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Abstract

One way to interpret neural model predic-
tions is to highlight the most important in-
put features—for example, a heatmap visu-
alization over the words in an input sen-
tence. In existing interpretation methods for
NLP, a word’s importance is determined by
either input perturbation—measuring the de-
crease in model confidence when that word is
removed—or by the gradient with respect to
that word. To understand the limitations of
these methods, we use input reduction, which
iteratively removes the least important word
from the input. This exposes pathological be-
haviors of neural models: the remaining words
appear nonsensical to humans and are not the
ones determined as important by interpreta-
tion methods. As we confirm with human ex-
periments, the reduced examples lack infor-
mation to support the prediction of any la-
bel, but models still make the same predic-
tions with high confidence. To explain these
counterintuitive results, we draw connections
to adversarial examples and confidence cali-
bration: pathological behaviors reveal difficul-
ties in interpreting neural models trained with
maximum likelihood. To mitigate their defi-
ciencies, we fine-tune the models by encourag-
ing high entropy outputs on reduced examples.
Fine-tuned models become more interpretable
under input reduction without accuracy loss on
regular examples.

1 Introduction

Many interpretation methods for neural networks
explain the model’s prediction as a counterfactual:
how does the prediction change when the input is
modified? Adversarial examples (Szegedy et al.,
2014; Goodfellow et al., 2015) highlight the in-
stability of neural network predictions by showing
how small perturbations to the input dramatically
change the output.

SQUAD
Context In 1899, John Jacob Astor IV invested

$100,000 for Tesla to further develop
and produce a new lighting system. In-
stead, Tesla used the money to fund his
Colorado Springs experiments.

Original What did Tesla spend Astor’s money on ?
Reduced did
Confidence 0.78→ 0.91

Figure 1: SQUAD example from the validation set.
Given the original Context, the model makes the same
correct prediction (“Colorado Springs experiments”)
on the Reduced question as the Original, with even
higher confidence. For humans, the reduced question,
“did”, is nonsensical.

A common, non-adversarial form of model in-
terpretation is feature attribution: features that
are crucial for predictions are highlighted in a
heatmap. One can measure a feature’s importance
by input perturbation. Given an input for text clas-
sification, a word’s importance can be measured
by the difference in model confidence before and
after that word is removed from the input—the
word is important if confidence decreases signifi-
cantly. This is the leave-one-out method (Li et al.,
2016b). Gradients can also measure feature im-
portance; for example, a feature is influential to the
prediction if its gradient is a large positive value.
Both perturbation and gradient-based methods can
generate heatmaps, implying that the model’s pre-
diction is highly influenced by the highlighted, im-
portant words.

Instead, we study how the model’s prediction is
influenced by the unimportant words. We use in-
put reduction, a process that iteratively removes
the unimportant words from the input while main-
taining the model’s prediction. Intuitively, the
words remaining after input reduction should be
important for prediction. Moreover, the words
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should match the leave-one-out method’s selec-
tions, which closely align with human percep-
tion (Li et al., 2016b; Murdoch et al., 2018). How-
ever, rather than providing explanations of the
original prediction, our reduced examples more
closely resemble adversarial examples. In Fig-
ure 1, the reduced input is meaningless to a hu-
man but retains the same model prediction with
high confidence. Gradient-based input reduction
exposes pathological model behaviors that contra-
dict what one expects based on existing interpreta-
tion methods.

In Section 2, we construct more of these coun-
terintuitive examples by augmenting input reduc-
tion with beam search and experiment with three
tasks: SQUAD (Rajpurkar et al., 2016) for read-
ing comprehension, SNLI (Bowman et al., 2015)
for textual entailment, and VQA (Antol et al.,
2015) for visual question answering. Input re-
duction with beam search consistently reduces the
input sentence to very short lengths—often only
one or two words—without lowering model confi-
dence on its original prediction. The reduced ex-
amples appear nonsensical to humans, which we
verify with crowdsourced experiments. In Sec-
tion 3, we draw connections to adversarial exam-
ples and confidence calibration; we explain why
the observed pathologies are a consequence of the
overconfidence of neural models. This elucidates
limitations of interpretation methods that rely on
model confidence. In Section 4, we encourage
high model uncertainty on reduced examples with
entropy regularization. The pathological model
behavior under input reduction is mitigated, lead-
ing to more reasonable reduced examples.

2 Input Reduction

To explain model predictions using a set of impor-
tant words, we must first define importance. Af-
ter defining input perturbation and gradient-based
approximation, we describe input reduction with
these importance metrics. Input reduction dras-
tically shortens inputs without causing the model
to change its prediction or significantly decrease
its confidence. Crowdsourced experiments con-
firm that reduced examples appear nonsensical to
humans: input reduction uncovers pathological
model behaviors.

2.1 Importance from Input Gradient
Ribeiro et al. (2016) and Li et al. (2016b) de-
fine importance by seeing how confidence changes
when a feature is removed; a natural approxima-
tion is to use the gradient (Baehrens et al., 2010;
Simonyan et al., 2014). We formally define these
importance metrics in natural language contexts
and introduce the efficient gradient-based approx-
imation. For each word in an input sentence, we
measure its importance by the change in the con-
fidence of the original prediction when we remove
that word from the sentence. We switch the sign
so that when the confidence decreases, the impor-
tance value is positive.

Formally, let x = 〈x1, x2, . . . xn〉 denote the in-
put sentence, f(y |x) the predicted probability of
label y, and y = argmaxy′ f(y

′ |x) the original
predicted label. The importance is then

g(xi | x) = f(y |x)− f(y |x−i). (1)

To calculate the importance of each word in a sen-
tence with n words, we need n forward passes of
the model, each time with one of the words left
out. This is highly inefficient, especially for longer
sentences. Instead, we approximate the impor-
tance value with the input gradient. For each word
in the sentence, we calculate the dot product of
its word embedding and the gradient of the output
with respect to the embedding. The importance
of n words can thus be computed with a single
forward-backward pass. This gradient approxima-
tion has been used for various interpretation meth-
ods for natural language classification models (Li
et al., 2016a; Arras et al., 2016); see Ebrahimi
et al. (2017) for further details on the derivation.
We use this approximation in all our experiments
as it selects the same words for removal as an ex-
haustive search (no approximation).

2.2 Removing Unimportant Words
Instead of looking at the words with high impor-
tance values—what interpretation methods com-
monly do—we take a complementary approach
and study how the model behaves when the sup-
posedly unimportant words are removed. Intu-
itively, the important words should remain after
the unimportant ones are removed.

Our input reduction process iteratively removes
the unimportant words. At each step, we remove
the word with the lowest importance value un-
til the model changes its prediction. We experi-
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ment with three popular datasets: SQUAD (Ra-
jpurkar et al., 2016) for reading comprehension,
SNLI (Bowman et al., 2015) for textual entail-
ment, and VQA (Antol et al., 2015) for visual
question answering. We describe each of these
tasks and the model we use below, providing full
details in the Supplement.

In SQUAD, each example is a context para-
graph and a question. The task is to predict a span
in the paragraph as the answer. We reduce only
the question while keeping the context paragraph
unchanged. The model we use is the DRQA Doc-
ument Reader (Chen et al., 2017).

In SNLI, each example consists of two sen-
tences: a premise and a hypothesis. The task is
to predict one of three relationships: entailment,
neutral, or contradiction. We reduce only the hy-
pothesis while keeping the premise unchanged.
The model we use is Bilateral Multi-Perspective
Matching (BIMPM) (Wang et al., 2017).

In VQA, each example consists of an image
and a natural language question. We reduce only
the question while keeping the image unchanged.
The model we use is Show, Ask, Attend, and An-
swer (Kazemi and Elqursh, 2017).

During the iterative reduction process, we en-
sure that the prediction does not change (exact
same span for SQUAD); consequently, the model
accuracy on the reduced examples is identical to
the original. The predicted label is used for input
reduction and the ground-truth is never revealed.
We use the validation set for all three tasks.

Most reduced inputs are nonsensical to humans
(Figure 2) as they lack information for any reason-
able human prediction. However, models make
confident predictions, at times even more confi-
dent than the original.

To find the shortest possible reduced inputs
(potentially the most meaningless), we relax the
requirement of removing only the least impor-
tant word and augment input reduction with beam
search. We limit the removal to the k least impor-
tant words, where k is the beam size, and decrease
the beam size as the remaining input is shortened.1

We empirically select beam size five as it pro-
duces comparable results to larger beam sizes with
reasonable computation cost. The requirement of
maintaining model prediction is unchanged.

1We set beam size to max(1,min(k, L − 3)) where k is
maximum beam size and L is the current length of the input
sentence.

SNLI
Premise Well dressed man and woman dancing in

the street
Original Two man is dancing on the street
Reduced dancing
Answer Contradiction
Confidence 0.977→ 0.706
VQA

Original What color is the flower ?
Reduced flower ?
Answer yellow
Confidence 0.827→ 0.819

Figure 2: Examples of original and reduced inputs
where the models predict the same Answer. Reduced
shows the input after reduction. We remove words from
the hypothesis for SNLI, questions for SQUAD and
VQA. Given the nonsensical reduced inputs, humans
would not be able to provide the answer with high con-
fidence, yet, the neural models do.

With beam search, input reduction finds ex-
tremely short reduced examples with little to no
decrease in the model’s confidence on its orig-
inal predictions. Figure 3 compares the length
of input sentences before and after the reduction.
For all three tasks, we can often reduce the sen-
tence to only one word. Figure 4 compares the
model’s confidence on original and reduced in-
puts. On SQUAD and SNLI the confidence de-
creases slightly, and on VQA the confidence even
increases.

2.3 Humans Confused by Reduced Inputs

On the reduced examples, the models retain their
original predictions despite short input lengths.
The following experiments examine whether these
predictions are justified or pathological, based on
how humans react to the reduced inputs.

For each task, we sample 200 examples that are
correctly classified by the model and generate their
reduced examples. In the first setting, we com-
pare the human accuracy on original and reduced
examples. We recruit two groups of crowd work-
ers and task them with textual entailment, reading
comprehension, or visual question answering. We
show one group the original inputs and the other
the reduced. Humans are no longer able to give
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Figure 3: Distribution of input sentence length before and after reduction. For all three tasks, the input is often
reduced to one or two words without changing the model’s prediction.
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Figure 4: Density distribution of model confidence on
reduced inputs is similar to the original confidence. In
SQUAD, we predict the beginning and the end of the
answer span, so we show the confidence for both.

the correct answer, showing a significant accuracy
loss on all three tasks (compare Original and Re-
duced in Table 1).

The second setting examines how random the
reduced examples appear to humans. For each
of the original examples, we generate a version
where words are randomly removed until the
length matches the one generated by input reduc-
tion. We present the original example along with
the two reduced examples and ask crowd work-
ers their preference between the two reduced ones.
The workers’ choice is almost fifty-fifty (the vs.
Random in Table 1): the reduced examples appear
almost random to humans.

These results leave us with two puzzles: why
are the models highly confident on the nonsensical
reduced examples? And why, when the leave-one-
out method selects important words that appear
reasonable to humans, the input reduction process
selects ones that are nonsensical?

Dataset Original Reduced vs. Random

SQUAD 80.58 31.72 53.70
SNLI-E 76.40 27.66 42.31
SNLI-N 55.40 52.66 50.64
SNLI-C 76.20 60.60 49.87
VQA 76.11 40.60 61.60

Table 1: Human accuracy on Reduced examples drops
significantly compared to the Original examples, how-
ever, model predictions are identical. The reduced ex-
amples also appear random to humans—they do not
prefer them over random inputs (vs. Random). For
SQUAD, accuracy is reported using F1 scores, other
numbers are percentages. For SNLI, we report results
on the three classes separately: entailment (-E), neutral
(-N), and contradiction (-C).

3 Making Sense of Reduced Inputs

Having established the incongruity of our defini-
tion of importance vis-à-vis human judgements,
we now investigate possible explanations for these
results. We explain why model confidence can
empower methods such as leave-one-out to gen-
erate reasonable interpretations but also lead to
pathologies under input reduction. We attribute
these results to two issues of neural models.

3.1 Model Overconfidence
Neural models are overconfident in their predic-
tions (Guo et al., 2017). One explanation for
overconfidence is overfitting: the model overfits
the negative log-likelihood loss during training by
learning to output low-entropy distributions over
classes. Neural models are also overconfident on
examples outside the training data distribution. As
Goodfellow et al. (2015) observe for image classi-
fication, samples from pure noise can sometimes
trigger highly confident predictions. These so-
called rubbish examples are degenerate inputs that
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a human would trivially classify as not belonging
to any class but for which the model predicts with
high confidence. Goodfellow et al. (2015) argue
that the rubbish examples exist for the same rea-
son that adversarial examples do: the surprising
linear nature of neural models. In short, the confi-
dence of a neural model is not a robust estimate of
its prediction uncertainty.

Our reduced inputs satisfy the definition of rub-
bish examples: humans have a hard time making
predictions based on the reduced inputs (Table 1),
but models make predictions with high confidence
(Figure 4). Starting from a valid example, input
reduction transforms it into a rubbish example.

The nonsensical, almost random results are best
explained by looking at a complete reduction path
(Figure 5). In this example, the transition from
valid to rubbish happens immediately after the first
step: following the removal of “Broncos”, humans
can no longer determine which team the ques-
tion is asking about, but model confidence remains
high. Not being able to lower its confidence on
rubbish examples—as it is not trained to do so—
the model neglects “Broncos” and eventually the
process generates nonsensical results.

In this example, the leave-one-out method will
not highlight “Broncos”. However, this is not
a failure of the interpretation method but of the
model itself. The model assigns a low impor-
tance to “Broncos” in the first step, causing it to be
removed—leave-one-out would be able to expose
this particular issue by not highlighting “Bron-
cos”. However, in cases where a similar issue only
appear after a few unimportant words are removed,
the leave-one-out method would fail to expose the
unreasonable model behavior.

Input reduction can expose deeper issues of
model overconfidence and stress test a model’s un-
certainty estimation and interpretability.

3.2 Second-order Sensitivity

So far, we have seen that the output of a neural
model is sensitive to small changes in its input. We
call this first-order sensitivity, because interpreta-
tion based on input gradient is a first-order Taylor
expansion of the model near the input (Simonyan
et al., 2014). However, the interpretation also
shifts drastically with small input changes (Fig-
ure 6). We call this second-order sensitivity.

The shifting heatmap suggests a mismatch be-
tween the model’s first- and second-order sensi-

SQUAD
Context: The Panthers used the San Jose State practice facility and stayed
at the San Jose Marriott. The Broncos practiced at Stanford University and
stayed at the Santa Clara Marriott.

Question:
(0.90, 0.89) Where did the Broncos practice for the Super Bowl ?
(0.92, 0.88) Where did the practice for the Super Bowl ?
(0.91, 0.88) Where did practice for the Super Bowl ?
(0.92, 0.89) Where did practice the Super Bowl ?
(0.94, 0.90) Where did practice the Super ?
(0.93, 0.90) Where did practice Super ?
(0.40, 0.50) did practice Super ?

Figure 5: A reduction path for a SQUAD validation ex-
ample. The model prediction is always correct and its
confidence stays high (shown on the left in parenthe-
ses) throughout the reduction. Each line shows the in-
put at that step with an underline indicating the word to
remove next. The question becomes unanswerable im-
mediately after “Broncos” is removed in the first step.
However, in the context of the original question, “Bron-
cos” is the least important word according to the input
gradient.

tivities. The heatmap shifts when, with respect to
the removed word, the model has low first-order
sensitivity but high second-order sensitivity.

Similar issues complicate comparable interpre-
tation methods for image classification models.
For example, Ghorbani et al. (2017) modify im-
age inputs so the highlighted features in the in-
terpretation change while maintaining the same
prediction. To achieve this, they iteratively mod-
ify the input to maximize changes in the distribu-
tion of feature importance. In contrast, the shift-
ing heatmap we observe occurs by only remov-
ing the least impactful features without a targeted
optimization. They also speculate that the steep-
est gradient direction for the first- and second-
order sensitivity values are generally orthogonal.
Loosely speaking, the shifting heatmap suggests
that the direction of the smallest gradient value
can sometimes align with very steep changes in
second-order sensitivity.

When explaining individual model predictions,
the heatmap suggests that the prediction is made
based on a weighted combination of words, as
in a linear model, which is not true unless the
model is indeed taking a weighted sum such as
in a DAN (Iyyer et al., 2015). When the model
composes representations by a non-linear combi-
nation of words, a linear interpretation oblivious
to second-order sensitivity can be misleading.
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SQUAD
Context: QuickBooks sponsored a “Small Business Big Game” contest,
in which Death Wish Coffee had a 30-second commercial aired free of
charge courtesy of QuickBooks. Death Wish Coffee beat out nine other
contenders from across the United States for the free advertisement.

Question:
What company won free advertisement due to QuickBooks contest ?
What company won free advertisement due to QuickBooks ?
What company won free advertisement due to ?
What company won free due to ?
What won free due to ?
What won due to ?
What won due to
What won due
What won
What

Figure 6: Heatmap generated with leave-one-out shifts
drastically despite only removing the least important
word (underlined) at each step. For instance, “adver-
tisement”, is the most important word in step two but
becomes the least important in step three.

4 Mitigating Model Pathologies

The previous section explains the observed
pathologies from the perspective of overconfi-
dence: models are too certain on rubbish exam-
ples when they should not make any prediction.
Human experiments in Section 2.3 confirm that
the reduced examples fit the definition of rubbish
examples. Hence, a natural way to mitigate the
pathologies is to maximize model uncertainty on
the reduced examples.

4.1 Regularization on Reduced Inputs

To maximize model uncertainty on reduced ex-
amples, we use the entropy of the output distri-
bution as an objective. Given a model f trained
on a dataset (X ,Y), we generate reduced exam-
ples using input reduction for all training examples
X . Beam search often yields multiple reduced ver-
sions with the same minimum length for each in-
put x, and we collect all of these versions together
to form X̃ as the “negative” example set.

Let H (·) denote the entropy and f(y |x) denote
the probability of the model predicting y given x.
We fine-tune the existing model to simultaneously
maximize the log-likelihood on regular examples
and the entropy on reduced examples:∑
(x,y)∈(X ,Y)

log(f(y |x)) + λ
∑
x̃∈X̃

H (f(y | x̃)) ,

(2)
where hyperparameter λ controls the trade-off be-
tween the two terms. Similar entropy regulariza-
tion is used by Pereyra et al. (2017), but not in

Accuracy Reduced length

Before After Before After

SQUAD 77.41 78.03 2.27 4.97
SNLI 85.71 85.72 1.50 2.20
VQA 61.61 61.54 2.30 2.87

Table 2: Model Accuracy on regular validation ex-
amples remains largely unchanged after fine-tuning.
However, the length of the reduced examples (Reduced
length) increases on all three tasks, making them less
likely to appear nonsensical to humans.

combination with input reduction; their entropy
term is calculated on regular examples rather than
reduced examples.

4.2 Regularization Mitigates Pathologies

On regular examples, entropy regularization does
no harm to model accuracy, with a slight increase
for SQUAD (Accuracy in Table 2).

After entropy regularization, input reduction
produces more reasonable reduced inputs (Fig-
ure 7). In the SQUAD example from Figure 1, the
reduced question changed from “did” to “spend
Astor money on ?” after fine-tuning. The average
length of reduced examples also increases across
all tasks (Reduced length in Table 2). To verify
that model overconfidence is indeed mitigated—
that the reduced examples are less “rubbish” com-
pared to before fine-tuning—we repeat the human
experiments from Section 2.3.

Human accuracy increases across all three tasks
(Table 3). We also repeat the vs. Random exper-
iment: we re-generate the random examples to
match the lengths of the new reduced examples
from input reduction, and find humans now pre-
fer the reduced examples to random ones. The in-
crease in both human performance and preference
suggests that the reduced examples are more rea-
sonable; model pathologies have been mitigated.

While these results are promising, it is not clear
whether our input reduction method is necessary
to achieve them. To provide a baseline, we fine-
tune models using inputs randomly reduced to the
same lengths as the ones generated by input reduc-
tion. This baseline improves neither the model ac-
curacy on regular examples nor interpretability un-
der input reduction (judged by lengths of reduced
examples). Input reduction is effective in generat-
ing negative examples to counter model overcon-
fidence.
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SQUAD
Context In 1899, John Jacob Astor IV invested

$100,000 for Tesla to further develop
and produce a new lighting system. In-
stead, Tesla used the money to fund his
Colorado Springs experiments.

Original What did Tesla spend Astor’s money on ?
Answer Colorado Springs experiments
Before did
After spend Astor money on ?
Confidence 0.78→ 0.91→ 0.52
SNLI
Premise Well dressed man and woman dancing in

the street
Original Two man is dancing on the street
Answer Contradiction
Before dancing
After two man dancing
Confidence 0.977→ 0.706→ 0.717
VQA
Original What color is the flower ?
Answer yellow
Before flower ?
After What color is flower ?
Confidence 0.847→ 0.918→ 0.745

Figure 7: SQUAD example from Figure 1, SNLI and
VQA (image omitted) examples from Figure 2. We ap-
ply input reduction to models both Before and After en-
tropy regularization. The models still predict the same
Answer, but the reduced examples after fine-tuning ap-
pear more reasonable to humans.

5 Discussion

Rubbish examples have been studied in the image
domain (Goodfellow et al., 2015; Nguyen et al.,
2015), but to our knowledge not for NLP. Our in-
put reduction process gradually transforms a valid
input into a rubbish example. We can often deter-
mine which word’s removal causes the transition
to occur—for example, removing “Broncos” in
Figure 5. These rubbish examples are particularly
interesting, as they are also adversarial: the dif-
ference from a valid example is small, unlike im-
age rubbish examples generated from pure noise
which are far outside the training data distribution.

The robustness of NLP models has been studied
extensively (Papernot et al., 2016; Jia and Liang,
2017; Iyyer et al., 2018; Ribeiro et al., 2018), and
most studies define adversarial examples similar
to the image domain: small perturbations to the
input lead to large changes in the output. Hot-
Flip (Ebrahimi et al., 2017) uses a gradient-based
approach, similar to image adversarial examples,
to flip the model prediction by perturbing a few
characters or words. Our work and Belinkov
and Bisk (2018) both identify cases where noisy

Accuracy vs. Random

Before After Before After

SQUAD 31.72 51.61 53.70 62.75
SNLI-E 27.66 32.37 42.31 50.62
SNLI-N 52.66 50.50 50.64 58.94
SNLI-C 60.60 63.90 49.87 56.92
VQA 40.60 51.85 61.60 61.88

Table 3: Human Accuracy increases after fine-tuning
the models. Humans also prefer gradient-based re-
duced examples over randomly reduced ones, indicat-
ing that the reduced examples are more meaningful to
humans after regularization.

user inputs become adversarial by accident: com-
mon misspellings break neural machine transla-
tion models; we show that incomplete user input
can lead to unreasonably high model confidence.

Other failures of interpretation methods have
been explored in the image domain. The sensi-
tivity issue of gradient-based interpretation meth-
ods, similar to our shifting heatmaps, are observed
by Ghorbani et al. (2017) and Kindermans et al.
(2017). They show that various forms of input
perturbation—from adversarial changes to simple
constant shifts in the image input—cause signifi-
cant changes in the interpretation. Ghorbani et al.
(2017) make a similar observation about second-
order sensitivity, that “the fragility of interpreta-
tion is orthogonal to fragility of the prediction”.

Previous work studies biases in the annotation
process that lead to datasets easier than desired
or expected which eventually induce pathological
models. We attribute our observed pathologies
primarily to the lack of accurate uncertainty es-
timates in neural models trained with maximum
likelihood. SNLI hypotheses contain artifacts that
allow training a model without the premises (Gu-
rurangan et al., 2018); we apply input reduction
at test time to the hypothesis. Similarly, VQA
images are surprisingly unimportant for training
a model; we reduce the question. The recent
SQUAD 2.0 (Rajpurkar et al., 2018) augments the
original reading comprehension task with an un-
certainty modeling requirement, the goal being to
make the task more realistic and challenging.

Section 3.1 explains the pathologies from the
overconfidence perspective. One explanation for
overconfidence is overfitting: Guo et al. (2017)
show that, late in maximum likelihood training,
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the model learns to minimize loss by outputting
low-entropy distributions without improving vali-
dation accuracy. To examine if overfitting can ex-
plain the input reduction results, we run input re-
duction using DRQA model checkpoints from ev-
ery training epoch. Input reduction still achieves
similar results on earlier checkpoints, suggesting
that better convergence in maximum likelihood
training cannot fix the issues by itself—we need
new training objectives with uncertainty estima-
tion in mind.

5.1 Methods for Mitigating Pathologies

We use the reduced examples generated by input
reduction to regularize the model and improve its
interpretability. This resembles adversarial train-
ing (Goodfellow et al., 2015), where adversar-
ial examples are added to the training set to im-
prove model robustness. The objectives are dif-
ferent: entropy regularization encourages high un-
certainty on rubbish examples, while adversarial
training makes the model less sensitive to adver-
sarial perturbations.

Pereyra et al. (2017) apply entropy regulariza-
tion on regular examples from the start of train-
ing to improve model generalization. A similar
method is label smoothing (Szegedy et al., 2016).
In comparison, we fine-tune a model with entropy
regularization on the reduced examples for better
uncertainty estimates and interpretations.

To mitigate overconfidence, Guo et al. (2017)
propose post-hoc fine-tuning a model’s confidence
with Platt scaling. This method adjusts the soft-
max function’s temperature parameter using a
small held-out dataset to align confidence with ac-
curacy. However, because the output is calibrated
using the entire confidence distribution, not indi-
vidual values, this does not reduce overconfidence
on specific inputs, such as the reduced examples.

5.2 Generalizability of Findings

To highlight the erratic model predictions on short
examples and provide a more intuitive demonstra-
tion, we present paired-input tasks. On these tasks,
the short lengths of reduced questions and hy-
potheses obviously contradict the necessary num-
ber of words for a human prediction (further sup-
ported by our human studies). We also apply input
reduction to single-input tasks including sentiment
analysis (Maas et al., 2011) and Quizbowl (Boyd-
Graber et al., 2012), achieving similar results.

Interestingly, the reduced examples transfer
to other architectures. In particular, when
we feed fifty reduced SNLI inputs from each
class—generated with the BIMPM model (Wang
et al., 2017)—through the Decomposable Atten-
tion Model (Parikh et al., 2016),2 the same predic-
tion is triggered 81.3% of the time.

6 Conclusion

We introduce input reduction, a process that it-
eratively removes unimportant words from an in-
put while maintaining a model’s prediction. Com-
bined with gradient-based importance estimates
often used for interpretations, we expose patholog-
ical behaviors of neural models. Without lowering
model confidence on its original prediction, an in-
put sentence can be reduced to the point where
it appears nonsensical, often consisting of one
or two words. Human accuracy degrades when
shown the reduced examples instead of the orig-
inal, in contrast to neural models which maintain
their original predictions.

We explain these pathologies with known is-
sues of neural models: overconfidence and sen-
sitivity to small input changes. The nonsensical
reduced examples are caused by inaccurate uncer-
tainty estimates—the model is not able to lower
its confidence on inputs that do not belong to
any label. The second-order sensitivity is another
issue why gradient-based interpretation methods
may fail to align with human perception: a small
change in the input can cause, at the same time, a
minor change in the prediction but a large change
in the interpretation. Input reduction perturbs the
input multiple times and can expose deeper issues
of model overconfidence and oversensitivity that
other methods cannot. Therefore, it can be used to
stress test the interpretability of a model.

Finally, we fine-tune the models by maximizing
entropy on reduced examples to mitigate the de-
ficiencies. This improves interpretability without
sacrificing model accuracy on regular examples.

To properly interpret neural models, it is impor-
tant to understand their fundamental characteris-
tics: the nature of their decision surfaces, robust-
ness against adversaries, and limitations of their
training objectives. We explain fundamental diffi-
culties of interpretation due to pathologies in neu-
ral models trained with maximum likelihood. Our

2http://demo.allennlp.org/
textual-entailment

http://demo.allennlp.org/textual-entailment
http://demo.allennlp.org/textual-entailment
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work suggests several future directions to improve
interpretability: more thorough evaluation of in-
terpretation methods, better uncertainty and con-
fidence estimates, and interpretation beyond bag-
of-word heatmap.
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Hal Daumé III. 2012. Besting the quiz master:
Crowdsourcing incremental classification games. In
Proceedings of Empirical Methods in Natural Lan-
guage Processing.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Proceedings of the Association
for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2017. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the As-
sociation for Computational Linguistics.

Amirata Ghorbani, Abubakar Abid, and James Y. Zou.
2017. Interpretation of neural networks is fragile.
arXiv preprint arXiv: 1710.10547.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adver-
sarial examples. In Proceedings of the International
Conference on Learning Representations.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the International Confer-
ence of Machine Learning.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in natural
language inference data. In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
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