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Abstract

Translation memories (TM) facilitate human
translators to reuse existing repetitive transla-
tion fragments. In this paper, we propose a
novel method to combine the strengths of both
TM and neural machine translation (NMT) for
high-quality translation. We treat the target
translation of a TM match as an additional ref-
erence input and encode it into NMT with an
extra encoder. A gating mechanism is further
used to balance the impact of the TM match
on the NMT decoder. Experiment results on
the UN corpus demonstrate that when fuzzy
matches are higher than 50%, the quality of
NMT translation can be significantly improved
by over 10 BLEU points.

1 Introduction
Neural machine translation, an emerging machine
translation (MT) technology, has made remarkable
progress in the past few years (Cho et al., 2014;
Sutskever et al., 2014), which strongly encourages
many translation agencies to embrace it for prod-
uct deployment. A natural question during this
deployment is how the strengths of both the tra-
ditional TM and new NMT technologies can be
combined together for professional high-quality
translation.

Such attempts to the TM and MT combination
have been already conducted in the context of sta-
tistical machine translation (SMT). A variety of
efforts have been made to incorporate matched
translation segments from TM into SMT (Koehn
and Senellart, 2010). Partially inspired by these
efforts, we aim at combining TM and NMT in this
paper.

Different from TM and SMT, both of which
use symbolic fragments to construct translations,
NMT induces translations from a real-valued con-
tinuous space. Furthermore, NMT is trained in an
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end-to-end fashion, which makes it not easy to be
amenable to external intervention. Therefore, in-
corporating TM as external knowledge into NMT
is challenging.

In this paper, we propose a novel and effective
method to address this issue in the combination of
TM and NMT. The key idea behind this method is
to mimic human translators in translating a source
sentence given a similar source sentence with a
translation. We treat the matched TM translation
as an additional signal and try to encode it with a
new encoder to guide the NMT decoder to trans-
late the current sentence. Specifically, we first
find the sentence that is most similar to the current
source sentence from TM by calculating their se-
mantic similarity based on sentence embeddings.
In order to prevent the TM matched translation
from dominating the decoding process, we intro-
duce a gate mechanism to balance the TM transla-
tion signal and the current source sentence which
are encoded separately by two different encoders.

A series of experiments on the Chinese-English
UN corpus demonstrate that when fuzzy matches
are over 50%, the proposed method can signifi-
cantly improve NMT with the gated TM signal.
We also conduct an in-depth analysis on the TM
gate, which shows that the gate can indeed reg-
ulate the information flow from TM to the NMT
decoder.

2 Encoding Gated TM into NMT

In this section, we elaborate our proposed method
that encodes translation memories into neural ma-
chine translation with a gating mechanism. We re-
fer to our method as NMT-GTM, which consists
of three essential components: i) coupled encoders
that encodes both the source sentence and matched
TM translation separately, ii) a TM gating net-
work that controls the encoded signal from the TM
matched translation and iii) a TM-guided decoder



3043

that incorporates the gated TM signal into the de-
coding. The diagram of NMT-GTM is shown in
Figure 1.

For each source sentence src, we retrieve TM
to find the most similar sentence to it. Different
from the combination of TM and SMT, we de-
fine the best TM match as the sentence with the
highest cosine similarity which is calculated based
on sentence embeddings (Le and Mikolov, 2014),
instead of being selected based on fuzzy match
score. This is consistent with NMT that performs
in an embedding-defined semantic space. But we
display our results in experiments according to
fuzzy match scores for easy understanding. We
use tm s to denote the most semantically similar
sentence to src from TM and tm t its translation.

2.1 Coupled Encoders

We use a pair of encoders to separately encode the
source sentence src and its matched TM transla-
tion tm t. Both encoders are running indepen-
dently of each other with bidirectional GRU re-
current neural networks1 (Chung et al., 2014). Ac-
cordingly, two separate attention networks are em-
ployed to obtain context representations for both
src and tm t, which we denote as csrc and ctm t

respectively. The attention network for the TM
matched translation is able to help detect matched
translation segments from tm t for the decoder.

2.2 TM Gating Network

When we translate a source sentence, in addition
to the input of the sentence itself, we also have a
TM matched translation (tm t) semantically simi-
lar to the sentence as an additional input. We want
the additional input to act as a translation example
for providing positive guide to target word predic-
tion. In order to balance the information flow from
the two inputs (src and tm t) into the decoder, we
further introduce a TM gating network to control
the respective proportions of tm t and src, par-
tially inspired by Tu et al. (2017) who propose a
gating mechanism to combine source and target
contexts. We formulate the TM gating network as
follows:

gtm = f(st−1, yt−1, c
src, ctm t)

where st−1 is the previous hidden state, yt−1 is
the previously predicted target word, and f is a

1In this paper, we use GRU encoders and decoders. How-
ever, our method can be applicable to other encoders and de-
coders.

train dev test
#Sentences 1, 117, 452 804 1, 614

Average FMS 0.1890 0.5493 0.5392

Table 1: Statistics of the training data, develop-
ment and test set. FMS: fuzzy match score.

logistic sigmoid function.

2.3 TM-Guided Decoder

In the TM-guided decoder, we integrate the gated
TM information into the decoding process and use
the context representations of src and tm t to pre-
dict the hidden state of the decoder in each time
step. The decoder hidden state st is computed as
follows:

st = GRU(st−1, yt−1, c
src∗(1−gtm), ctm t∗gtm)

where * is an element-wise multiplication.
The conditional probability of the next word yt

is calculated as follows:

p(yt|y<t, src) = g(f(st, yt−1, c
src))

Please notice that we only incorporate the gated
TM into the hidden state of the decoder, rather
than the prediction of the next word. Our goal is
to correctly translate the source sentence with ref-
erence to the translation of the TM match tm t.
In other words, tm t only plays a supporting role
in translation. We don’t want too much infor-
mation from TM to affect the translation of the
source sentence. Therefore, we incorporate the
gated TM in a way that it can only indirectly influ-
ence the target generation via hidden states. In our
experiments, we observe that this helps our pro-
posed model to faithfully translate a source sen-
tence, instead of copying all information from the
TM matched translation, especially for source sen-
tences with slight differences (e.g., dates or num-
bers) from TM matches.

3 Experiments
We conducted a series of experiments on Chinese-
English corpus to evaluate the effectiveness of the
proposed NMT-GTM and analyzed the TM gate.

3.1 Experimental Settings

Our data come from the Chinese-English United
Nations Parallel Corpus (Rafalovitch et al., 2009),
which consists of official records and other par-
liamentary documents. Since large-scale public
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Figure 1: Model Architecture of NMT-GTM

FMS #Sentences
[0.9, 1.0) 171
[0.8, 0.9) 182
[0.7, 0.8) 178
[0.6, 0.7) 179
[0.5, 0.6) 181
[0.4, 0.5) 177
[0.3, 0.4) 180
[0.2, 0.3) 185
(0.0, 0.2) 181

Table 2: The numbers of sentences of the test set
in each fuzzy match score group.

translation memories are not easily available, we
built a translation memory from the UN corpus.
Specifically, we divided the Chinese-English UN
corpus into two parts UNa and UNb with equal
size. For each source sentence sa from UNa,
we chose the source sentence sb from UNb that
has the highest semantically similarity to sa, com-
puted in the way described in the last section. In
doing so, we built a corpus with matched pairs
(sa/ta, sb/tb) where ta/b are translations corre-
sponding to sa/b. Then we computed the fuzzy
match score for each pair of source sentences as

follows:

FMS(sa, sb) = 1− Levenshtein(sa, sb)

max(|sa|, |sb|)

where Levenshtein(sa, sb) is the word-based
Levenshtein Distance between sa and sb. The
fuzzy match score can also be calculated with
other methods, e.g., the method introduced in
(Bloodgood and Strauss, 2015). We leave FMS es-
timated with different methods to our future work.
We selected all pairs (sa/ta, sb/tb) with a fuzzy
match score FMS >= 0.5. From those pairs
with FMS < 0.5, we randomly selected 20% of
them. These selected pairs were then divided into
9 groups according to their fuzzy match scores
(e.g., FMS ∈ [0.5, 0.6)). We randomly chose
approximately the same number of sentences from
each group to create a development set and test set.
The remaining data were used to create the train-
ing data (i.e., {(sa, tb, ta)selected}) and translation
memory (i.e., {(sb, tb)selected}). Statistics of the
training data, development and test set are shown
in Table 1. The numbers of sentences of the test
set in each fuzzy match score group are presented
in Table 2.

We used RNNSearch as our NMT baseline. We
set the maximum sentence length of training cor-
pus to 50 words both for the Chinese and English
sides. The sizes of vocabularies of both sides were
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FMS RNNSearch NMT-GTM TM
[0.9, 1.0) 43.97 77.67 94.23
[0.8, 0.9) 47.32 79.78 79.84
[0.7, 0.8) 50.95 71.53 67.11
[0.6, 0.7) 56.12 65.39 58.93
[0.5, 0.6) 65.01 66.46 46.99
[0.4, 0.5) 67.83 66.30 34.67
[0.3, 0.4) 58.51 56.83 22.93
[0.2, 0.3) 46.12 44.42 9.72
(0.0, 0.2) 31.41 29.83 1.18
(0.0, 1.0) 51.11 61.43 47.16

Table 3: BLEU scores for translations from
RNNSearch, NMT-GTM and TM.

FMS ref as TM TM ave gate ref ave gate
[0.9, 1.0) 81.51 0.6712 0.6735
[0.8, 0.9) 85.94 0.6543 0.6582
[0.7, 0.8) 85.87 0.6385 0.6477
[0.6, 0.7) 83.13 0.6075 0.6267
[0.5, 0.6) 84.55 0.5995 0.6218
[0.4, 0.5) 85.13 0.5755 0.6035
[0.3, 0.4) 78.63 0.5721 0.6083
[0.2, 0.3) 76.78 0.5652 0.6409
(0.0, 0.2) 70.89 0.5633 0.6699
(0.0, 1.0) 81.04 0.6047 0.6388

Table 4: Changes of the TM gate. The second col-
umn shows the BLEU scores with reference trans-
lations being used as additional TM inputs. The
third column represents the average gate values of
the standard setting, while the last column repre-
sents the average gate values when references are
used as additional TM inputs.

set to 30k. For those words that are not in the vo-
cabulary, we replaced them with a special token
UNK. We set the dropout to 0.5. All the other set-
tings were the same as those described by Bah-
danau et al. (2014). We used the stochastic gra-
dient descent algorithm with Adam (Kingma and
Ba, 2014) to train NMT models. The learning rate
was set to 0.0004. The size of mini-batch was set
to 80 sentences. The beam size was set to 10 dur-
ing decoding.

For the proposed NMT-GTM model, we used
tuples (src, tm t, tgt) as input. The rest of the
parameter settings were consistent with the base-
line model. To calculate the cosine similarity, we
used the fasttext tool 2 with the dimension of 100
to obtain sentence embeddings.

2Available at: https://fasttext.cc/

3.2 Experimental Results

Table 3 shows the results of different NMT sys-
tems measured by BLEU (Papineni et al., 2002).
From the table, we can find that when fuzzy match
scores are over 50%, the extra introduction of TM
information can significantly help NMT to better
translate. Even when fuzzy match scores are lower
than 50%, the translation quality does not drop too
much. On the entire test set, the proposed gated
combination model of TM and NMT improves the
translation quality by 10.32 BLEU points over the
baseline.

In addition, in order to investigate how simi-
lar the matched TM translations tm t are to the
reference translations ref , we also measured the
BLEU scores of the matched TM translations
against the reference translations. The results are
also shown in Table 3, indicated as TM.

3.3 Analysis

We further took a deep look into how the TM gate
is varying when we incorporate TM matches with
different fuzzy match scores. As a comparison,
we used the reference translations as the matched
TM translations and incorporated them into NMT-
GTM to check the changes of the gate. The BLEU
scores measured when we used reference transla-
tions as matched TM translations as well as aver-
age gate values are shown in Table 4. The results
demonstrate that when the matched TM is seman-
tically closer to the current source sentence, the
TM gate is larger, indicating that more informa-
tion from the matched TM translation is used to
guide the decoder.

Table 5 shows an example from our test set. The
highlighted fragments of the source sentence and
the matched TM source sentence are not actually
the same in terms of their surface forms. However,
they are semantically close and can be translated
into the same target translation. Our proposed
NMT-GMT is able to successfully incorporate the
translation of such a fragment into the decoder.

4 Related Work
Various strategies have been proposed to combine
TM and SMT (Koehn and Senellart, 2010; He
et al., 2010). Their key ideas are to integrate the
translations of the same fragments from TM into
SMT, and let SMT only translate those different
parts. In order to better model this process, Wang
et al. (2013, 2014) use different features to allow
relevant TM information to guide SMT decoding.
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src 主席说，津巴布韦代表根据议事规则 43条要求参加该项目的讨论
ref the chairman said that the representative of zimbabwe asked to participate in the discussion of the item in

accordance with rule 43 of the rules of procedure .
tm s 主席说，塞尔维亚代表请求依据议事规则第 43条参与讨论项目
tm t the chairman said that the representative of serbia had asked to participate in the discussion of the item in

accordance with rule 43 of the rules of procedure .
RNNSearch the chairman said that the representative of zimbabwe, in accordance with rule 43, requested a discussion of

the item .
NMT-
GTM

the chairman said that the representative of zimbabwe had asked to participate in the discussion of the item
in accordance with rule 43 of the rules of procedure .

Table 5: A translation example from the test set. Semantically similar fragments are highlighted with red
color.

The related work on combining TM and NMT
is quite limited. Gu et al. (2017) propose a TM-
NMT model that first finds the most similar seg-
ments through search engines according to fuzzy
match scores and saves them as key-value pairs in
memory. In the subsequent decoding, the saved
information is used to help decoding. Our work is
significantly different from theirs in two aspects.
First, we use semantic similarity based on sen-
tence embeddings to detect the best TM matches
rather than the fuzzy match score. Second, we en-
code the entire TM matched translation rather than
segments into NMT with coupled encoders and a
gating network.

Our work is also related to multi-source NMT
(Zoph and Knight, 2016). The difference is that
in our case, the multiple source inputs are just se-
mantically similar, rather than identical. This is
the reason that we use a gate to combine these in-
puts.

5 Conclusion and Future work

In this paper, we have presented a novel gated
method to encode translation memory into NMT
so as to convey the information of the matched TM
translation into the NMT decoder. Extensive ex-
periments verify that our method can indeed effec-
tively improve translation quality, especially when
fuzzy match scores are higher than 50%. Further
analysis reveals that the proposed TM gate is able
to vary according to the similarity between the
matched TM translation and the current sentence.
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