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Abstract

The identification of complex semantic struc-
tures such as events and entity relations, al-
ready a challenging Information Extraction
task, is doubly difficult from sources written
in under-resourced and under-annotated lan-
guages. We investigate the suitability of cross-
lingual structure transfer techniques for these
tasks. We exploit relation- and event-relevant
language-universal features, leveraging both
symbolic (including part-of-speech and depen-
dency path) and distributional (including type
representation and contextualized representa-
tion) information. By representing all entity
mentions, event triggers, and contexts into this
complex and structured multilingual common
space, using graph convolutional networks, we
can train a relation or event extractor from
source language annotations and apply it to
the target language. Extensive experiments
on cross-lingual relation and event transfer
among English, Chinese, and Arabic demon-
strate that our approach achieves performance
comparable to state-of-the-art supervisedmod-
els trained on up to 3,000 manually annotated
mentions: up to 62.6% F-score for Relation
Extraction, and 63.1% F-score for Event Ar-
gument Role Labeling. The event argument
role labeling model transferred from English
to Chinese achieves similar performance as the
model trained from Chinese. We thus find
that language-universal symbolic and distribu-
tional representations are complementary for
cross-lingual structure transfer.

1 Introduction

Advanced Information Extraction (IE) tasks entail
predicting structures, such as relations between en-
tities, and events involving entities. Given a pair of
entity mentions, Relation Extraction aims to iden-
tify the relation between the mentions and clas-
sify it by predefined type. Event Extraction aims
to identify event triggers and their arguments in

Figure 1: Information Network example constructed by
Event (blue) and Relation (green dashed) Extraction.

unstructured texts and classify them respectively
by predefined types and roles. As Figure 1 il-
lustrates, both tasks entail predicting an informa-
tion network (Li et al., 2014) for each sentence,
where the entity mentions and event triggers are
nodes, and the relations and event-argument links
are edges labeled with their relation and argument
roles, respectively.
There are certain relations and events that are

of primary interest to a given community and so
are reported predominantly in the low-resource
language data sources available to that commu-
nity. For example, though English language news
will occasionally discuss the Person Aung San
Suu Kyi, the vast majority of Physical-Located
relations and Meeting events involving her are
only reported locally in Burmese news, and thus,
without Burmese relation and event extraction,
a knowledge graph of this person will lack this
available information. Unfortunately, publicly-
available gold-standard annotations for relation
and event extraction exist for only a few languages
(Doddington et al., 2004; Getman et al., 2018), and
Burmese is not among them. Compared to other
IE tasks such as name tagging, the annotations for
Relation and Event Extraction are also more costly
to obtain, because they are structured and require
a rich label space.
Recent research (Lin et al., 2017) has found that

relational facts are typically expressed by identi-
fiable patterns within languages and has shown
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Figure 2: Multilingual common semantic space and cross-lingual structure transfer.

that the consistency in patterns observed across
languages can be used to improve relation extrac-
tion. Inspired by their results, we exploit language-
universal features relevant to relation and event ar-
gument identification and classification, by way
of both symbolic and distributional representa-
tions. For example, language-universal POS tag-
ging and universal dependency parsing is avail-
able for 76 languages (Nivre et al., 2018), en-
tity extraction is available for 282 languages (Pan
et al., 2017), and multi-lingual word embeddings
are available for 44 languages (Bojanowski et al.,
2017; Joulin et al., 2018). As shown in Figure 2,
even for distinct pairs of entity mentions (colored
pink and blue, in both English and Russian), the
structures share similar language-universal sym-
bolic features, such as a common labeled depen-

dency path, as well as distributional features, such
as multilingual word embeddings.

Based on these language-universal representa-
tions, we then project all entity mentions, event
triggers and their contexts into one multilingual
common space. Unlike recent work on multilin-
gual common space construction that makes use of
linear mappings (Mikolov et al., 2013; Rothe et al.,
2016; Zhang et al., 2016; Lazaridou et al., 2015;
Xing et al., 2015; Smith et al., 2017) or canonical
correlation analysis (CCA) (Ammar et al., 2016;
Faruqui and Dyer, 2014; Lu et al., 2015) to trans-
fer surface features across languages, our major
innovation is to convert the text data into struc-
tured representations derived from universal de-
pendency parses and enhanced with distributional
information to capture individual entities as well



315

as the relations and events involving those entities,
so we can share structural representations across
multiple languages.
Then we construct a novel cross-lingual struc-

ture transfer learning framework to project source
language (SL) training data and target language
(TL) test data into the common semantic space, so
that we can train a relation or event extractor from
SL annotations and apply the resulting extractor
to TL texts. We adopt graph convolutional net-
works (GCN) (Kipf and Welling, 2017; Marcheg-
giani and Titov, 2017) to encode graph structures
over the input data, applying graph convolution
operations to generate entity and word represen-
tations in a latent space. In contrast to other en-
coders such a Tree-LSTM (Tai et al., 2015), GCN
can cover more complete contextual information
from dependency parses because, for each word,
it captures all parse tree neighbors of the word,
rather than just the child nodes of the word. Using
this shared encoder, we treat the two tasks of re-
lation extraction and event argument role labeling
as mappings from the latent space to relation type
and to event type and argument role, respectively.
Extensive experiments on cross-lingual relation

and event transfer among English, Chinese, and
Arabic show that our approach achieves highly
promising performance on both tasks.

2 Model

2.1 Overview

Our cross-lingual structure transfer approach (see
Figure 2) consists of four steps: (1) Convert each
sentence in any language into a language-universal
tree structure based on universal dependency pars-
ing. (2) For each node in the tree structure, cre-
ate a representation from the concatenation of
multilingual word embedding, language-universal
POS embedding, dependency role embedding and
entity-type embedding, so that all sentences, inde-
pendent of their language, are represented within
one shared semantic space. (3) Adopt GCN to
generate contextualized word representations by
leveraging information from neighbors derived
from the dependency parsing tree, and (4) Using
this shared semantic space, train relation and event
argument extractors with high-resource language
training data, and apply the resulting extractors to
texts of low-resource languages that do not have
any relation or event argument annotations.

2.2 Tree Representations

Most previous approaches regard a sentence as
a linear sequence of words, and incorporate
language-specific information such as word or-
der. Unlike sequence representations, tree repre-
sentations such as constituency trees and depen-
dency trees are typically constructed following a
combination of syntactic principles and annotation
guidelines designed by linguists. The resulting
structures, such as the verb – subject relation
and the verb – object relation, are found across
languages. In this paper, we choose dependency
trees as the sentence representations because the
community has made great efforts at developing
language-universal dependency parsing resources
across 83 languages (Nivre et al., 2016).
We define the dependency-based tree represen-

tation for a sentence as G = (V,E), where
V = {v1, v2, ..., vN} is a set of words, and E =
{e1, e2, ..., eM} is a set of language-universal syn-
tactic relations. N is the number of words in the
sentence and M is the number of dependency re-
lations between words. To make this tree repre-
sentation language-universal, we first convert each
tree node into a vector which is a concatenation of
three language-universal representations at word-
level: multilingual word embedding, POS embed-
ding (Nivre et al., 2016), entity-type embedding,
and dependency relation embedding. More details
are reported in Section 3.2.

2.3 GCN Encoder

Structural information is important for relation ex-
traction and event argument role labeling, thus we
aim to generate contextualized word representa-
tions by leveraging neighbors in dependency trees
for each node.
Our GCN encoder is based on the monolingual

design by Zhang et al. (2018b). The graphical
sentence representation obtained from dependency
parsing of a sentence with N tokens is converted
into an N × N adjacency matrix A, with added
self-connections at each node to help capture infor-
mation about the current node itself, as in Kipf and
Welling (2017). Here, Ai,j = 1 denotes the pres-
ence of a directed edge from node i to node j in the
dependency tree. Initially, each node contains dis-
tributional information about the ith word, includ-
ingword embeddingxw

i , embeddings for symbolic
information including its POS tag xp

i , dependency
relation xd

i and entity type xe
i .
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We represent this initial representation h0
i as fol-

lows:
h
(0)
i = xw

i ⊕ xp
i ⊕ xd

i ⊕ xe
i

Then, at the kth layer of convolution, the hidden
representation is derived from the representations
of its neighbors at the (k − 1)th layer. Thus, the
hidden representation at the kth layer for the ith

node is computed as:

h
(k)
i = ReLU

(
N∑
j=0

AijW
(k)h

(k−1)
j

di + b(k)

)

where W is the weight vector, b is the bias term,
and di represents the degree of the ith node. The
denominator in the equation denotes the normal-
ization factor to neutralize the negative impact of
node degree (Zhang et al., 2018b). The final hid-
den representation of each node after the kth layer
is the encoding of each word h(k)

i in our language
universal common space, and incorporates infor-
mation about neighbors up to k hops away in the
dependency tree.

2.4 Application on Relation Extraction
The GCN encoder generates the final hidden rep-
resentation, h(k)i , for each of the n nodes. We per-
form max-pooling over these final node represen-
tations to obtain a single vector representation for
the sentence, hs. Similar to previous work (Zhang
et al., 2018b), we also use the following recipe to
obtain relation type classification results for each
mention pair in a sentence: (1) max-pooling over
the final representations of the nodes represent-
ing entity mentions, to get a single vector repre-
sentation for each mention in a pair under con-
sideration, hm1 and hm2 , (2) a concatenation of
three results of max-pooling: ([hm1 ;hs;hm2 ]) to
combine contextual sentence information with en-
tity mention information (Santoro et al., 2017;
Lee et al., 2017; Zhang et al., 2018b), (3) a lin-
ear layer to generate a combined representation of
these concatenated results, and (4) a Softmax out-
put layer for relation type classification. The ob-
jective function used here is as follows:

Lr =

N∑
i=1

Li∑
j=1

yij log(σ(U r · [hm1
i ;hs

ij ;h
m2
j ]))

(1)

where U r is a weight matrix.

2.5 Application on Event Argument Role
Labeling

Event argument role labeling distinguishes argu-
ments from non-arguments and classifies argu-
ments by argument role. To label the role of an
argument candidate (xaj ) for an event trigger (xti),
we first generate the sentence representation hs,
argument candidate representation ha, and trigger
representationht by applying pooling on sentence,
argument candidate xaj and event trigger xti respec-
tively, which is the same as that for relation extrac-
tion. The mapping function from the latent space
to argument roles is composed of a concatenation
operation ([ht;hs;ha]), a linear layer (Ua) and a
Softmax output layer:

La =
N∑
i=1

Li∑
j=1

yij log(σ(Ua · [ht
i;h

s
ij ;h

a
j ])) (2)

where N is the number of event mentions, Li

is the number of argument candidates for ith event
mention and σ is the Sigmoid function.

3 Experiments

3.1 Data and Evaluation Metrics

Relation
Mentions

Event
Mentions

Event
Arguments

English 8,738 5,349 9,793
Chinese 9,317 3,333 8,032
Arabic 4,731 2,270 4,975

Table 1: Data statistics.

We choose the Automatic Content Extraction
(ACE) 2005 corpus (Walker et al., 2006) for our
experiments because it contains the most compre-
hensive gold-standard relation and event annota-
tions for three distinct languages: English, Chinese
and Arabic (see Table 1). Our target ontology in-
cludes the 7 entity types, 18 relation subtypes and
33 event subtypes defined in ACE. We randomly
choose 80% of the corpus for training, 10% for
development and 10% for blind test. We down-
sample the negative training instances by limiting
the number of negative samples to be no more than
the number of positive samples for each document.
For data preprocessing, we apply the Stanford

CoreNLP toolkit (Manning et al., 2014) for Chi-
nese word segmentation and English tokenization,
and the API provided by UDPipe (Straka and
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Straková, 2017) for Arabic tokenization. We use
UDPipe1 for POS tagging and dependency parsing
for all three languages.
We follow the following criteria in previous

work (Ji and Grishman, 2008; Li et al., 2013; Li
and Ji, 2014) for evaluation:

• A relation mention is considered correct if its
relation type is correct, and the head offsets of
the two related entity mention arguments are
both correct.

• An event argument is correctly labeled if its
event type, offsets, and role label match any
of the reference argument mentions.

3.2 Training Details
We use themultilingual word embeddings released
by (Joulin et al., 2018) which are based on aligning
monolingual embeddings learned by fastText (Bo-
janowski et al., 2017) from Wikipedia. We adopt
the universal POS tag set (17 word categories) and
37 categories of dependency relations defined by
theUniversal Dependencies program (Nivre et al.,
2016), and seven entity types defined in ACE: per-
son, geopolitical entity, organization, facility, lo-
cation, weapon and vehicle. Table 2 shows the hy-
perparameters of our model.

Hyperparameter Value
word embedding size 300
POS embedding size 30
entity embedding size 30
dependency relation embedding size 30
hidden dimension size 200
dropout 0.5
number of layers 2
pooling function max pooling
mlp layers 2
learning rate 0.1
learning rate decay 0.9
batch size 50
optimization SGD

Table 2: GCN hyperparameters.

3.3 Overall Performance
In order to fully analyze the cross-lingual learn-
ing capabilities of our framework, we assess its

1Universal Dependencies 2.3 models: english-ewt-
ud-2.3-181115.udpipe, chinese-gsd-ud-2.3-181115.udpipe,
arabic-padt-ud-2.3-181115.udpipe

performance by applying models trained with var-
ious combinations of training and test data from
these three languages, as shown in Tables 3 and
4. We can see that the results are promising.
For both tasks, the models trained from English
are best, followed by Chinese, and then Arabic.
We find that extraction task performance degrades
as the accuracy of language-dependent tools (for
sentence segmentation, POS tagging, dependency
parsing) degrades.

Using English as training data, our cross-lingual
transfer approach achieves similar performance
on Chinese event argument role labeling (59.0%),
compared to the model trained from Chinese an-
notations (59.3%), which is much higher than the
best reported English-to-Chinese transfer result on
event argument role labeling (47.7%) (Hsi et al.,
2016).

We also show polyglot results for event argu-
ment role labeling in Table 4, by combing the train-
ing data from multiple languages. We observe
that our model benefits from the combination of
training data of multiple languages. The polyglot
transfer learning does not provide further gains to
relation extraction because the model converges
quickly on a small amount of training data.

Train
Test English Chinese Arabic

English 68.2 42.5 58.7
Chinese 62.6 69.4 54.0
Arabic 58.6 35.2 67.4

Table 3: Relation Extraction: overall performance (F-
score %) using perfect entity mentions.

Train
Test English Chinese Arabic

English 63.9 59.0 61.8
Chinese 51.6 59.3 60.6
Arabic 43.1 50.1 64.0
English + Chinese – – 63.1
English + Arabic – 60.1 –
Chinese + Arabic 51.9 – –

Table 4: Event Argument Role Labeling results (F1 %)
with perfect event triggers.
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Feature Chinese Arabic
Multilingual Word Embedding 40.2 53.8
+ POS Embedding 40.1 54.9
+ Entity Embedding 40.8 56.9
+ Dependency Relation Embedding 42.5 58.7

Table 5: Relation Extraction: Contribution of adding
each language-universal feature consecutively for rela-
tion extraction on Arabic and Chinese test sets, using
the model trained on English (F1 scores (%)).

3.4 Ablation Study
Tables 5 and 6 show the impact of each feature cat-
egory. We can see that all categories help except
Chinese POS features for Relation Extraction and
Arabic POS features for Event Argument Role La-
beling.
Many Chinese word segmentation errors oc-

cur on tokens involved in names. For example,
“总统(NOUN, president) 萨姆(PROPN, Samuel)
·(PUNCT) 努乔马(PROPN, Nujoma)” is mis-
takenly tagged as “总(NOUN) 统萨姆(PROPN)
·(PUNCT)努乔(NOUN)马(NOUN)”.
In Arabic, sometimes one word is a combination

of Noun and Verb. For example, the single word
”الإسرائيلي“ means “Israeli conflict” in English, in-
cluding both a trigger and an argument, which are
not separated by our tokenizer. In contrast, two en-
tity mentions are unlikely to be combined into one
word in Arabic, thus Relation Extraction does not
suffer from tokenization errors and corresponding
POS features.

Feature Chinese Arabic
Multilingual Word Embedding 52.4 56.6
+ POS Embedding 57.1 37.8
+ Entity Embedding 58.3 41.4
+ Dependency Relation Embedding 59.0 61.8

Table 6: Event Extraction: Contributions of adding
each language-universal feature consecutively for event
argument role labeling on Arabic and Chinese test
datasets, using a model trained on English (F1 scores
(%)).

3.5 Comparison with Supervised Approach
We also compare the results with supervised
monolingual models trained from manual anno-
tations in the same language. Figures 3 and 4
show the learning curves of these supervised mod-
els. For event argument role labeling, we can
see that without using any annotations for the tar-
get language, our approach achieves performance
comparable to the supervised models trained from

more than 3,000 manually annotated event ar-
gument mentions, which equal to approximately
1,326 Chinese sentences and 1,141 Arabic sen-
tences based on the statistics of ACE data.
Our model performs particularly well on

relation types or argument roles that require
deep understanding of wide contexts involv-
ing complex syntactic and semantic struc-
tures, such as PART-WHOLE:Artifact, PART-
WHOLE:Geographical, GEN-AFF:Org-Location
and ORG-AFF:Employment relations, and Injure:
Victim argument role. Despite only having 14
training instances, our model achieves near
100% F-score on PART-WHOLE:Artifact rela-
tions when transferred from English to Chinese.
Our model achieves 86% F1 score on PART-
WHOLE:Geographical relations when transferred
from English to Arabic, and 73% and 79% F1
scores on GEN-AFF:Org-Location relations
when transferred from English to Chinese and
to Arabic, respectively. In an Injure event, a
Person can either be an Agent or a Victim. Surface
lexical embedding features are often not sufficient
to disambiguate them. Our model is effective
at transferring structural information such as
dependency relations between words, and obtains
72.97% F1 score on labeling Injure: Victim when
transferred from English to Chinese, and 75.43 %
from English to Arabic.
In addition, our model achieves very high per-

formance on event argument roles for which entity
type is a strong indicator. For example, a weapon
is much more likely to play as an Instrument rather
than a Target in an Attack. Our model achieves
89.9% F1 score on Attack: Instrument and 91.4%
F1 score onPersonnel: POSITION argument roles
when transferred from English to Chinese.

3.6 Using System Extracted Name Mentions

Target Language F1 score
Chinese 56.9
Arabic 60.1

Table 7: Event Argument Role Labeling results (F1 %)
on Chinese and Arabic using English as training data
(with system generated entity mentions)

Table 7 shows the results of event argument role
labeling on Chinese and Arabic entity mentions
automatically extracted by Stanford CoreNLP in-
stead of manually annotated mentions. The sys-
tem extracted entity mentions introduce noise and
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(a) Target Language: Chinese (b) Target Language: Arabic

Figure 3: Relation Extraction: Comparison between supervised monolingual GCNmodel and cross-lingual transfer
learning.

(a) Target Language: Chinese (b) Target Language: Arabic

Figure 4: Event Argument Role Labeling: Comparison between supervised monolingual GCN model and cross-
lingual transfer learning.

thus decrease the performance of the model, but
the overall results are still promising.

4 Related Work

A large number of supervised machine learning
techniques have been used for English event ex-
traction, including traditional techniques based on
symbolic features (Ji and Grishman, 2008; Liao
and Grishman, 2011), joint inference models (Li
et al., 2014; Yang and Mitchell, 2016), and re-
cently with neural networks (Nguyen and Grish-
man, 2015a; Nguyen et al., 2016; Chen et al., 2015;
Nguyen and Grishman, 2018; Liu et al., 2018b; Lu
and Nguyen, 2018; Liu et al., 2018a; Zhang et al.,
2018a, 2019). English relation extraction in the
early days also followed supervised paradigms (Li
and Ji, 2014; Zeng et al., 2014; Nguyen and Gr-
ishman, 2015b; Miwa and Bansal, 2016; Pawar
et al., 2017; Bekoulis et al., 2018; Wang et al.,
2018b). Recent efforts have attempted to reduce
annotation costs using distant supervision (Mintz

et al., 2009; Surdeanu et al., 2012;Min et al., 2013;
Angeli et al., 2014; Zeng et al., 2015; Quirk and
Poon, 2017; Qin et al., 2018; Wang et al., 2018a)
through knowledge bases (KBs), where entities
and static relations are plentiful. Distant super-
vision is less applicable for the task of event ex-
traction because very few dynamic events are in-
cluded in KBs. These approaches, however, incor-
porate language-specific characteristics and thus
are costly in requiring substantial amount of anno-
tations to adapt to a new language (Chen and Vin-
cent, 2012; Blessing and Schütze, 2012; Li et al.,
2012; Danilova et al., 2014; Agerri et al., 2016; Hsi
et al., 2016; Feng et al., 2016).

Regardless of the recent successes in applying
cross-lingual transfer learning to sequence label-
ing tasks, such as name tagging (e.g., (Mayhew
et al., 2017; Lin et al., 2018; Huang et al., 2019)),
only limited work has explored cross-lingual rela-
tion and event structure transfer. Most previous
efforts working with cross-lingual structure trans-
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fer rely on bilingual dictionaries (Hsi et al., 2016),
parallel data (Chen and Ji, 2009; Kim et al., 2010;
Qian et al., 2014) or machine translation (Faruqui
and Kumar, 2015; Zou et al., 2018). Recent meth-
ods (Lin et al., 2017; Wang et al., 2018b) aggre-
gate consistent patterns and complementary infor-
mation across languages to enhance Relation Ex-
traction, but they do so exploiting only distribu-
tional representations.
Event extraction shares with Semantic Role La-

beling (SRL) the task of assigning to each event ar-
gument its event role label, in the process of com-
pleting other tasks to extract the full event struc-
ture (assigning event types to predicates and more
specific roles to arguments). Cross-lingual transfer
has been very successful for SRL. Early attempts
relied onword alignment (Van der Plas et al., 2011)
or bilingual dictionaries (Kozhevnikov and Titov,
2013). Recent work incorporates universal de-
pendencies (Prazák and Konopík, 2017) or multi-
lingual word embeddings for Polyglot SRL (Mul-
caire et al., 2018). Liu et al. (2019) and Mulcaire
et al. (2019) exploit multi-lingual contextualized
word embedding for SRL and other Polyglot NLP
tasks including dependency parsing and name tag-
ging. To the best of our knowledge, our work is the
first to construct a cross-lingual structure transfer
framework that combines language-universal sym-
bolic representations and distributional represen-
tations for relation and event extraction over texts
written in a language without any training data.
GCN has been successfully applied to sev-

eral individual monolingual NLP tasks, includ-
ing relation extraction (Zhang et al., 2018b),
event detection (Nguyen and Grishman, 2018),
SRL (Marcheggiani and Titov, 2017) and sentence
classification (Yao et al., 2019). We apply GCN to
construct multi-lingual structural representations
for cross-lingual transfer learning.

5 Conclusions and Future Work

We show how cross-lingual relation and event ar-
gument structural representations may be trans-
ferred between languages without any training
data for the target language, and conclude that
language-universal symbolic and distributional
representations are complementary for cross-
lingual structure transfer. In the future we will
explore more language-universal representations
such as visual features from topically-related im-
ages and videos and external background knowl-

edge.
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