally carry stronger sentiment, likely making it
easier to generate text with similar sentiment.

Both SMERTI’s and the input text’s SLOR ap-
pear to be lower for Yelp reviews. This may be due
to many reasons, such as more typos and emojis
within the original reviews, and so forth.

SMERTI’s CSS values are slightly higher for
news headlines. This may be due to them typically
being shorter and carrying more semantic meaning
as they are designed to be attention grabbers.

Overall, it seems that using datasets which in-
herently carry more sentiment will lead to better
sentiment preservation. Further, the quality of the
dataset’s original text, unsurprisingly, influences
the ability of SMERTI to generate fluent text.

6.5 SMERTI’s Performance By MRT/RRT

From Table 8, it can be seen that as MRT/RRT in-
creases, SMERTI’s SPA and SLOR decrease while
CSS increases. These relationships are very strong
as supported by the Pearson correlation values of
-0.9972, -0.9183, and 0.9078, respectively. When
SMERTI can alter more text, it has the opportunity

to replace more related to sentiment while produc-
ing more of semantic similarity to the RE.

Further, SMERTI generates more of the text it-
self, becoming less similar to the human-written
input, resulting in lower fluency. To further
demonstrate this, we look at average SMERTI
BLEU (Papineni et al., 2002) scores against
MRT/RRT, shown in Table 8. BLEU generally in-
dicates how close two pieces of text are in content
and structure, with higher values indicating greater
similarity. We report our final BLEU scores as
the average scores of 1 to 4-grams. As expected,
BLEU decreases as MRT/RRT increases, and this
relationship is very strong as supported by the
Pearson correlation value of -0.9960.

It is clear that MRT/RRT represents a trade-off
between CSS against SPA and SLOR. It is thus an
adjustable parameter that can be used to control
the generated text, and balance semantic exchange
against fluency and sentiment preservation.

7 Conclusion and Future Work

We introduced the task of semantic text exchange
(STE), demonstrated that our pipeline SMERTI
performs well on STE, and proposed an STES
metric for evaluating overall STE performance.
SMERTI outperformed other models and was the
most balanced overall. We also showed a trade-off
between semantic exchange against fluency and
sentiment preservation, which can be controlled
by the masking (replacement) rate threshold.

Potential directions for future work include
adding specific methods to control sentiment, and
fine-tuning SMERTI for preservation of persona or
personality. Experimenting with other text infill-
ing models (e.g. fine-tuning BERT (Devlin et al.,
2019)) is also an area of exploration. Lastly, our
human evaluation is limited in size and a larger
and more diverse participant pool is needed.

We conclude by addressing potential ethical
misuses of STE, including assisting in the gener-
ation of spam and fake-reviews/news. These risks
come with any intelligent chatbot work, but we
feel that the benefits, including usage in the detec-
tion of misuse such as fake-news, greatly outweigh
the risks and help progress NLP and AI research.
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