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Abstract

In this work, we present a word embedding
model that learns cross-sentence dependency
for improving end-to-end co-reference reso-
lution (E2E-CR). While the traditional E2E-
CR model generates word representations by
running long short-term memory (LSTM) re-
current neural networks on each sentence of
an input article or conversation separately,
we propose linear sentence linking and atten-
tional sentence linking models to learn cross-
sentence dependency. Both sentence linking
strategies enable the LSTMs to make use of
valuable information from context sentences
while calculating the representation of the cur-
rent input word. With this approach, the
LSTMs learn word embeddings considering
knowledge not only from the current sentence
but also from the entire input document. Ex-
periments show that learning cross-sentence
dependency enriches information contained by
the word representations, and improves the
performance of the co-reference resolution
model compared with our baseline.

1 Introduction

Co-reference resolution requires models to cluster
mentions that refer to the same physical entities.
The models based on neural networks typically re-
quire different levels of semantic representations
of input sentences. The models usually need to
calculate the representations of word spans, or
mentions, given pre-trained character and word-
level embeddings (Turian et al., 2010; Pennington
et al., 2014) before predicting antecedents. The
mention-level embeddings are used to make co-
reference decisions, typically by scoring mention
pairs and making links (Lee et al., 2017; Clark and
Manning, 2016a; Wiseman et al., 2016). Long
short-term memories (LSTMs) are often used to
encode the syntactic and semantic information of
input sentences.

Articles and conversations include more than
one sentences. Considering the accuracy and ef-
ficiency of co-reference resolution models, the en-
coder LSTM usually processes input sentences
separately as a batch (Lee et al., 2017). The dis-
advantage of this method is that the models do not
consider the dependency among words from dif-
ferent sentences, which plays a significant role in
word representation learning and co-reference pre-
dicting. For example, pronouns are often linked
to entities mentioned in other sentences, while
their initial word vectors lack dependency infor-
mation. As a result, a word representation model
cannot learn an informative embedding of a pro-
noun without considering cross-sentence depen-
dency in this case.

It is also problematic if we encode the input
document considering cross-sentence dependency
and treat the entire document as one sentence. An
input article or conversation can be too long for a
single LSTM cell to memorize. If the LSTM up-
dates itself for too many steps, gradients will van-
ish or explode (Pascanu et al., 2013), and the co-
reference resolution model will be very difficult
to optimize. Regarding the entire input corpus as
one sequence instead of a batch also significantly
increases the time complexity of the model.

To solve the problem that traditional LSTM en-
coders, which treat the input sentences as a batch,
lack an ability to capture cross-sentence depen-
dency, and to avoid the time complexity and dif-
ficulties of training the model concatenating all
input sentences, we propose a cross-sentence en-
coder for end-to-end co-reference (E2E-CR). Bor-
rowing the idea of an external memory module
from Sukhbaatar et al. (2015), an external mem-
ory block containing syntactic and semantic in-
formation from context sentences is added to the
standard LSTM model. With this context mem-
ory block, the proposed model is able to encode
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input sentences as a batch, and also calculate the
representations of input words by taking both tar-
get sentences and context sentences into consider-
ation. Experiments showed that this approach im-
proved the performance of co-reference resolution
models.

2 Related Work

2.1 Co-reference Resolution

A popular method of co-reference resolution
is mention ranking (Durrett and Klein, 2013).
Reading each mention, the model calculates co-
reference scores for all antecedent mentions, and
picks the mention with the highest positive score
to be its co-reference. Many recent works are
based on this approach. Durrett and Klein (2013)
designed a set of feature templates to improve the
mention-ranking model. Peng et al. (2015) pro-
posed a mention-ranking model by jointly learn-
ing mention heads and co-references. Clark and
Manning (2016a) proposed a reinforcement learn-
ing framework for the mention ranking approach.
Based on similar ideas but without using parsing
features, the authors of Lee et al. (2017) proposed
the current state-of-the-art model which uses neu-
ral networks to embed mentions and calculate
mention and antecedent scores. Lee et al. (2018)
applied ELMo embeddings (Peters et al., 2018)
to improve within-sentence dependency modeling
and word representation learning. Wiseman et al.
(2016) and Clark and Manning (2016b) proposed
models using global entity-level features.

2.2 Language Representation Learning

Distributed word embeddings has been used as the
basic unit of language representation for over a
decade (Bengio et al., 2003). Pre-trained word em-
beddings, for example GloVe (Pennington et al.,
2014) and Skip-Gram (Mikolov et al., 2013) are
widely used as the input of natural language pro-
cessing models.

Long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) are widely
used for sentence modeling. A single-layer LSTM
network was applied in the previous state-of-the-
art co-reference model (Lee et al., 2017) to gen-
erate word and mention representations. To cap-
ture dependency of longer distances, Campos et al.
(2017) proposed a recurrent model that outputs
hidden states by skipping input tokens.

Recently, memory networks (Sukhbaatar et al.,

2015) have been applied in language modeling
(Cheng et al., 2016; Tran et al., 2016). Applying
an attention mechanism on memory cells, memory
networks allow the model to focus on significant
words or segments for classification and genera-
tion tasks. Previous works have shown that apply-
ing memory blocks in LSTMs also improves long-
distance dependency extraction (Yogatama et al.,
2018).

3 Learning Cross-Sentence dependency

To improve the word representation learning
model for better co-reference resolution perfor-
mance, we propose two word representation mod-
els that learn cross-sentence dependency.

3.1 Linear Sentence Linking
Instead of treating the entire input document as
separate sentences and encode the sentences as
a batch with an LSTM, the most direct way to
consider cross-sentence dependency is to initial-
ize LSTM states with the encodings of adjacent
sentences. We name this method linear sentence
linking (LSL).

In LSL, we encode input sentences with a 2-
layer bidirectional LSTM. Give input sentences
[s1, s2 . . . sn], the outputs of the first layer are
[[−→s 1;

←−s 1], [
−→s 2;
←−s 2], . . . [

−→s n;
←−s n]]. In the sec-

ond LSTM layer, the initial state of the forward
LSTM of si is initialized as

−→
S i = [−→c 2

0; [
−→s i−1;

←−s i−1]]

while the backward state is initialized as

←−
S i = [←−c 2

0; [
−→s i−1;

←−s i−1]]

where ci0 stands for the initial cell of the i-
th layer, and x stands for the final output of the
LSTMs in first layer. We then concatenate the out-
puts of the forward and backward LSTMs in the
second layer as the word representations for co-
reference prediction.

3.2 Attentional Sentence Linking
It is difficult for LSTMs to embed enough in-
formation about a long sentence into a low-
dimensional distributed vector. To collect richer
knowledge from neighbor sentences, we propose a
long short-term recurrent memory module and an
attention mechanism to improve sentence linking.

To describe the architecture of the proposed
model, we focus on adjacent input sentences si−1
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and si. We present the input embeddings of the
j-th word in the i-th sentence with xi,j .

3.2.1 Long Short-Term Memory RNNs
To solve the traditional recurrent neural networks,
Hochreiter and Schmidhuber (1997) proposed the
LSTM architecture. The detail of recurrent state
updating in LSTMs ht = flstm(xt, ht−1, ct−1) is
shown in following equations.

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 + bo)

ht = ot � tanh(ct)

where xt is the input embedding and ht is the
output representation of the t-th word.

3.2.2 LSTMs with Cross-Sentence Attention
We design an LSTM module with cross-sentence
attention for capturing cross-sentence dependency.
We name this method attentional sentence link-
ing (ASL). Considering input word xi,t in the i-
th sentence and all words from the previous sen-
tence Xi−1 = [xi−1,1, xi−1,2, . . . , xi−1,m], we re-
gard the matrix Xi−1 as an external memory mod-
ule and calculate an attention on its cells, where
each cell contains a word embedding.

αj =
ecj∑
k e

ck
(1)

ck = fc([xi,t;ht−1;xi−1,k]
T ) (2)

With the attention distribution α, we can get
a vector summarizing related information from
si−1,

vi−1 =
∑
j

αj · xi−1,j (3)

The model decides if it needs to pay more at-
tention on the current input or cross-sentence in-
formation with a context gate.

gt = σ(fg([xi,t;ht−1; vi−1]
T )) (4)

x̂i,t = gt · xi,t + (1− gt) · vi−1 (5)

σ(·) stands for the Sigmoid function. The word
representation of the target word is calculated as

hi,t = flstm(x̂i,t, hi,t−1, ci,t−1) (6)

where flstm stands for standard LSTM update
described in section 3.2.1.

3.3 Co-reference Prediction

In this work, we apply the mention-ranking end-
to-end co-reference resolution (E2E-CR) model
proposed by Lee et al. (2017) for co-reference pre-
diction. The word representations applied in E2E-
CR model is formed by concatenating pre-trained
word embeddings and the outputs of LSTMs. In
our work, we represent words by concatenating
pre-trained word embeddings and the outputs of
LSL- and ASL-LSTMs.

4 Experiments

We train and evaluate our model on the English
corpus of the CoNLL-2012 shared task (Pradhan
et al., 2012). We implement our model based on
the published implementation of the baseline E2E-
CR model (Lee et al., 2017) 1. Our implementa-
tion is also available online for reproducing the re-
sults reported in this paper 2. In this section, we
first describe our hyperparameter setup, and then
show the experimental results of previous work
and our proposed models.

4.1 Model and Hyperparameter Setup

In practice, the LSTM modules applied in our
model have 200 output units. In ASL, we cal-
culate cross-sentence dependency using a multi-
layer perceptron with one hidden layer consisting
of 150 hidden units. The initial learning rate is
set as 0.001 and decays 0.001% every 100 steps.
The model is optimized with the Adam algorithm
(Kingma and Ba, 2014). We randomly select up to
40 continuous sentences for training if the input is
too long. In co-reference prediction, we select 250
candidate antecedents as our baseline model.

4.2 Experiment Results and Discussion

We evaluate our model on the test set of the
CoNLL-2012 shared task. The performance of
previous work and our model are shown in Table 1.
We mainly focus on the average F1 score of MUC,
B3, and CEAF metrics. Comparing with the base-
line model that achieved 67.2% F1 score, the
ASL model improved the performance by 0.6%
and achieved 67.8% average F1. Experiments

1https://github.com/kentonl/e2e-coref
2https://github.com/luohongyin/

coatt-coref

https://github.com/kentonl/e2e-coref
https://github.com/luohongyin/coatt-coref
https://github.com/luohongyin/coatt-coref
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MUC B3 Ceafe Avg.
Models Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1

Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Clark and Manning (2016b) 78.9 69.8 74.0 70.1 57.0 62.9 62.5 55.8 59.0 65.3
Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
Lee et al. (2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2

E2E-CR + LSL 81.0 71.5 76.0 72.6 59.4 65.3 65.0 57.5 61.0 67.4
E2E-CR + ASL 79.2 73.7 76.4 69.4 62.1 65.6 64.0 58.9 61.4 67.8

Table 1: Experimental results of previous models and cross-sentence dependency learning models on the CoNLL-
2012 shared task.

- I remember receiving an SMS like this one
last year before it snowed since snowfall would
affect road conditions in Beijing to a large extent.
- Uh-huh . However, it did not give people such
a special feeling as it did this time.

- Reporters are tired of the usual stand ups.

- They want to be riding on a train or walking
in the rain or something to get attention .

- Planned terrorist bombing that ripped a 20 x
40 - foot hole in the Navy destroyer USS Cole
in the Yemeni port of Aden.
- The ship was there for refueling.

- Yemeni authorities claimed they have
detained over 70 people for questioning.

- These include some Afghan - Arab volunteers.

Table 2: Examples predictions of the ASL model and
the baseline model.

show that the models that consider cross-sentence
dependency significantly outperform the baseline
model, which encodes each sentence from the in-
put document separately.

Experiments also indicated that the ASL model
has better performance than the LSL model, since
it summarizes extracts context information with
an attention mechanism instead of simply view-
ing sentence-level embeddings. This gives the
model a better ability to model cross-sentence de-
pendency.

Examples for comparing the performance of the
ASL model and the baseline are shown in Table
2. Each example contains two continuous sen-
tences with co-references distritubed in different
sentences. Underlined spans in bold are target
mentions and annotated co-references. Spans in

green are ASL predictions, and spans in red are
baseline predictions. A prediction on “-” means
that no mention is predicted as a co-reference.

Table 2 shows that the baseline model, which
does not consider cross-sentence dependency, has
difficulty in learning the semantics of pronouns
whose co-references are not in the same sentence.
The pretrained embeddings of pronouns are not in-
formative enough. In the first example, “it” is not
semantically similar with “SMS” in GloVe with-
out any context, and in this case, “it” and “SMS”
are in different sentences. As a result, if read-
ing this two sentences separately, it is hard for
the encoder to represent “it” with the semantics
of “SMS”. This difficulty makes the co-reference
resolution model either prediction a wrong an-
tecedent mention, or cannot find any co-reference.

However, with ASL, the model learns the se-
mantics of pronouns with an attention to words in
other sentences. With the proposed context gate,
ASL takes knowledge from context sentences if
local inputs are not informative enough. Based
on word represents enhanced with cross-sentence
dependency, the co-reference scoring model can
make better predictions.

5 Conclusion and Future Work

We proposed linear and attentional sentence link-
ing models for learning word representations that
captures cross-sentence dependency. Experiments
showed that the embeddings learned by proposed
models successfully improved the performance of
the state-of-the-art co-reference resolution model,
indicating that cross-sentence dependency plays
an important role in semantic learning in articles
and conversations consists of multiple sentences.
It worth exploring if our model can improve the
performance of other natural language processing
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applications whose inputs contain multiple sen-
tences, for example, reading comprehension, di-
alog generation, and sentiment analysis.
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