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Abstract

To advance models of multimodal context, we
introduce a simple yet powerful neural ar-
chitecture for data that combines vision and
natural language. The “Bounding Boxes in
Text Transformer” (B2T2) also leverages ref-
erential information binding words to portions
of the image in a single unified architecture.
B2T2 is highly effective on the Visual Com-
monsense Reasoning benchmark1, achieving a
new state-of-the-art with a 25% relative reduc-
tion in error rate compared to published base-
lines and obtaining the best performance to
date on the public leaderboard (as of May 22,
2019). A detailed ablation analysis shows that
the early integration of the visual features into
the text analysis is key to the effectiveness of
the new architecture. A reference implementa-
tion of our models is provided2.

1 Introduction

It has long been understood that the meaning of
a word is systematically and predictably linked to
the context in which it occurs (e.g., Firth 1957;
Harris 1954; Deerwester et al. 1990; Mikolov et al.
2013). Different notions of context have resulted
in different levels of success with downstream
NLP tasks. Recent neural architectures includ-
ing Transformer (Vaswani et al., 2017) and BERT
(Devlin et al., 2018) have dramatically increased
our ability to include a broad window of potential
lexical hints. However, the same capacity allows
for multimodal context, which may help model
the meaning of words in general, and also sharpen
its understanding of instances of words in context
(e.g., Bruni et al. 2014).

∗Work done as part of the Google AI residency.
1https://visualcommonsense.com
2https://github.com/google-research/

language/tree/master/language/question_
answering/b2t2

Q: What was [1] doing before he sat in his living room?

A1: He was reading [10].
A2: He was taking a shower. X
A3: [0] was sleeping until the noise [1] was making woke him up.
A4: He was sleeping in his bedroom.

R1: His clothes are disheveled and his face is glistening like he’s
sweaty.

R2: [0] does not look wet yet, but [0] looks like his hair is wet, and
bathrobes are what you wear before or after a shower.

R3: He is still wearing his bathrobe. X
R4: His hair appears wet and there is clothing hanging in front of him

on a line as if to dry.

Figure 1: An example from the VCR dataset. The tasks
consists in picking an answer A1−4, and then picking
a rationale R1−4. The data contains explicit pointers in
the text to bounding boxes in the image.

In this paper, we consider visual context in ad-
dition to language and show that the right inte-
gration of visual and linguistic information can
yield improvements in visual question answering.
The challenge we consider is to answer natural-
questions related to a given image. The more
general question we address in the context of this
problem is how to encode visual and verbal infor-
mation in a neural architecture. How to best do
that is still unclear. How are text entities bound to
objects seen in images? Are text and image best
integrated late, allowing for independent analysis
(late fusion), or should the processing of one be
conditioned on the analysis of the other (early fu-
sion)? How is cross-modal co-reference best en-
coded at all? Does it make sense to ground words
in the visual world before encoding sentence se-
mantics?

https://visualcommonsense.com
https://github.com/google-research/language/tree/master/language/question_answering/b2t2
https://github.com/google-research/language/tree/master/language/question_answering/b2t2
https://github.com/google-research/language/tree/master/language/question_answering/b2t2
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In this work we gather evidence to answer these
questions by designing the Bounding Boxes in
Text Transformer, B2T2 for short, a neural archi-
tecture for multimodal encoding of natural lan-
guage and images, and we evaluate B2T2 on
the Visual Commonsense Reasoning benchmark
(VCR, Zellers et al. 2019).

Figure 1 shows an illustrative example from the
VCR benchmark. VCR is well suited to test rich
multimodal representations because it requires the
analysis of images depicting people engaged in
complex activities; it presents questions, answers
and rationales created by human annotators rather
than automatic generation; it has a clean multiple-
choice interface for evaluation; and yet it is still
challenging thanks to a careful selection of answer
choices through adversarial matching. VCR has
much longer questions and answers compared to
other popular Visual Question Answering (VQA)
datasets, such as VQA v1 (Antol et al., 2015),
VQA v2 (Goyal et al., 2017) and GQA (Hudson
and Manning, 2019), requiring more modeling ca-
pacity for language understanding.

In our experiments, we found that early fusion
of co-references between textual tokens and vi-
sual features of objects was the most critical fac-
tor in obtaining improvements on VCR. We found
that the more visual object features we included in
the model’s input, the better the model performed,
even if they were not explicitly co-referent to the
text, and that positional features of objects in the
image were also helpful. We finally discovered
that our models for VCR could be trained much
more reliably when they were initialized from pre-
training on Conceptual Captions (Sharma et al.,
2018), a public dataset of about 3M images with
captions. From the combination of these model-
ing improvements, we obtained a new model for
visual question answering that achieves state-of-
the-art on VCR, reducing error rates by more than
25% relative to the best published and documented
model (Zellers et al., 2019).

2 Problem Formulation

In this work, we assume data comprised of 4-
tuples (I,B, T, l) where

1. I is an image,

2. B = [b1, . . . , bm] is a list of bounding boxes
referring to regions of I , where each bi is

Symbol Type Description

m N number of extracted bounding boxes
n N number of tokens input to BERT
k N number of positional embeddings for im-

age coordinates, usually 56
d N visual features dimension, usually 2048
h N hidden dimension of BERT, usually 1024
l {0, 1} a binary label
I R·×·×3 an image
B Rm×4 rectangular bounding boxes on I , as co-

ordinates of opposite corners
R {0, 1}m×n matrix encoding which bounding boxes

inB correspond to which tokens in T
T Nn×2 input tokens, each expressed as word

piece id and token type
Φ R·×·×3 → Rd a function to extract visual feature vec-

tors from an image
π R4 → Rd a function to embed the position and

shape of a bounding box
Ψ Rn×h → Rh a function to compute a passage embed-

ding from per-token embeddings
E Nn×2 → Rn×h non-contextualized token embeddings,

encoding word piece ids, token types and
positions

Table 1: Glossary of mathematical symbols used in this
work.

identified by the lower left corner, height and
width,

3. T = [t1, . . . , tn] is a passage of tokenized
text, with the peculiarity that some of the to-
kens are not natural language, but explicit ref-
erences to elements of B, and

4. l is a binary label in {0, 1}.

While it might seem surprising to mix natural
text with explicit references to bounding boxes,
this is actually a quite natural way for people to
discuss objects in images and the VCR dataset is
annotated in exactly this way.

We assume an image representation function Φ
that converts an image, perhaps after resizing and
padding, to a fixed size vector representation of
dimension d.

We similarly assume a pretrained textual repre-
sentation capable of converting any tokenized pas-
sage of text, perhaps after truncating or padding,
into a vector representation of dimension h. We
assume a context independent token representa-
tion E in the shape of a vector of dimension h
for each token and a passage level representation
Ψ which operates on E(T ) and returns a passage
level vector representation of dimension h.

We refer the reader to Table 1 for an overview of
the notation used in this work. Full details on how
the VCR dataset is encoded into this formalism are
given in Section 4.
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3 Models and Methods

We evaluate two main architectures: “Dual En-
coder”, a late fusion architecture where image and
text are encoded separately and answer scores are
computed as an inner product, and the full B2T2
model, an early fusion architecture where visual
features are embedded on the same level as input
word tokens. Section 5.2 will summarize experi-
ments with model variants to answer the research
questions laid out in the introduction and to ana-
lyze what works, and why.

3.1 Dual Encoder

Dual Encoders, discussed for example by Wu et al.
(2018) and Gillick et al. (2018), are models that
embed objects of potentially different types into a
common representation space where a similarity
function can be expressed e.g. as a dot product or
a cosine similarity. A notable example of a dual
encoder for image classification is WSABIE, pro-
posed by Weston et al. (2011).

Our Dual Encoder architecture is shown in Fig-
ure 2. We model the class distribution as

p(l = 1|I, T ) =
1

1 + e−Ψ(E(T ))>DΦ(I)

where D is a learned matrix of size d × h. In this
model, co-reference information is completely ig-
nored, and the model must rely on fixed dimen-
sional vectors for the late fusion of textual and vi-
sual contexts. However, we found this to be sur-
prisingly competitive on VCR compared to pub-
lished baselines, perhaps due to our choice of pow-
erful pretrained models.

3.2 B2T2

Our B2T2 architecture is shown in Figure 3. We
model the class distribution as

p(l|I,B,R, T ) =
eΨ(E′(I,B,R,T ))·al+bl∑
l′ e

Ψ(E′(I,B,R,T ))·al′+bl′

where al ∈ Rh and bl ∈ R for l ∈ {0, 1}
are learned parameters. E′(I,B,R, T ) is a non-
contextualized representation for each token and
of its position in text, but also of the content and
position of the bounding boxes. The key dif-
ference from “Dual Encoder” is that text, image
and bounding boxes are combined at the level
of the non-contextualized token representations
rather than right before the classification decision.

The computation of E′(I,B,R, T ) is depicted
in Figure 4. More formally, for a given example,
let matrix R ∈ {0, 1}m×n encode the references
between the bounding boxes in B and the tokens
in T , so that Rij is 1 if and only if bounding box i
is referenced by token j. Then

E′(I,B,R, T ) =

E(T ) +
m∑
i=1

Ri [M(Φ(crop(I, bi)) + π(bi))]
>

where M is a learned h×d matrix, Φ(crop(I, bi))
denotes cropping image I to bounding box bi and
then extracting a visual feature vector of size d,
and π(bi) denotes the embedding of bi’s shape and
position information in a vector of size d.

To embed the position and size of a bounding
box b, we introduce two new learnable embedding
matrices X and Y of dimension k × d

4 . Let the
coordinates of the opposite corners of b be (x1, y1)
and (x2, y2), after normalizing so that a bounding
box covering the entire image would have x1 =
y1 = 0 and x2 = y2 = k. Position embeddings
are thus defined to be

π(b) = concat(Xbx1c, Yby1c, Xbx2c, Yby2c)

3.3 Loss
All of our models are trained with binary cross en-
tropy loss using label l. Denoting p := p(l =
1|I,B,R, T ), we have for each example

LBCE = l log p+ (1− l) log(1− p)

3.4 Pretraining on Conceptual Captions
Before training on VCR, we pretrain B2T2 on im-
age and caption pairs using a Mask-LM pretrain-
ing technique like the one used in BERT (Devlin
et al., 2018). The setup used during pretraining is
shown in Figure 5, where the model uses the im-
age as additional context when filling in the mask.

We use two tasks for pretraining: (1) impostor
identification and (2) masked language model pre-
diction. For the impostor task, we sample a ran-
dom negative caption for each image and ask the
model to predict whether the caption is correctly
associated. For mask-LM, we randomly replace
tokens in the caption with the [MASK] token, and
the model must predict the original token (see De-
vlin et al. (2018) for more details).

Formally, the pretraining data consist of images
I and captions T . We do not consider bounding
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what is [0] look at [sep] the sea[cls] [sep]#ing

[cls]

ResNet-152

BERT

xTAy

Class 
Score

... ...

Figure 2: Dual Encoder architecture with late fusion.
The model extracts a single visual feature vector from
the entire image. Bounding boxes are ignored.

[b1] why are [b2] wear #ing the same[cls] ...[b3]T[cls]

BERT... ...

ResNet-152 ResNet-152 ResNet-152

Mx Mx Mx

xTA+b

Class 
Score

Figure 3: B2T2 architecture with early fusion. Bound-
ing boxes are inserted where they are mentioned in the
text and at the end of the input, as described in Sec. 4.

boxes during pretraining, so B = ∅. The binary
label l indicates whether the caption is an impos-
tor or not. The loss for impostor identification is
binary cross entropy LBCE with label l as in 3.3.
We denote the loss for mask-LM as LMLM, which
is the summed cross entropy of the predicted token
distributions against the true tokens.

To ensure that our model correctly grounds the
language to the image with the mask LM loss, we
only use it for positive captions, zeroing it out for
negative captions. Our final objective is the sum
of the losses:

L = LBCE + I[l = 1] · LMLM

where I[l = 1] is an indicator for the label l being
positive for the image and caption pair.

We pretrain on Conceptual Captions (Sharma
et al., 2018), a dataset with over 3M images paired
with captions.3 We found empirically that pre-
training improves our model slightly on VCR, but
more importantly, allows our model to train stably.
Without pretraining, results on VCR exhibit much
higher variance. We refer the reader to Section 5.2
for an ablation analysis on the effect of pretrain-
ing.

3.5 Implementation Details
We use ResNet-1524 (He et al., 2016) pretrained
on ImageNet for Φ, which yields a vector repre-
sentation of size d = 2048. BERT-Large (Devlin
et al., 2018) provides both E and Ψ. The latter
is a pretrained Transformer with 24 layers, 16 at-
tention heads, and hidden size 1024. For BERT,

3We also tried pretraining on MS-COCO images and cap-
tions (Lin et al., 2014), but found this to be ineffective. This
could be because MS-COCO is smaller (with around 80k im-
ages, 400k captions).

4Publicly available at tfhub.dev

[b1] where are [b2] [SEP] at work [SEP][cls] [b3]
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Figure 4: How input embeddings are computed in our
B2T2 architecture.
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road mount #ains

True Image or Impostor Image

Figure 5: Mask-LM pretraining for B2T2.

E corresponds to its token embeddings, Ψ to the
[CLS] token representation in the final layer, and
so Ψ(E(T )) corresponds to the BERT passage
representation of size h = 1024.

We found empirically that it was slightly better
to keep Φ fixed rather than fine-tuning it, but that
it was of critical importance to fine-tune Ψ and E
for the new task.

In all of our finetuning experiments we use
the Adam optimizer (Kingma and Ba, 2014) and
trained our models with a grid of hyperparame-
ters: a learning rate of 2 · 10−5 and 3 · 10−5, for 3,

tfhub.dev
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4, and 5 epochs with a linear learning rate decay,
and two random seed for initialization.

To maximize performance on VCR, we also
evaluate an ensemble of B2T2 models. Our en-
semble is comprised of 5 identical B2T2 models,
trained for 3 epochs with an initial learning rate
of 2 · 10−5, but initialized with 5 different random
seeds. The resulting class logits are then summed
to obtain the ensemble scores.

4 Data

Visual Commonsense Reasoning (VCR,
visualcommonsense.com, Zellers et al.
2019) is a corpus that contains a sample of stills
from movies. Questions and answers revolve
around conclusions or assumptions that require
knowledge external to the images. The associated
task is to not only select a correct answer but also
provide reasoning in line with common sense.
Matching our problem formulation given before, a
VCR sample is defined as a tuple (I,O,Q,A,R).
Here, I is the image, and O is a sequence of
objects identified in the image. A question
Q = [q0, . . . , qk] is given, where tokens are either
textual words or deictic references to objects in
O. Each question contains a set of four answers
A = {A1, A2, A3, A4}, with exactly one correct
answer A∗. Each response follows the schema of
the queries. Finally, there is a set of four rationales
R = {R1, R2, R3, R4}, with exactly one rationale
R∗ identified as correct in supporting A∗.

Each of the objects in O =
[(b1, l1), . . . , (b|O|, l|O|)] is identified in the
image I by bounding boxes bi. The objects are
also labeled with their classes with a text token li.

The Q → A task is to choose A∗ given
(I,O,Q,A). The QA → R task is to choose R∗

given (I,O,Q,A∗, R). Finally, the Q→ AR task
is a pipeline of the two, where a model must first
correctly chooseA∗ fromA, then correctly choose
R∗ given A∗.

We adapt VCR to our problem formulation by
converting each VCR example to four instances
for theQ→ A task, one per answer inA, and four
instances for the QA → R task, one per rationale
in R. We construct the text for the instances in the
Q→ A task as

[[CLS], [b0], q0, . . . , [SEP],

a0, . . . , [SEP], l1, [b1], . . . , lp, [bp]]

and in the QA→ R task as

[[CLS], [b0], q0, . . . , [SEP], a∗0, . . . ,

r0, . . . , [SEP], l1, [b1], . . . , lp, [bp]].

where [CLS], [SEP] are special tokens for BERT.
Here, [b0] is a bounding box referring to the en-

tire input image. q0, . . . are all question tokens,
a0, . . . answer tokens, a∗0, . . . answer tokens for the
correct answer, and r0, . . . rationale tokens. We
append the first p bounding boxes in O with class
labels to the end of the sequence (in our experi-
ments, we use p = 8), and for objects referenced
in Q,A,R, we prepend the class label token (i.e.
[bi] becomes li, [bi]). We assign the binary label l
to every instance to represent whether the answer
or rationale choice is the correct one.

5 Experimental Results

5.1 VCR Task Performance

Our final results on the VCR task are shown in
Table 2. Our Dual Encoder model worked surpris-
ingly well compared to Zellers et al. (2019), sur-
passing the baseline without making use of bound-
ing boxes. We also evaluate a Text-Only baseline,
which is similar to the Dual Encoder model but ig-
nores the image. The ensemble of B2T2 models,
pretrained on Conceptual Captions, obtained ab-
solute accuracy improvements of 8.9%, 9.8% and
13.1% compared to the published R2C baseline
for the Q → A, QA → R, and Q → AR tasks
respectively. At the time of this writing (May 22,
2019), both our single B2T2 and ensemble B2T2
models outperform all other systems in the VCR
leaderboard.

5.2 Ablations

To better understand the reason for our improve-
ments, we performed a number of ablation studies
on our results, summarized in Table 3. We con-
sider ablations in order of decreasing impact on
the VCR dev set Q→ A accuracy.

Use of Bounding Boxes. The bounding boxes
considered by our model turns out to be the most
important factor in improving the accuracy of our
model. Without any bounding boxes we obtain
67.5% accuracy, just above the accuracy of the
dual encoder. With 4 instead of 8 appended bound-
ing boxes we obtain 71% accuracy. With 8 bound-
ing boxes, but no textual labels from the bound-
ing boxes in the text we obtain 70.9% accuracy,

visualcommonsense.com
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Q → A QA → R Q → AR
Model Val Test Val Test Val Test

Chance 25.0 25.0 25.0 25.0 6.2 6.2

Text-Only BERT (Zellers et al.) 53.8 53.9 64.1 64.5 34.8 35.0
R2C (Zellers et al.) 63.8 65.1 67.2 67.3 43.1 44.0

HCL HGP (unpub.) - 70.1 - 70.8 - 49.8
TNet (unpub.) - 70.9 - 70.6 - 50.4
B-VCR (unpub.) - 70.5 - 71.5 - 50.8
TNet 5-Ensemble (unpub.) - 72.7 - 72.6 - 53.0

Text-Only BERT (ours) 59.5 - 65.6 - 39.3 -
Dual Encoder (ours) 66.8 - 67.7 - 45.3 -
B2T2 (ours) 71.9 72.6 76.0 75.7 54.9 55.0
B2T2 5-Ensemble (ours) 73.2 74.0 77.1 77.1 56.6 57.1

Human 91.0 93.0 85.0

Table 2: Experimental results on VCR, incorporating
those reported by Zellers et al. (2019). The proposed
B2T2 model and the B2T2 ensemble outperform pub-
lished and unpublished/undocumented results found
on the VCR leaderboard at visualcommonsense.
com/leaderboard as of May 22, 2019.

Q → A

Dual Encoder 66.8

No bboxes 67.5
Late fusion 68.6
BERT-Base 69.0
ResNet-50 70.4

No bbox class labels 70.9
Fewer appended bboxes (p = 4) 71.0
No bbox position embeddings 71.6

Full B2T2 71.9

Table 3: Ablations for B2T2 on VCR dev. The Dual
Encoder and the full B2T2 models are the main mod-
els discussed in this work. All other models represent
ablations from the full B2T2 model.

showing that our model can make use of labels
for detected objects. Example 1 in Table 4 shows
an example that our models can only get right if
bounding box 5 is available.

Late Fusion vs. Early Fusion. The second
most important architectural choice in our model
is to combine visual information at the level
of context independent token embeddings, rather
than at the highest levels of the neural representa-
tion. If in the the full B2T2 model we add visual
embeddings in the last layer of BERT rather than
in the first, we lose 3.3% accuracy.

Effect of Textual Model Size. The original
VCR work by Zellers et al. (2019) made use of
BERT-base, while we use BERT-large to initialize
our models. To test how much of our improve-
ments are simply due to our model being larger,
we retrained B2T2 models using BERT-base and
found that we lose 2.9% accuracy.

Effect of Visual Model Size. How important is
the choice of the visual model in the performance

Pretrain No pretrain
0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
C

R
 A

cc

Figure 6: Boxplot of dev Q → A accuracy on VCR
with and without pretraining. Pretraining on Con-
ceptual Captions lowers variance when fine-tuning on
VCR, from a grid search on multiple random seeds,
learning rates, and VCR training epochs.

of B2T2? As further discussed in the error analysis
section of this work, we suspect that B2T2 could
be significantly improved by extending the visual
features to represent more than just objects, but
also activities, expressions and more. However it
appears that even the size of the object detection
model is important. If we swap out ResNet-152
for ResNet-50, accuracy decreases by 1.5%.

Pretraining. We found that performance im-
provements from pretraining are quite small,
around 0.4% accuracy, but initializing from a pre-
trained model heavily reduces variance of results.
We show this effect in Figure 6 over the grid of
learning rates, random seeds, and training epochs
described in Section 3.5.

Position of Bounding Boxes We additionally
investigated the effect of removing position infor-
mation from the model. The benefit of having
bounding box positional embeddings is the small-
est of the ones we considered. A model trained
without positional embeddings only loses 0.3%
accuracy compared to the full model.

5.3 Error Analysis

We picked some examples, shown in Table 4, to il-
lustrate the kinds of correct and incorrect choices
that B2T2 is making, compared to our dual en-
coder and to a text only model.

In Example 1 we show an example of how
our model picks the right answer only when it is
able to make use of all provided bounding boxes.
Bounding box 5 in particular contains the clue that
allows the observer to know that the man in the
picture might have just gone shopping.

visualcommonsense.com/leaderboard
visualcommonsense.com/leaderboard
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Example 1
Q: What did [1] do before coming to this location?
A1: He took horse riding lessons. (text-only)
A2: He was just shopping. (B2T2)
A3: He found a skeleton.
A4: He came to buy medicine. (dual encoder)

Example 2
Q: How are [2, 4] related?
A1: [2, 4] are partners on the same mission.
A2: [2, 4] are a recently married gay couple. (B2T2)
A3: They are likely acquaintances.
A4: They are siblings. (text-only, dual encoder)

Example 3
Q: What are [0] and the woman doing?
A1: Their husbands are doing something dumb.
A2: They are observing the results of an experiment.

(text-only, dual encoder)
A3: They are dancing. (B2T2)
A4: They are acting as nurses for the rescued people.

Example 4
Q: How is [2] feeling?
A1: [2] is feeling shocked. (B2T2, dual encoder)
A2: [0] is feeling anxious.
A3: [2] is not feeling well.
A4: [2] is feeling joy and amusement. (text-only)

Example 5
Q: Why is [1] on the floor talking to [0]?
A1: The man on the floor was assaulting [1].
A2: He is asking her to help him stand up. (B2T2, dual

encoder)
A3: [1] just dropped all his books on the floor.
A4: [1] looks like he is telling [0] a secret. (text-only)

Table 4: Examples of the Q → A task from the VCR dev set. The correct answer for every example is marked in
bold. The answers picked by the text-only model, by the dual encoder and by B2T2 are indicated in parenthesis.
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In Examples 2 and 3, no specific bounding box
appears to contain critical clues for answering the
question, but B2T2 outperforms models without
access to the image or without access to bounding
boxes. It is possible that B2T2 might be gaining
deeper understanding of a scene by combining in-
formation from important regions of the image.

In Examples 4 and 5, we see failure cases of
both the dual encoder and B2T2 compared to the
text only-model. Both these examples appear to
point to a limitation in the amount of information
that the we are able to extract from the image. In-
deed our vision model is trained on ImageNet, and
so it might be very good at recognizing objects,
but might be unable to recognize human expres-
sions and activities. Our models could have cor-
rectly answered the question in Example 4 if they
were able to recognize smiles. Similarly our mod-
els could have ruled out the incorrect answer they
picked for the question in Example 5 if they were
able to see that both people in the picture are sit-
ting down and are not moving.

6 Related Work

Modeling visual contexts can aid in learning use-
ful sentence representations (Kiela et al., 2017)
and even in training language models (Ororbia
et al., 2019). This paper takes these more general
ideas to a downstream task that requires model-
ing of visual input. Similar to B2T2, VideoBERT
(Sun et al., 2019) jointly processes video frames
and text tokens with a Transformer architecture.
However, VideoBERT cannot answer questions,
nor does the model consider bounding boxes.

Our B2T2 model is similar to the Bottom-Up
Top-Down attention model (Anderson et al., 2018)
in how bounding boxes generated at preprocessing
time are attended to by the VQA model. “Bottom-
Up” refers to the idea of attending from the text
to the bounding boxes of objects detected in the
image, while “Top-Down” refers to the idea of at-
tending to regions constructed as a regular grid
over the image. The Bottom-Up Top-Down model
however reduces the text to a fixed length vec-
tor representation before attending to image re-
gions, while B2T2 instead treats image regions as
special visual tokens mixed in the text. In this
sense, Bottom-Up Top-Down model is a late fu-
sion model, while B2T2 is early fusion.

The Neuro-Symbolic Concept Learner (Mao
et al., 2019) also uses bounding boxes to learn vi-

sually grounded concepts through language. The
Neuro-Symbolic Concept Learner however relies
on a semantic parser to intepret language, while
B2T2 uses a Transformer to construct a joint rep-
resentation of textual tokens and visual tokens.

Another recently proposed model for VQA is
MAC (Hudson and Manning, 2018). As presented,
MAC does not make use of bounding boxes, which
makes it a Top-Down model in the nomenclature
of Anderson et al. (2018). MAC also reduces
the textual information to a vector of fixed length.
However MAC makes use of a new neural archi-
tecture designed to perform an explicit multi-step
reasoning process and is reported to perform bet-
ter than Anderson et al. (2018) on the GQA dataset
(Hudson and Manning, 2019).

After the submission of this paper, several new
works were published with excellent results on
VCR, in some cases exceeding the performance of
our system. In particular we mention ViLBERT
(Lu et al., 2019), VL-BERT (Su et al., 2019),
Unicoder-VL (Li et al., 2019a), and VisualBERT
(Li et al., 2019b).

VCR is only one of several recent datasets
pertaining to the visual question answering task.
VQA (Antol et al., 2015; Zhang et al., 2016; Goyal
et al., 2017) contains photos and abstract scenes
with questions and several ground-truth answers
for each, but the questions are less complex than
VCR’s. CLEVR (Johnson et al., 2017) is a vi-
sual QA task with compositional language, but the
scenes and language are synthetic. GQA (Hudson
and Manning, 2019) uses real scenes from Visual
Genome, but the language is artificially generated.
Because VCR has more complex natural language
than other datasets, we consider it the best evalu-
ation of a model like B2T2, which has a powerful
language understanding component.

7 Conclusion

In this work we contrast different ways of com-
bining text and images when powerful text and vi-
sion models are available. We picked BERT-Large
(Devlin et al., 2018) as our text model, ResNet-
152 (He et al., 2016) as our vision model, and
the VCR dataset (Zellers et al., 2019) as our main
benchmark.

The early-fusion B2T2 model, which encodes
sentences along with links to bounding boxes
around identified objects in the images, produces
the best available results in the visual question an-
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swering tasks. A control model, implementing late
fusion (but the same otherwise), performs substan-
tively worse. Thus, grounding words in the visual
context should be done early rather than late.

We also demonstrate competitive results with
a Dual Encoder model, matching state-of-the-art
on the VCR dataset even when textual references
to image bounding boxes are ignored. We then
showed that our Dual Encoder model can be sub-
stantially improved by deeply incorporating in the
textual embeddings visual features extracted from
the entire image and from bounding boxes. We
finally show that pretraining our deep model on
Conceptual Captions with a Mask-LM loss yields
a small additional improvement as well as much
more stable fine-tuning results.
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