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Abstract

Semantic slot filling is one of the major tasks
in spoken language understanding (SLU).
After a slot filling model is trained on pre-
collected data, it is crucial to continually
improve the model after deployment to
learn users’ new expressions. As the data
amount grows, it becomes infeasible to
either store such huge data and repeatedly
retrain the model on all data or fine
tune the model only on new data without
forgetting old expressions. In this paper,
we introduce a novel progressive slot filling
model, ProgModel. ProgModel consists of
a novel context gate that transfers previously
learned knowledge to a small size expanded
component; and meanwhile enables this new
component to be fast trained to learn from
new data. As such, ProgModel learns the new
knowledge by only using new data at each
time and meanwhile preserves the previously
learned expressions. Our experiments show
that ProgModel needs much less training time
and smaller model size to outperform various
model fine tuning competitors by up to 4.24%
and 3.03% on two benchmark datasets.

1 Introduction

Spoken language understanding (SLU) systems
play a vital role in ubiquitous artificially intelligent
voice-enabled personal assistants. As one of the
major tasks in SLU, semantic slot filling is treated
as a sequential labeling problem to map a natural
language sequence x to a slot label sequence y of
the same length in IOB format (Yao et al., 2014).
Typically, a slot filling model is trained offline on
large scale corpora with pre-collected utterances.
However, such corpora usually cannot cover
all possible varieties of utterances exhaustively
(e.g., personalized expressions, new vocabulary,

∗ This work was done when Xiangyu Zeng was in
Samsung Research.

utterances for new intent, etc.) from diverse users.
Thus, it is critically desirable to develop a slot
filling approach with the capability of continual
learning after a personal assistant is deployed.

Unfortunately, existing approaches target on
offline model training using a large scale training
data. They are designed to either train a slot
filling model independently (Yao et al., 2014; Peng
et al., 2015; Kurata et al., 2016; Hakkani-Tür et al.,
2016; Liu and Lane, 2016; Deng et al., 2019;
Ray et al., 2019) or jointly with the other intent
detection task in SLU (Guo et al., 2014; Liu and
Lane, 2016; Zhang and Wang, 2016; Wang et al.,
2018; Goo et al., 2018). Recently, (Shen et al.,
2018a, 2019) developed cold start algorithms to
generate training data with the hope of covering
more varieties before deployment. On the other
hand, (Ray et al., 2018; Shen et al., 2018b) attempt
to personalize the slot filling model. However,
they are still restricted to the offline training and
cannot be applied to learn new user’s expressions
after deployment.

To support continual learning, a naive solution
is to retrain the current model at each time.
However, it suffers from several drawbacks: First,
in order to maintain the SLU performance on
both original and new expressions, it usually
requires almost retraining the model using the
whole dataset. However, as the size of training set
grows, it becomes infeasible to repeatedly conduct
time consuming retraining on such a large dataset.
More importantly, the old training data typically
is not stored permanently due to huge storage
need and privacy protection. If only fine tuned on
new utterances, the new model intends to lose the
previously learned knowledge, a.k.a., catastrophic
forgetting (French, 1999). Moreover, such fine-
tuning of a large generic SLU model, even only on
new utterances, is still quite inefficient. Recently,
there are some progresses on continual learning in



1280

Word 
Embedding

⊕ ⊕ ⊕ ⊕ ⊕

Slot
Filling

Utterance 
BiLSTM

⊕ ⊕ ⊕ ⊕ ⊕

BiLSTMt BiLSTMt BiLSTMt BiLSTMt BiLSTMt

Base Model "# Expanded Model "$

Input Utterance: display flights with business class

Context
gated

transfer

BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM

…

Inference Decision Engine

Output Slot Labels: O O O B-class_type I-class_type
"$ Training 

at time t
knowledge

transfer

ℏ&' ℏ(' ℏ)' ℏ*' ℏ+'

ℏ&, ℏ(, ℏ), ℏ*, ℏ+,

ℏ&,-& ℏ(,-& ℏ),-& ℏ*,-& ℏ+,-&

Figure 1: Our Proposed
ProgModel Architecture:
consists of an expanded
component M t at each
batch t with context gated
transfer of utterance contexts
(Figure 2); and an inference
decision engine to derive the
label prediction. At each
batch t, the last layers of
base model and previous
components (dotted lines) are
only used for inference. Only
the output of M t is used to
guide the training.

computer vision (Li and Hoiem, 2016; Lee et al.,
2017), yet it still remains open in spoken language
understanding systems.

In this paper, we consider a practical setting
that a batch1 of new training data U t becomes
available at each batch t. Our goal is to
enable the continual learning capability of a slot
filling model such that it can keep learning new
utterances efficiently as well as remember old
knowledge without the needs of accessing old
training data. To achieve this, we design a
novel Progressive Slot Filling Model (ProgModel)
that can be gradually expanded at each batch
by using a novel context gate for knowledge
transfer. Unlike the baseline that repeatedly
retrains the same model, ProgModel keeps the
previously trained components untouched such
that the catastrophic forgetting can be largely
avoided. Using the transferred knowledge, each
newly expanded component in ProgModel is
trained in a progressive manner to achieve better
performance with faster training compared with
baseline model retraining approaches .

2 Proposed Approach

2.1 Progressive Model (ProgModel)

As the name indicates, the main idea of our
proposed ProgModel is to progressively expand
the model by transferring existing knowledge
from the current model. Thus, ProgModel
can continually enhance its capability of
understanding user’s new expressions without
catastrophic forgetting. This is motivated by the
recent success of progressive neural networks in
various applications (Rusu et al., 2016).

As shown in Figure 1, ProgModel consists

1To avoid the confusion with the widely used timestamp
in NLP (mean each word), we use each batch in our paper.

of the following components: (1) Expanded
Components: The current model is expanded via
context-gated knowledge transfer to allow only
training on a new batch training set U t at each
batch t. (2) Inference Decision Engine: When
we receive multiple outputs from base model
and expanded components, the decision engine
is to derive the slot filling label output without
additional training.

2.1.1 Expanded Component M t

At each batch t, a new component M t (Figure 1
(right)) is expanded on the base model M0 and
previously expanded components M1 . . .M t−1,
denoted as M<t. The utterance BiLSTMt is
learned from scratch at each batch t such that
it can learn the new sentence structures via
word sequence correlations. Next, we focus on
designing two knowledge transfer mechanisms
(green parts in Figure 1) to maximally leverage the
previously learned knowledge in M<t.

Word Embeddings Transfer: Word embeddings
in the newly expanded component M t are
initialized using those in M0 based on the
assumption that M0 covers most vocabulary.
For a new word w, we initialize using GloVe
embedding. The embeddings will be fine tuned
during training M t.

Gated Utterance Context Transfer: We then
design a novel context gate (Figure 2) by
introducing lateral connections from most recent
component M t−1. Note that this context gate
is crucial to avoid retraining on all data or
repeatedly duplicating a large base model every
time. Specifically, the lateral connections transfer
the hidden states ~~~t−1i for each word i from M t−1

to the newly expanded component M t. They are
projected to the same dimensional space of ht

i via
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Figure 2: Context Gate for Transfer Utterance Context
Knowledge from M t−1 (in green)

projection matrix Vt shared for each word:
~~~ti = ht

i + σ(Vt~~~t−1i )
where σ(·) is the sigmoid function.

Then, the context vector cti for the ith word in
expanded component M t is given as:

cti =

n∑
k=1

αt
i,k~~~tk

where αααt
i = softmax(ei) is fine tuned based on

ααα0
i trained in base model M0 as in Att-BiRNN

model (Liu and Lane, 2016). We have α0
i,j =

exp(e0i,j)∑T
k=1 exp(e

0
i,k)

in which e0i,k = g0(h0
i−1⊕c0i−1,h0

k)

is learned from a feed forward neural network g0.
In ProgModel, each modelM t has an independent
gt which is initialized by g0 in M0. Thus, αααt

i

will be fine tuned from ααα0
i during training M t via

updated gt and ~~~ti.

2.1.2 Inference Decision Engine
We design the inference decision engine (IDE) as
a non-trainable separate component to avoid the
potential catastrophic forgetting. Thanks to the
capability of knowledge transfer in ProgModel,
M t can already remember quite much previously
learned knowledge to give good label prediction
in many cases. Thus, we consider two types
of decision engines: (1) t-IDE: ProgModel using
only the output of M t as decision engine; (2) c-
IDE: for ith word, it combines all outputs from
each component M t,

∑t
k=0 P

k(i)Ik(i). Ik(i) is
an indicator function which is 1 when ith word
is in the vocabulary of Mk and 0 otherwise. The
label with maximum probability is selected.

2.2 Progressive Training

The training procedure is progressively conducted
at each batch t. The first step is to train the base
model M0 using the loss function L0:

L0(θθθ0) , − 1

n

|S|∑
j=1

n∑
i=1

yj(i) logP
0
j (i)

where θθθ0 are the parameters in M0; |S| is the
number of semantic slots in IOB format; and n is

Table 1: Grouping Statistics in All Datasets

Dataset Domain Group Vocab Size #Slots Train Size

ATIS -

1 706 49 3,666
2 301 24 423
3 271 18 232
4 312 29 266
5 309 33 391

Snips

Add
To

Playlist

1 2,561 6 1417
2 802 5 259
3 764 5 259

Book
Restaurant

1 1,588 14 995
2 1,044 14 487
3 990 14 486

Get
Weather

1 1,095 9 805
2 977 9 592
3 946 9 591

Play
Music

1 2,333 9 1,546
2 464 9 210
3 492 9 210

Rate
Book

1 916 7 822
2 708 6 539
3 722 6 538

Search
Creative

Work

1 1,353 2 690
2 1,298 2 631
3 1,335 2 630

Search
Screening

Event

1 863 7 883
2 687 7 472
3 668 7 471

the sequence length.
At each batch t, we train the expanded

component M t while fixing the parameters θθθ<t in
previous components. The loss is backpropagated
from the output of M t using the loss function Lt:

Lt(θθθt,φφφtt−1) , −
1

n

|S|∑
j=1

n∑
i=1

yj(i) logP
t
j (i)

where θθθt andφφφtt−1 are the parameters in modelM t

and in the context gate between M t−1 and M t. In
both loss functions, P t

j (i) is output probability of
slot j for the ith word from M t.

3 Experimental Results

3.1 Datasets & Settings

Dataset: We evaluate ProgModel on the following
two benchmark datasets:

ATIS (Airline Travel Information Systems)
dataset (Hemphill et al., 1990): a widely used
dataset in SLU research. The training set contains
4,978 utterances from the ATIS-2 and ATIS-3
corpora, and the testing set contains 893 utterances
from the ATIS-3 data sets. There are 127 distinct
slot labels. We do not use the intent labels in ATIS.

Snips dataset (Snips, 2017): another NLU
dataset custom-intent-engines collected by Snips
for model evaluation. It contains 7 domains.
In each domain, the training set contains 1,800
to 2,000 utterances and the testing set contains
around 100 utterances. Since each domain in



1282

Table 2: Performance (F1 Score) on ATIS Dataset

Approach Batch
0 1 2 3 4

AttRNN (upper bound) 92.12 92.89 93.04 93.56 95.13

FT-AttRNN 91.85 89.98 91.25 88.03
FT-Lr-AttRNN 91.96 86.46 88.03 86.58
FT-Cp-AttRNN 92.12 92.10 90.06 91.98 89.67

t-ProgModel 92.33 92.43 92.57 92.58
c-ProgModel 92.40 92.64 92.71 93.91

Snips contains completely different slots and very
few vocabulary are shared between the domains,
we evaluate on each domain independently.

We use Amazon Mechanical Turk (MTurk) to
split both training set into non-overlapping groups
in each dataset (each domain in Snips as a separate
dataset). Based on the size of each dataset, we
consider 5 groups in ATIS and 3 groups in each
domain of Snips dataset. Each turker is given
100 utterances from training set in one dataset; as
well as the number of groups G for this dataset.
He is asked to put utterances into no more than
G groups based on their similarities. At last,
we review the grouped utterances from turkers to
further combine the similar utterances and derive
the final grouping of the whole dataset. For each
dataset, we consider the largest group of training
set as a base dataset. At each batch t, one of
leftover groups in training set is randomly selected
to be U t. Table 1 shows the detailed data statistics.
Competitors: First, only for reference purpose,
we consider a performance upper bound baseline,
i.e., train AttRNN on the all available dataset at
each batch t. We compare with the following
competitor approaches: (1) FT-AttRNN : fine tunes
the current model only using new training data U t

at each batch t; (2) FT-Lr-AttRNN : fine tunes the
current model using an adjusted lower learning
rate (we use 0.3 times of base model learning
rate which has the best performance) on the new
training set U t; (3) FT-Cp-AttRNN : copies the
previous model and fine tunes the new copied
model on new training data U t at each batch t.
During inference, FT-Cp-AttRNN uses both t-
IDE and c-IDE decision engines and reports the
one with better performance (F-1 score). We
evaluate our ProgModel model with different
inference engines: (1) t-ProgModel: ProgModel
using only output of M t as decision engine; (2) c-
ProgModel: ProgModel using combined inference
decision engine. All base models M0 are trained
on state-of-the-art AttRNN model (Liu and Lane,
2016). For fair evaluation, we test both ProgModel
and competitors on the all standard testing sets.

Table 3: Performance (F1 Score) on Snips Dataset

Domain Approach Batch
0 1 2

Add
To

Playlist

AttRNN (upper bound) 79.58 86.74 88.89

FT-AttRNN 81.23 87.07
FT-Lr-AttRNN 78.99 86.61
FT-Cp-AttRNN 79.58 84.67 87.15

t-ProgModel 86.12 88.30
c-ProgModel 85.51 87.25

Book
Restaurant

AttRNN (upper bound) 79.49 89.78 90.03

FT-AttRNN 88.71 88.09
FT-Lr-AttRNN 88.57 87.89
FT-Cp-AttRNN 79.49 89.06 88.14

t-ProgModel 89.45 89.54
c-ProgModel 89.40 89.40

Get
Weather

AttRNN (upper bound) 76.48 91.12 93.56

FT-AttRNN 89.52 88.93
FT-Lr-AttRNN 89.09 88.56
FT-Cp-AttRNN 76.48 89.82 90.09

t-ProgModel 90.73 93.12
c-ProgModel 89.92 90.95

Play
Music

AttRNN (upper bound) 77.48 87.79 89.13

FT-AttRNN 84.71 84.63
FT-Lr-AttRNN 84.53 84.16
FT-Cp-AttRNN 77.48 84.85 86.10

t-ProgModel 86.05 87.26
c-ProgModel 87.00 88.45

Rate
Book

AttRNN (upper bound) 92.64 98.45 99.07

FT-AttRNN 96.87 96.83
FT-Lr-AttRNN 96.20 96.86
FT-Cp-AttRNN 92.64 97.06 97.93

t-ProgModel 97.50 98.89
c-ProgModel 98.19 98.20

Search
Creative

Work

AttRNN (upper bound) 66.32 89.01 89.67

FT-AttRNN 85.93 85.46
FT-Lr-AttRNN 84.69 84.45
FT-Cp-AttRNN 66.32 87.25 86.36

t-ProgModel 88.21 88.25
c-ProgModel 88.79 88.83

Search
Screening

Event

AttRNN (upper bound) 89.30 95.68 97.34

FT-AttRNN 93.40 94.53
FT-Lr-AttRNN 91.87 93.56
FT-Cp-AttRNN 89.30 93.81 94.56

t-ProgModel 95.01 96.90
c-ProgModel 93.62 94.31

Training: We implemented ProgModel model
using TensorFlow 1.4.0 and conducted the
experiments on NVIDIA Tesla M40. At
each batch t, we train all models until their
convergence. We observe that ProgModel takes
around 10 epochs due to less parameters and
transferred knowledge in M t while AttRNN
retraining usually needs 100 epochs and various
fine tuning competitors need around 30-50 epochs.

3.2 Main Results

Table 2 and Table 3 show the F1 score of
slot filling performance comparison results on
ATIS dataset and each domain of Snips dataset.
The results show that ProgModel consistently
outperforms AttRNN in all domains, where the
improvement gain is up to 4.24% in ATIS
and 3.03% in Snips. As expected, ProgModel
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continuously improves performance with more
and more new batches of training data, even
though it is only trained on new data at each batch.
Among all competitors, FT-Cp-AttRNN achieves
the closest performance to ProgModel by using
much larger model size (shown in Section 3.4). In
comparison, both FT-AttRNN and FT-Lr-AttRNN
frequently suffer from catastrophic forgetting. The
values in pink show that the performance of FT-
AttRNN and FT-Cp-AttRNN drops up to 3.82%
and 5.38% respectively. As a result, their F1
scores are significantly reduced in the end. At
last, we observe that ProgModel is quite close to
upper bound performance (Note that this is only
for reference rather than comparison since upper
bound performance assumes the availability of all
training data while ProgModel does not).

3.3 Ablation Study

We further look into each competitor to better
understand the advantage of our method. Since
FT-AttRNN is only trained on new data, it is
oftentimes overwhelmed by new knowledge and
results in forgetting the old knowledge. On the
other hand, FT-Lr-AttRNN has difficulty to learn
new knowledge since it cannot jump out of local
optimum due to a small learning rate. As a result,
the performance of FT-Lr-AttRNN is even lower
than FT-AttRNN most of the time. To make it
even worse, the learning rate is very hard to tune
at each batch. As we can see, it is non-trivial
to achieve both goals, learn new knowledge and
remember old knowledge.

FT-Cp-AttRNN performs slightly better than
FT-AttRNN and FT-Lr-AttRNN . FT-Cp-AttRNN
can be treated as a naive solution to achieve both
goals by almost duplicating the model again and
again. However, in addition to larger model
size and longer training time, it still suffers from
efficiently transfer previous knowledge and leads
to catastrophic forgetting from time to time.

In comparison, ProgModel outperforms all
above competitors since it provides a systematic
mechanism to achieve both goals. The training
of our designed context gate helps to determine
which knowledge to transfer at each batch.

At last, we observe that c-ProgModel performs
better than t-ProgModel in ATIS. This has two
reasons: First, the utterances in different groups of
ATIS are quite structurally similar such that c-IDE
further enhances the correct slot label distribution

Table 4: Average Model Size (MB)

Domain Batch Approach
FT-AttRNN FT-Cp-AttRNN ProgModel

ATIS

0

18.0

18.0 18.0
1 36.9 21.9
2 56.2 25.5
3 75.5 29.4
4 94.8 33.3

Snips
0

25.3
25.3 25.3

1 50.7 31.8
2 76.2 38.1

by combing all outputs together. Second, many
slots are not included in last group of ATIS dataset.
In Snips, t-ProgModel outperforms c-ProgModel
in most domains since the utterances in different
groups have significant different structures and
vocabularies. Thus, inference outputs could be
conflicted and their combination leads to worse
performance.

3.4 Model Size Results
Table 4 reports the model size comparison
between FT-AttRNN (FT-AttRNN and FT-Lr-
AttRNN ), FT-Cp-AttRNN and ProgModel (t-
ProgModel and c-ProgModel). With more and
more training data at each batch, the increase
of ProgModel size is significantly slower than
that of FT-Cp-AttRNN since the capability of
knowledge transfer in ProgModel avoids the full
model copy. Thus, our approach also better trades
off the model size and performance. The small
fluctuation of ProgModel model size expansion
is due to the different size of vocabulary in each
batch of training utterances. Each expanded model
M t will only keep the embedding of vocabulary
in new training data U t. One may concern that
ProgModel will become large over time. In
practice, it will be expanded only when the new
data grows too large to handle by current model.
Moreover, a new base model can be periodically
reinitialized to reset the model size.

4 Conclusion

In this paper, we proposed a novel ProgModel
model with the capability of efficient continual
learning for semantic slot filling in SLU.
ProgModel is designed to expand progressively at
each batch of new training data with a new context
gate for knowledge transfer. The model can
be trained progressively without needing to store
old training data. We showed that ProgModel
need much shorter training time to significantly
outperform baseline approaches and close to the
upper bound performance.
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