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Abstract
Recurrent neural networks (RNN) used for
Chinese named entity recognition (NER) that
sequentially track character and word infor-
mation have achieved great success. How-
ever, the characteristic of chain structure and
the lack of global semantics determine that
RNN-based models are vulnerable to word
ambiguities. In this work, we try to alleviate
this problem by introducing a lexicon-based
graph neural network with global seman-
tics, in which lexicon knowledge is used
to connect characters to capture the local
composition, while a global relay node can
capture global sentence semantics and long-
range dependency. Based on the multiple
graph-based interactions among characters,
potential words, and the whole-sentence se-
mantics, word ambiguities can be effectively
tackled. Experiments on four NER datasets
show that the proposed model achieves sig-
nificant improvements against other baseline
models.

1 Introduction

The task of named entity recognition (NER)
involves determining entity boundaries and rec-
ognizing categories of named entities, which is a
fundamental task in the field of natural language
processing (NLP). NER plays an important role
in many downstream NLP tasks, including in-
formation retrieval (Chen et al., 2015b), relation
extraction (Bunescu and Mooney, 2005), question
answering systems (Diefenbach et al., 2018),
and other applications. Compared with English
NER, Chinese named entities are more difficult
to identify due to their uncertain boundaries,
complex composition, and NE definitions within
the nest (Duan and Zheng, 2011).

One intuitive way to alleviate word boundary
problems is to first perform word segmentation
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Figure 1: Example of word character lattice with partial
input. Because of the characteristic of chain structure,
RNN-based methods must predict the label “度” using
only previous partial sequences “印度 (India)”, which
may suffer from word ambiguities without global
sentence semantics.

and then apply word sequence labeling (Yang
et al., 2016; He and Sun, 2017). However, the
rare gold-standard segmentation in NER datasets
and incorrectly segmented entity boundaries both
negatively impact the identification of named
entities (Peng and Dredze, 2015; He and Sun,
2016). Hence, character-level Chinese NER using
lexicon features to better leverage word informa-
tion has attracted research attention (Passos et al.,
2014; Zhang and Yang, 2018). In particular,
Zhang and Yang (2018) introduced a variant
of a long short-term memory network (lattice-
structured LSTM) that encodes all potential words
matching a sentence to exploit explicit word
information, achieving state-of-the-art results.

However, these methods are usually based on
RNN or CRF to sequentially encode a sentence,
while the underlying structure of language is not
strictly sequential (Shen et al., 2019). As a result,
these models would encounter serious word am-
biguity problems (Mich et al., 2000). Especially
in Chinese texts, the recognition of named entities
with overlapping ambiguous strings is even more
challenging. As shown in Figure 1, the middle
character of an overlapping ambiguous string can
constitute words with the characters to both their
left and their right (Yen et al., 2012), such as “河
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流 (River)” and “流经 (Flow through)”, which
share a common character “流”. However, RNN-
based models process characters in a strictly serial
order, which is similar to reading Chinese, and
a character has priority in being assigned to the
word on the left (Perfetti and Tan, 1999). More
seriously, RNN-based models must give the label
of “度” using only previous partial sequences “印
度 (India)”, which is problematic without seeing
the remaining characters. Hence, Ma et al. (2014)
suggested that the overlapping ambiguity must
be settled using sentence context and high-level
information.

In this work, we introduce a lexicon-based
graph neural network (LGN) that achieves Chi-
nese NER as a node classification task. The
proposed model breaks the serialization process-
ing structure of RNNs with better interaction
results between characters and words through
careful connections. The lexicon knowledge
connects related characters to capture the local
composition. Meanwhile, a global relay node is
designed to capture long-range dependency and
high-level features. LGN follows a neighborhood
aggregation scheme wherein the node represen-
tation is computed by recursively aggregating
its incoming edges and the global relay node.
Because of multiple iterations of aggregation,
the model can use global context information to
repeatedly compare ambiguous words for better
prediction. Experimental results show that the
proposed method can achieve state-of-the-art per-
formance on four NER datasets.

The main contributions of this paper can be
summarized as follows: 1) we propose the use
of a lexicon to construct a graph neural network
and achieve Chinese NER as a graph node classi-
fication task; 2) the proposed model can capture
global context information and local composi-
tions to tackle Chinese word ambiguity problems
through recursively aggregating mechanism; 3)
several experimental results demonstrate the ef-
fectiveness of the proposed method in different
aspects.

2 Related Work

2.1 Chinese NER with Lexicon.

Some previous Chinese NER researches have
compared word-based and character-based meth-
ods (Li et al., 2014) and show that due to the
limited performance of the current Chinese word

segmentation, character-based name taggers can
outperform their word-based counterparts (He and
Wang, 2008; Liu et al., 2010). Lexicon features
have been widely used to better leverage word
information for Chinese NER (Huang et al., 2015;
Luo et al., 2015; Gui et al., 2019). Especially,
Zhang and Yang (2018) proposed a lattice LSTM
to model characters and potential words simul-
taneously. However, their lattice LSTM used
a concatenation of independently trained left-to-
right and right-to-left LSTM to represent features,
which was also limited (Devlin et al., 2018). In
this work, we propose a novel character-based
method that treats the named entities as a node
classification task. The proposed method can
utilize global information (both the left and the
right context) (Dong et al., 2019) to tackle word
ambiguities.

2.2 Graph Neural Networks on Texts

Graph neural networks have been successfully ap-
plied to several text classification tasks (Veličković
et al., 2017; Yao et al., 2018; Zhang et al.,
2018b). Peng et al. (2018) proposed a GCN-
based deep learning model for text classifica-
tion. Zhang et al. (2018c) proposed using the
dependency parse trees to construct a graph for
relation extraction. Recently, multi-head attention
mechanisms (Vaswani et al., 2017) have been
widely used by graph neural networks during the
fusion process (Zhang et al., 2018a; Lee et al.,
2018), which can aggregate graph information by
assigning different weights to neighboring nodes
or associated edges. Given a set of vectors H ∈
Rn×d, a query vector q̂ ∈ R1×d, and a set of
trainable parameters W, this mechanism can be
formulated as:

Attention(q,K,V) = softmax(
qK>√
dk

)V

headi = Attention(q̂WQ
i ,HWK

i ,HWV
i )

MultiAtt(q̂,H) = [head1; . . . ; headk]WO. (1)

However, very little work has explored how to
use the relationship among characters to construct
graphs in raw Chinese texts. The few previous
studies on morphological processing in Chinese
proposed a decomposed lexical structure (Zhang
and Peng, 1992; Zhou and Marslen-Wilson, 1994)
in which Chinese words are represented in terms
of their constituent characters. Inspired by these
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Figure 2: Illustration of graph construction.

theoretical basis, we propose the use of graph neu-
ral networks to construct the relationship between
constituent characters and words.

3 Lexicon-Based Graph Neural Network

In this work, we propose the use of lexicon in-
formation to construct graph neural networks, and
achieve Chinese NER as a node classification task.
The proposed model obtains better interaction
among characters, words, and sentences through,
aggregation → update → aggregation → . . . ,
an efficient graph message passing architecture
(Gilmer et al., 2017).

3.1 Graph Construction and Aggregation

We use the lexicon knowledge to connect charac-
ters to capture the local composition and potential
word boundaries. In addition, we propose a global
relay node to capture long-range dependency
and high-level features. The implementation of
the aggregation module for nodes and edges is
similar to the multi-head attention mechanism in
Transformer (Vaswani et al., 2017).
Graph Construction The whole sentence is con-
verted into a directed graph, as shown in Figure
2, where each node represents a character and the
connection between the first and last characters
in a word can be treated as an edge. The state
of the i-th node represents the features of the i-
th token in a text sequence. The state of each
edge represents the features of a corresponding
potential word. The global relay node is used as
a virtual hub to gather the information from all
the nodes and edges, and then utilizes the global
information to help the node remove ambiguity.

Formally, let s = c1, c2, ..., cn denote a sen-
tence, where ci denotes the i-th character. The

c1 c5 c6 c7c4c3c2 ···

e1,2 e3,4 e4,5 e6,7

e1,3 e4,7

Global
Node

c1 c5 c6 c7c4c3c2 ···

e1,2 e3,4 e4,5 e6,7

e1,3 e4,7

Global
Node

c1 c5 c6 c7c4c3c2 ···

e1,2 e3,4 e4,5 e6,7

e1,3 e4,7

Global
Node

e ! c(a)

c ! e(b)

c, e ! g(c)

Figure 3: Aggregation in LGN. Red indicates the
element that is being updated, and black indicates other
elements involved in the aggregation. The aggregation
results are then used in update modules.

potential words in the lexicon that match a char-
acter subsequence can be formulated as wb,e =
cb, cb+1, ..., ce−1, ce, where the index of the first
and last letters are b and e, respectively. In this
work, we propose the use of a directed graph
G = (V, E) to model a sentence, where each
character ci ∈ V is a graph node and E is the set
of edges. Once a character subsequence matches a
potential word wb,e, we construct one edge eb,e ∈
E , pointing from the beginning character cb to the
ending character ce.

To capture global information, we add a global
relay node to connect each character node and
word edge. For a graph with n character nodes
and m edges, there are n +m global connections
linking each node and edge to the shared relay
node. With the global connections, every two non-
adjacent nodes are two-hop neighbors and receive
non-local information with a two-step update.

In addition, we consider the transpose of the
constructed graph1. It is another directed graph on
the same set of nodes with all of the edges reversed
compared to the orientation of the corresponding
edges in G. We denote the transpose graph as G>.
Similar to the bidirectional LSTM, we compose G
and G> as a bidirectional graph and concatenate
the node states of G and G> as final outputs.
Local Aggregation Given the node features cti

1https://en.wikipedia.org/wiki/Transpose graph

https://en.wikipedia.org/wiki/Transpose_graph
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and the incoming edge features Et
ci = {∀ketk,i},

we use multi-head attention to aggregate ek,i and
the corresponding predecessor nodes ck for each
node ci, where intuition is that the incoming edges
and predecessor nodes can effectively indicate
potential word boundary information, as shown
in Figure 3 (a). Formally, the node aggregation
function can be formulated as follows:

e→ c : ĉti = MultiAtt(cti, {∀k[ctk; etk,i]}), (2)

where t refers to the aggregation at the t-th step
and [·; ·] represents concatenation operation.

For edge aggregation, all the forces or potential
energies acting on the edges should be considered
(Battaglia et al., 2018). To exploit the word or-
thographic information, lexicons used to construct
edges should consider all the character composi-
tion, as shown in Figure 3 (b). Hence, different
from the classic graph neural networks that use the
features of terminal vertices to aggregate edges,
we use the whole matching character subsequence
Ct

b,e = {ctb, . . . , cte} for the edge aggregation
function, as follows:

c→ e : êtb,e = MultiAtt(etb,e,C
t
b,e). (3)

Given the character sequence embeddings C ∈
Rn×d and potential word embeddings E ∈ Rm×d,
we first fed C into an LSTM network to generate
contextualized representations as the initial node
states C0 (Zhang et al., 2018c), and we used the
word embeddings as the initial edge states E0.
Global Aggregation The underlying structure of
language is not strictly sequential (Shen et al.,
2019). To capture long-range dependency and
high-level features, as shown in Figure 3 (c), we
utilized a global relay node to aggregate each
character node and edge, as follows:

gt
c = MultiAtt(gt,Ct

1,n)

gt
e = MultiAtt(gt, {∀et ∈ E})
c, e→ g : ĝt = [gt

c;g
t
e]. (4)

After multiple exchanges of information (§ 3.2),
ĝt aggregates node vectors and edge vectors
to summarize the global information, and êtb,e
captures the compositional character information
to form the local composition. As a result, the pro-
posed model, with a thorough knowledge of both
local and non-local composition, would contribute
character nodes to distinguish ambiguous words
(Ma et al., 2014).

3.2 Recurrent-based Update Module
Node Update The effective use of sentence con-
text to tackle the ambiguity among the potential
words is still a key issue (Ma et al., 2014).
For a general graph, it is common practice to
apply recurrent-based modules to update hidden
representations of nodes (Scarselli et al., 2009; Li
et al., 2015). Hence, we fused the global feature ĝ
into a character nodes update module, as follows:

ξti = [ct−1i−1; c
t−1
i ], χt

i = [ĉt−1i ; ĝt−1]

âti = σ(Wa
i ξ

t
i +Va

iχ
t
i + ba

i ), a = {i,f , l}
ut
i = tanh(Wcuξ

t
i +Vcuχ

t
i + bcu)

iti,f
t
i, l

t
i = softmax(î

t

i, f̂
t

i, l̂
t

i)

cti = l
t
i � ct−1i−1 + f

t
i � ct−1i + iti � ut

i, (5)

where W, V, and b are trainable parameters.
ξti is the concatenation of adjacent vectors of a
context window. The window size in our model
is 2 and actually plays a role as a character
bigram, which has been shown to be useful for
representing characters in sequence labeling tasks
(Chen et al., 2015a; Zhang and Yang, 2018). χt

i

is the concatenation of the global information
vector ĝt and the e→c aggregation result ĉti.
The gates iti, f

t
i and lti control information flow

from global features to cti, which can make
further readjustment of the weights of the lexicon
attention (e→c) to tackle the ambiguities at the
subsequent aggregation step.
Edge Update To better leverage the interaction
among characters, words, and whole sentences,
we not only designed a recurrent module for
nodes but also for edges and the global relay node
(Battaglia et al., 2018). We update the edges as
follows:

χt
b,e = [êt−1b,e ; ĝt−1], a = {i,f}
âtb,e = σ(Wa

i e
t−1
b,e +Va

iχ
t
b,e + ba

i )

ut
b,e = tanh(Weue

t−1
b,e +Veuχ

t
b,e + beu)

itb,e,f
t
b,e = softmax(î

t

b,e, f̂
t

b,e)

etb,e = f
t
b,e � et−1b,e + itb,e � ut

b,e, (6)

where χt
b,e is the concatenation of ĝt and the

c→e aggregation result êtb,e. Similar to the node
update function, itb,e and f t

b,e are gates that control
information flow from et−1b,e and ĝt to etb,e.
Global Relay Node Update In terms of the global
state g, recent works (Zhang et al., 2018b; Guo
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et al., 2019) have shown the effectiveness of
sharing useful messages across contexts. Thus,
we also designed an update function for g, with
the initialization g0 = average(C,E). More
formally:

ât = σ(Wa
i g

t−1 +Va
i ĝ

t−1 + ba
i ), a = {i,f}

ut = tanh(Wgug
t−1 +Vguĝ

t−1 + bgu)

it,f t = softmax(î
t
, f̂

t
)

gt = f t � gt−1 + it � ut. (7)

3.3 Decoding and Training

A standard conditional random field (CRF) is used
in the graph message passing process. Given the
sequence of final node states cT1 , cT2 , . . . , cTn , the
probability of a label sequence ŷ = l̂1, l̂2, . . . , l̂n
can be defined as follows:

p(ŷ|s) = exp(
∑n

i=1 φ(l̂i−1, l̂i, c
T
i ))∑

y′∈Y(s) exp(
∑n

i=1 φ(l
′
i−1, l

′
i, c

T
i ))

,

(8)

where, Y(s) is the set of all arbitrary label
sequences. φ(li−1, li, c

T
i ) = W(li−1,li)c

T
i +

b(li−1,li), where W(li−1,li) and b(li−1,li) are the
weight and bias parameters specific to the labels
li−1 and li.

For training, we minimize the sentence-level
negative log-likelihood loss as follows:

L = −
N∑
i=1

log(p(yi|si)). (9)

For testing and decoding, we maximized the
likelihood to find the optimal sequence y∗:

y∗ = argmax
y∈Y(s)

p(y|s). (10)

We used the Viterbi algorithm to calculate the
above equations, which can reduce the computa-
tional complexity efficiently.

4 Experimental Setup

In this section, we describe the datasets across
different domains and the baseline methods ap-
plied for comparison. We also detail the hyper-
parameter configuration of the proposed model.
Our codes and datasets can be found at https:
//github.com/RowitZou/LGN.

Dataset Type Train Dev. Test

OntoNotes Sent. 15.7k 4.3k 4.3k
Char. 491.9k 200.5k 208.1k

MSRA Sent. 46.4k - 4.4k
Char. 2169.9k - 172.6k

Weibo Sent. 1.4k 0.27k 0.27k
Char. 73.8k 14.5k 14.8k

Resume Sent. 3.8k 0.46k 0.48k
Char. 124.1k 13.9k 15.1k

Table 1: Statistics of datasets.

4.1 Data

We conducted experiments on four Chinese NER
datasets. (1) OntoNotes 4.0 (Weischedel et al.,
2011): OntoNotes is a manually annotated mul-
tilingual corpus in the news domain that contains
various text annotations, including Chinese named
entity labels. Gold-standard segmentation is
available. We only use Chinese documents (about
16k sentences) and process the data in the same
way as Che et al. (2013). (2) MSRA (Levow,
2006): MSRA is also a dataset in the news domain
and contains three types of named entities: LOC,
PER, and ORG. Chinese word segmentation is
available in the training set but not in the test
set. (3) Weibo NER (Peng and Dredze, 2015):
It consists of annotated NER messages drawn
from the social media Sina Weibo2. The corpus
contains PER, ORG, GPE, and LOC for both
named entity and nominal mention. (4) Resume
NER (Zhang and Yang, 2018): It is composed
of resumes collected from Sina Finance3 and is
annotated with 8 types of named entities. Both
Weibo and Resume datasets do not contain the
gold-standard Chinese segmentation. Statistics of
the above datasets are detailed in Table 1.

4.2 Lexicon

We used the lexicon over automatically seg-
mented Chinese Giga-Word 4, obtaining 704.4k
words in the final lexicon. The embeddings of
lexicon words were pre-trained using word2vec
(Mikolov et al., 2013) and fine-tuned during
training. According to the lexicon statistics,
the number of single-character, two-character and
three-character words are 5.7k, 291.5k, 278.1k,
respectively. It covers 31.2% of the named entities
in the four data sets, which means most of the
lexicon words are not named entities. For a

2https://www.weibo.com
3https://finance.sina.com.cn/stock/
4https://catalog.ldc.upenn.edu/LDC2011T13

https://github.com/RowitZou/LGN
https://github.com/RowitZou/LGN
https://www.weibo.com
https://finance.sina.com.cn/stock/
https://catalog.ldc.upenn.edu/LDC2011T13
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fair comparison, we used such a general lexicon
instead of a professional named entity lexicon in
our experiments and we still obtained competitive
results. Empirically, a high-quality lexicon could
lead to further performance improvements.

Character embeddings are pre-trained on Chi-
nese Giga-Word using word2vec and fine-tuned at
model training. Both the pre-trained character and
lexicon word embeddings are released by Zhang
and Yang (2018)5.

4.3 Comparison Methods

We applied the character-level and word-level
methods as baselines for comparison, which incor-
porate the bichar, softword, and lexicon features.
We also compared several state-of-the-art methods
on the four datasets to verify the effectiveness
of our method. We used the BMES tagging
scheme for both character-level and word-level
NER tagging.

Character-level methods: These methods are
based on character sequences. We applied the bi-
directional LSTM (Hochreiter and Schmidhuber,
1997) and CNN (Kim, 2014) as classic baseline
methods.

Character-level methods + bichar + soft-
word: Character bigrams are useful for capturing
adjacent features and representing characters. We
concatenated bigram embeddings with character
embeddings to better leverage the bigram infor-
mation. In addition, we added the segmentation
information by incorporating segmentation label
embeddings into the character representation. The
BMES scheme is used for representing the word
segmentation (Xue and Shen, 2003).

Word-level methods: For the datasets with
gold segmentation, we directly employed word-
level NER methods to evaluate the performance,
which are denoted as Gold seg. Otherwise, we
first used open source segmentation toolkit6 to
automatically segment the datasets. Then word-
level NER methods are applied, which are denoted
as Auto seg. The bi-directional LSTM and CNN
are also applied as baselines.

Word-level methods + char + bichar: For
characters in the subsequence wb,e, we first used
a bi-directional LSTM to learn their hidden states
and bigram states. We then augmented the word-
level methods with the character-level features.

5https://github.com/jiesutd/LatticeLSTM
6https://github.com/lancopku/PKUSeg-python

Input Models P R F1

Gold
seg.

Yang et al. (2016) 65.59 71.84 68.57
Yang et al. (2016)*† 72.98 80.15 76.40
Che et al. (2013)* 77.71 72.51 75.02
Wang et al. (2013)* 76.43 72.32 74.32
Word-level LSTM 76.66 63.60 69.52
+char+bichar 78.62 73.13 75.77
Word-level CNN 66.84 62.99 64.86
+char+bichar 68.22 72.37 70.24

Auto
seg.

Word-level LSTM 72.84 59.72 65.63
+char+bichar 73.36 70.12 71.70
Word-level CNN 54.62 55.20 54.91
+char+bichar 64.69 65.09 64.89

No
seg.

Char-level LSTM 68.79 60.35 64.30
+bichar+softword 74.36 69.43 71.89
Char-level CNN 56.78 60.99 58.81
+bichar+softword 59.60 65.14 62.25
Lattice LSTM 76.35 71.56 73.88
LGN 76.13 73.68 74.89

Table 2: Main results on OntoNotes.

Lattice LSTM: Lattice LSTM (Zhang and
Yang, 2018) incorporates word information into
character-level recurrent units, which can avoid
segmentation errors. This method achieved state-
of-the-art performance on the four datasets.

4.4 Hyper-parameter Settings
We used the Adam (Kingma and Ba, 2014) as the
optimizer, with a learning rate of 2e-5 for large
datasets like Ontonotes and MSRA, while a rate
of 2e-4 for small datasets Weibo and Resume. A
densely connected structure (Huang et al., 2017)
was applied, which composites all hidden states
from previous update steps as final inputs for
aggregation modules at step t. To further reduce
overfitting, we employed the Dropout (Srivastava
et al., 2014) with a rate of 0.5 for embeddings
and a rate of 0.2 for aggregation module outputs.
The embedding size and state size were both set to
50. The head number of multi-head attention was
10. The head dimension was set to 10 for small
datasets like Weibo and Resume, while the head
dimension was 20 for Ontonotes and MSRA. Step
number T was selected among {1, 2, 3, 4, 5, 6},
which is detailed analyzed in § 5.2. The standard
Precision (P), Recall (R), and F1-score (F1) were
used as evaluation metrics.

5 Results and Discussion

In this section, we demonstrate the main results
of LGN for the Chinese NER task across different
domains. The model achieving best results on
the development set was chosen for the final
evaluation on the test set. We also probe the

https://github.com/jiesutd/LatticeLSTM
https://github.com/lancopku/PKUSeg-python
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Models P R F1
Chen et al. (2006) 91.22 81.71 86.20
Zhang et al. (2006)* 92.20 90.18 91.18
Zhou et al. (2013) 91.86 88.75 90.28
Lu et al. (2016) - - 87.94
Dong et al. (2016) 91.28 90.62 90.95
Word-level LSTM 90.57 83.06 86.65
+char+bichar 91.05 89.53 90.28
Char-level LSTM 90.74 86.96 88.81
+bichar+softword 92.97 90.80 91.87
Lattice LSTM 94.18 92.20 93.18
LGN 94.19 92.73 93.46

Table 3: Main results on MSRA.

effectiveness and interpretability of LGN by ex-
planatory experiments.

5.1 Main Results

OntoNotes Table 27 shows the results of word-
level and character-level methods on OntoNotes
with various settings. In the gold or automatic
segmentation settings, the char and bichar features
boost the performance of word-level methods. In
particular, with the gold-standard segmentation,
these methods are able to achieve competitive
state-of-the-art results on the dataset (Che et al.,
2013; Wang et al., 2013). However, the gold-
standard segmentation is not always available. On
the other hand, the automatic segmentation may
induce word segmentation errors and result in a
loss of performance for the downstream NER task.
A feasible solution is applying character-level
methods to avoid the need for word segmentation.
Our proposed LGN is a character-level model
based on graphic structure. It outperforms lattice
LSTM by 1.01% in F1 score and leads to a 3.00%
increment of F1 score over the LSTM with bichar
and softword features. The LGN also significantly
outperforms the word-level models with automatic
segmentation.

MSRA/Weibo/Resume Results on the MSRA,
Weibo, and Resume datasets are shown in Ta-
ble 3, 4, and 5, respectively. Gold-standard
segmentation is not available for the Weibo and
Resume datasets and the test set of MSRA. The
best classic methods leverage rich handcrafted
features (Chen et al., 2006; Zhang et al., 2006;
Zhou et al., 2013), embedding features (Lu et al.,
2016; Peng and Dredze, 2015), radical features
(Dong et al., 2016), cross-domain, and semi-

7In Table 2, 3, 4 and 5, the models with * use external
labeled data for semi-supervised learning. Those with † also
use discrete features.

Models NE NM All
Peng and Dredze (2015) 51.96 61.05 56.05
Peng and Dredze (2015)* 55.28 62.97 58.99
He and Sun (2016) 50.60 59.32 54.82
He and Sun (2017)* 54.50 62.17 58.23
Word-level LSTM 36.02 59.38 47.33
+char+bichar 43.40 60.30 52.33

Char-level LSTM 46.11 55.29 52.77
+bichar+softword 50.55 60.11 56.75

Lattice LSTM 53.04 62.25 58.79
LGN 55.34 64.98 60.21

Table 4: Main results on Weibo.

Models P R F1
Word-level LSTM 93.72 93.44 93.58
+char+bichar 94.07 94.42 94.24
Char-level LSTM 93.66 93.31 93.48
+bichar+softword 94.53 94.29 94.41
Lattice LSTM 94.81 94.11 94.46
LGN 95.28 95.46 95.37

Table 5: Main results on Resume.

supervised data (He and Sun, 2017) for Chinese
NER. Compared with the existing methods and
the word-level and character-level methods, our
LGN model gives the best results by a large
margin. Moreover, different from the lattice
LSTM, which also leverages lexicon features, our
LGN model integrates lexicon information into the
graph neural network in a more effective fashion.
As a result, it outperforms the lattice LSTM on all
three datasets.

5.2 Steps of Message Passing
To investigate the influence of step number T
during the update process, we analyzed the per-
formance of LGN under different step numbers.
Figure 4 illustrates the variation of F1 score on the
development sets8 as the step number increases.
We used D-F1 to represent the F1 scores at
different steps minus the best results.

The results indicate that the number of update
steps is crucial to the performance of LGN, which
peaks when T ≥ 3 on all four datasets. The
F1 score decreases 1.20% on average against the
best results when the step number is less than 3.
In particular, the F1 score of the OntoNotes and
Weibo datasets even suffered a serious reduction
around 1.5% and 1.8%, respectively. After several
rounds of updates, the model gives steady and
competitive results and reveals that LGN benefits
from the update process. Empirically, at each

8Since the MSRA dataset does not have the development
set, we used the test set instead.
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Figure 4: F1 variation under different update steps on
the development sets. D-F1 represents the F1 scores at
different steps minus the best results.

update step, graph nodes aggregate information
from their neighbors and incrementally gain more
information from further reaches of the graph as
the process iterates (Hamilton et al., 2017). In
the LGN model, more valuable information can be
captured through the recursive aggregation.

5.3 Ablation Experiments

To study the contribution of each component in
LGN, we conducted ablation experiments on the
four datasets and display the results in Table 6.
The results show that the model’s performance
is degraded if the global relay node is removed,
indicating that global connections are useful in
the graph structure. We also find that lexicons
play an important role in character-level NER.
In particular, the performance of the OntoNotes,
MSRA and Weibo datasets are seriously hurt by
over 3.0% without lexicons. Moreover, missing
both edges and the global node will cause a further
performance loss.

To better illustrate the advantage of our model,
we remove the CRF decoding layer and simplify
the structure to a non-bidirectional version on both
LGN and the lattice LSTM model. The results
show that, with a single direction structure, the
LGN achieves a higher F1 score by 0.77% on
average than the lattice LSTM. In addition, the two
models have an obvious performance gap when
they get rid of the CRF layer. The F1 score
of LGN decreases by 3.59% on average on the
four datasets without CRF. In contrast, the lattice
LSTM decreases by 6.24%. It manifests the LGN
has stronger ability to model sentences.

5.4 Performance Against Sentence Length

Figure 5 shows the performance of LGN and
several baseline models on the OntoNotes dataset.

Models Onto-
Notes MSRA Weibo Resume

LGN 71.96 93.46 62.42 94.43
-global 71.26 92.99 62.30 94.31
-edge /lexicon 65.88 89.63 59.19 94.05
-edge-global 65.34 89.47 58.62 94.09
-bidirection 67.52 90.98 59.67 94.23
-crf 66.37 91.13 57.73 92.70

Lattice LSTM 71.62 93.18 61.64 93.64
-bidirection 66.63 90.72 58.75 93.21
-crf 61.74 85.38 55.71 92.31

Table 6: An ablation study of LGN. F1 scores were
evaluated on the development sets.

LGN
Lattice LSTM
Word + char + bichar
Char + bichar + softword

F1
 S

co
re

 (%
)

70.0

75.0

80.0

Sentence Length
20 < 40 60 80 100 >100

Figure 5: F1 score against sentence length on the
OntoNotes dateset.

We split the dataset into six parts according to
the sentence length. The lattice is a strong
baseline that outperforms the word+char+bichar
and char+bichar+softword models over different
sentence lengths. However, the lattice accuracy
decreases significantly as the sentence length
increases. In contrast, the LGN not only gives
higher results over short sentences, but also shows
its effectiveness and robustness when the sentence
length is more than 80 characters. It gives a higher
F1 score in most cases compared to the baselines,
which indicates that global sentence semantics
and long-range dependency can be better captured
under the graph structure.

5.5 Case Study

Table 7 illustrates an example that probes the
ability of LGN to tackle the word ambiguity
problems. The lattice LSTM ignores the sentence
context and wrongly identifies “印度(India)”.
Removing the global relay node, LGN also makes
the same mistake, which indicates that global
connections are indispensable and can capture
high-level information to help LGN better un-
derstand the sentence context. In contrast, with
the global relay node, the LGN can correctly
identify the entity boundary, even though the
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Sentence 印度河流经巴基斯坦
The Indus River flows through Pakistan.

Gold seg 印度河 流经 巴基斯坦
The Indus River, flow through, Pakistan

Lexicon words 印度 河流 印度河 流经 巴基斯坦
India, river, The Indus River, flow through, Pakistan

Lattice LSTM
B E (GPE) O O O B M M E (GPE)
印度 (GPE)河流经巴基斯坦 (GPE)
India (GPE) ... Pakistan (GPE).

LGN
-global

B E (GPE) O O O B M M E (GPE)
印度 (GPE)河流经巴基斯坦 (GPE)
India (GPE) ... Pakistan (GPE).

LGN
(one step)

B M E (GPE) O O B M M E (GPE)
印度河 (GPE)流经巴基斯坦 (GPE)
The Indus River (GPE) flows through Pakistan (GPE).

LGN
B M E (LOC) O O B M M E (GPE)
印度河 (LOC)流经巴基斯坦 (GPE)
The Indus River (LOC) flows through Pakistan (GPE).

Table 7: An example with overlapping ambiguity.
Contents with red and blue colors represent incorrect
and correct entities, respectively.

graph composition states are updated for only
one step. However, it gives an incorrect class
of the entity “印度河(The Indus River)”, which
is a location entity but not a GPE (Geo-Political
Entity). Because of the multi-step graph message
passing process, the LGN is able to fuse the
context information and finally detects the correct
location entity in success.

6 Conclusion

In this work, we investigated a GNN-based ap-
proach to alleviate the word ambiguity in Chinese
NER. Lexicons are used to construct the graph and
provide word-level features. The LGN enables
interactions among different sentence composi-
tions and can capture non-sequential dependencies
between characters based on the global sentence
semantics. As a result, it shows improved per-
formance significantly on multiple datasets in
different domains. The explanatory experiments
also illustrate the effectiveness and interpretability
of our proposed model.
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