
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2936–2941
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

2936

How to represent a word and predict it, too:
Improving tied architectures for language modelling

Kristina Gulordava Laura Aina Gemma Boleda
Universitat Pompeu Fabra

Barcelona, Spain
{firstname.lastname}@upf.edu

Abstract

Recent state-of-the-art neural language mod-
els share the representations of words given by
the input and output mappings. We propose a
simple modification to these architectures that
decouples the hidden state from the word em-
bedding prediction. Our architecture leads to
comparable or better results compared to pre-
vious tied models and models without tying,
with a much smaller number of parameters.
We also extend our proposal to word2vec mod-
els, showing that tying is appropriate for gen-
eral word prediction tasks.

1 Introduction

In neural models, reusing representations of the
same type of data (e.g., sentences or words) in dif-
ferent parts of the architecture can be a powerful
way to aid learning: it reduces parameters, en-
abling more compact models and faster learning.
Recurrent neural network (RNN) language models
(Mikolov et al., 2010; Sundermeyer et al., 2012;
Zaremba et al., 2014) have two word mappings:
From the input word onto its embedding repre-
sentation, and from the internal representation of
the network (the hidden layer) to the weights for
the prediction of the next word. In standard mod-
els, these representations are different. Recently,
Inan et al. (2017) and Press and Wolf (2017) pro-
posed to instead use a single word representation,
tying the input and output mappings. Intuitively,
both are representations of the same type of data
(words), and information learnt when observing a
word as input can be reused when predicting this
word as output. Tied language models obtained
better perplexity and better word similarity scores
of embedding matrices while reducing the number
of parameters. The models that achieve the latest
state-of-the art results incorporate this technique
(see, e.g., Merity et al., 2018).

However, note that, by tying the output map-
ping to the input mapping, the hidden layer of the
network is optimised to match the representation
of the predicted word. We suggest that this intro-
duces a constraint that conflicts with the function
of the hidden layer in language models to repre-
sent the previous context and transmit information
to the next timestep. In this paper, we propose a
minimal modification to tied LM architectures to
address this issue: we add a linear transformation
between the hidden layer and the word embedding
prediction, partially decoupling the two. This has
an important advantage. Standard tied architec-
tures require the hidden layer to have the same
dimensionality as the word embeddings. We lift
this constraint in our architecture: by separating
the hidden layer and the word mapping, we can
choose a large hidden layer dimensionality while
keeping the embedding dimensionality and, con-
sequently, the size of the embedding matrix small.

In a set of experiments on LM, we show that
our tied models achieve results similar to or better
than models with standard or no tying, with much
smaller embedding sizes and a reduction of 30-
60% in the overall number of parameters. Notably,
the word embeddings obtained with the modified
model have a higher quality than double-sized em-
beddings obtained with standard tied models, as
measured on word similarity.

We further extend this idea to word represen-
tation learning models (in particular, word2vec),
which have a similar architecture and objective
function to language models. For instance, the
standard skipgram model (Mikolov et al., 2013)
has two mappings, one for the context words and
one for the target word. While tying these two ma-
trices directly constraints learning too strongly, an
additional linear mapping adds the sufficient ca-
pacity to learn embeddings of the same quality as
the standard model using only half the parameters.

2937

2 Tied LM architectures

2.1 Previous work

Equations (1) through (4) define a standard RNN
language model (Mikolov et al., 2010):

x̂t = xtE (1)

ht = LSTM(x̂t,ht−1) (2)

o = htW
T (3)

p = softmax(o), (4)

where xt is the one-hot encoding of the input word
at time t, x̂t is its embedded representation and E
is the embedding matrix (input mapping). We fol-
low the majority of previous work in adopting an
LSTM (Hochreiter and Schmidhuber, 1997) as the
recurrent unit, as it was shown to outperform other
recurrent architectures for LM (Jozefowicz et al.,
2015). The hidden vector ht is used as input to the
LSTM for the next time step and also as input to a
linear transformation W (output mapping) which
produces the output weights. These weights are
normalised into probability scores using the soft-
max function.

The tied models proposed by Inan et al. (2017)
and Press and Wolf (2017) set W to be equal to E
(Figure 1b). Note that since E is of size |V | ×m,
where m is the embedding size, and W is of size
|V |×n, where n is the hidden state size, the hidden
and embedding dimensions must be equal, that is,
m = n.

Press and Wolf (2017) observe that the output
matrix W represents an embedding matrix since
two similar words with indices i and j are learnt
to receive similar probabilities given a context and
hence the rows Wi and Wj should also be similar.
Indeed, they show that on some word similarity
evaluation tasks the output matrix W outperforms
significantly the input matrix E. Tying E and W
makes the model share the representations for the
input and output vocabularies.

Inan et al. (2017) suggest a theoretical moti-
vation for the tying technique and derive it as an
instance of a more general approach of augment-
ing the cross-entropy loss. They show that a loss
that takes into account not only the target word
(i.e., log pi for cross-entropy) but the scores for all
words in the vocabulary according to their similar-
ity to the target (computed as dot-product of em-
beddings in E) improves performance on LM.

(a) Non-tied model

(b) Tied model

(c) Tied+L model

Figure 1: Effect of the three architectures on map-
ping sizes. Note that the actual difference between
vocabulary size |V | and n, m is of 2 to 3 orders of
magnitude.

One important practical advantage of tying in-
put and output matrices is the reduction in num-
ber of parameters with respect to a standard model
with the same hidden and embedding dimensions,
since instead of two matrices E and W of size
|V |×m we have only one matrix of size |V |×m.

2.2 Proposed modification

One potential problem with the tied model, where
E = W , is that the hidden state ht is optimised
to be close to the embedding of the target word.
To see this, consider that oj = ej · ht,∀j. The
cross-entropy objective is to maximise log pi for
the target word with index i and consequently to
minimise log pj∀j 6= i. Hence, oi = ei · ht will
be increased by the gradient descent update and ht

will be aligned closer with ei (for each dimension
k of the two vectors, htk · eik will be increased).
This association between ht and word embedding
space could prevent efficient retention of LSTM
history in ht, which is used as input for the fol-
lowing time step.

To address this issue, we propose a simple mod-
ification to the standard tied model, replacing the

2938

output transformation (3) as follows:

ĥt = htL

o = ĥtE
T .

(5)

L is an additional linear transformation that de-
couples the hidden state ht, which is passed to the
next time step and represents the previous, possi-
bly long-term, linguistic context, from ĥt, which
is instead optimised to match the embedding of the
output word.

As Figure 1 illustrates, an important advantage
of the additional transformation L is that a model
can have different dimensions for the hidden vec-
tor (n) and the embedding vectors (m). The em-
bedding matrix is the largest part of the model
when the vocabulary is large (|V | � n). Re-
ducing the size of the embedding m leads to a
significant reduction in the number of parameters,
proportional to |V |, and the acceleration of soft-
max computation. On the other hand, the size of
the additional matrix L is only n × m and con-
tributes very little to the overall size of the model.
We test empirically how reducing the embedding
size affects the performance of language models
by varying hidden and embedding sizes in our ex-
periments and evaluating embedding matrices on
word similarity tasks.

Standardly used LM models often have two lay-
ers of LSTM cells. Thus, the issue we identifed
might be mitigated in practice, since the hidden
state of the first layer is not directly affected by ty-
ing the output and input transformation matrices.
Moreover, an LSTM cell carries over information
both through the hidden state and a memory state;
the latter is affected by tying only indirectly (see
Hochreiter and Schmidhuber (1997) for details on
LSTM architectures). However, our experiments
show that, in practice, two-layer LSTM LMs are
still affected by tying despite these caveats.

2.3 Extending the tied technique to word2vec
The tied technique, as formulated above, can be in
principle applied to any model which has the same
general objective of LM: predicting a target word
given context words. The CBOW word2vec model
for word representation learning (Mikolov et al.,
2013) is the primary candidate for testing the ap-
plicability of the tied technique beyond LM, since
we can see it as substituting the LSTM function
(2) with a simple sum of context word embeddings
h =

∑
i x̂i (where xi are words in the context win-

dow, e.g., of size 5). Similarly then, the equations
in (5) describe the tied version of CBOW model.
The linear step here provides the capacity to learn
a transformation from the sum of embeddings to
the predicted embedding ĥ. Without such trans-
formation, the tying model would assume that the
sum function is always a good approximation of
the output embedding.

The skipgram word2vec model (Mikolov et al.,
2013) employs a variant of the LM objective: It
is trained to predict context words given a word,
instead of the opposite. As in CBOW and neural
language models, words are both inputs and tar-
gets, making the use of tying an option also for
this architecture. Press and Wolf (2017) apply di-
rect tying to this architecture and report that the
quality of the obtained embeddings is below the
quality of non-tied skipgram embeddings. Unlike
CBOW or LSTM, the input-to-hidden state func-
tion of the skipgram model is identity, reducing
the tying model objective to x̂i = x̂j for every pair
of input-output words i, j. It is thus not surprising
that enforcing the tying constraint leads to poor
empirical results. We test whether adding an addi-
tional linear transformation improves performance
of the tied technique also for a skipgram model.

3 Experiments and results

3.1 Evaluation data
We use two corpora for the evaluation of lan-
guage models. First, we employ a medium-
sized corpus of approximately 100M tokens with
a relatively large vocabulary, 50K words, created
from a Wikipedia dump (henceforth, Wiki).1 To
allow comparison with previous work, we also
evaluate on the Penn Treebank (PTB), which is
small but has been used as a benchmark for LM
since Mikolov et al. (2011). The PTB has approx-
imately 1M tokens and is preprocessed to have
10K vocabulary words; we use the standard train-
validation-test split.

Furthermore, to evaluate the quality of the em-
beddings induced by the language models, as well
as for the word representation experiments in Sec-
tion 3.4, we use three standard word similarity
datasets: SimLex-999 (Hill et al., 2015; SimLex),
MEN (Bruni et al., 2014), and RareWords (Lu-
ong et al., 2013; RW). The performance on these
datasets is evaluated in terms of Spearman corre-

1https://dumps.wikimedia.org/enwiki/
20180301/

https://dumps.wikimedia.org/enwiki/20180301/
https://dumps.wikimedia.org/enwiki/20180301/

2939

Hid Emb Model Valid Test ∆ Size

200 200 non-tied 95.0 91.1 4.7M
tied 90.8 86.6 -4.5 2.7M
tied+L 89.8 85.8 -5.3 2.7M

400 200 non-tied 89.4 85.3 8.3M
tied+L 83.4 80.3 -5.0 4.3M

400 non-tied 87.2 83.5 10.6M
tied 82.0 78.2 -5.3 6.6M
tied+L 81.9 78.0 -5.5 6.7M

600 400 non-tied 85.8 82.4 15.3M
tied+L 79.0 76.0 -6.4 9.5M

600 non-tied 84.3 81.3 17.8M
tied 79.7 76.1 -5.2 11.8M
tied+L 78.7 75.5 -5.8 12.1M

Inan2017 VD tied 650 77.1 73.9 -
Zaremba2014 1500 82.2 78.4 66M
P&W2016 tied 1500 77.7 74.3 51M

Table 1: LM perplexity results on PTB. ∆: differ-
ence in test perplexity of the tied models with re-
spect to the non-tied model with the same number
of hidden units.

lation between the cosine similarity of word pairs
and human judgments.2

3.2 Training setup
As our base language models, we adopt the ones
proposed in Zaremba et al. (2014). We use 2-layer
LSTMs with dropout applied to the input embed-
ding, to the output of the first LSTM layer and
to the output of the second layer. We used the
PyTorch implementation3 and modified it to in-
clude the additional linear layer for our tied mod-
els. We report the best model after the hyperpa-
rameter search for dropout and learning rate (see
the details in Appendix A).

3.3 Language modelling results
We present the LM results for the standard non-
tied model, the tied model as in Inan et al. (2017)
and Press and Wolf (2017), and our tied model
with an additional linear transformation (tied+L)
in Tables 1 (PTB) and 2 (Wiki).

2We computed correlation on the word pairs covered by
the Wiki corpus, namely 98%, 88% and 31% (973, 2648 and
623 datapoints) for SimLex, MEN, and RW, respectively.

3https://github.com/pytorch/examples/
tree/master/word_language_model

Table 1 confirms that tying generally brings
gains with respect to not tying. This is also true
for the cases when the hidden and embedding sizes
are different (e.g. 400/200 and 600/400), where
our tied+L model outperforms the non-tied model
by 5 to 6.4 points having around 40% less param-
eters. Furthermore, our decoupled model slightly
but consistently improves results with respect to
standard tying, confirming our intuition that the
coupling of the hidden state to the embedding rep-
resentation is a limiting constraint. Smaller tied+L
models perform well compared to larger tied mod-
els. In particular, the tied+L model with 600/400
units has perplexity of 76.0, compared to 76.1 of
the tied 600/600 model, with 55% the number of
parametres. Note that our results are comparable
to previously reported perplexity values on PTB
for similar models. Our best results of 75.5 test
perplexity is only 1.2 points behind the large tied
model with 1500 units reported in Press and Wolf
(2017) and is only 1.6 points behind the medium
tied model with 650 units and variational dropout
(Gal and Ghahramani, 2016) reported in Inan et al.
(2017).

On the Wiki corpus with larger vocabulary (Ta-
ble 2), we find that tied models achieve slightly
lower perplexity than non-tied models with half
the number of parameters, and our proposed
tied+L model achieves lower perplexity than the
tied model. The most relevant result of the present
experiment, however, is that the tied+L model
with 300 embedding units is actually better than
the tied model with 600 units (38.5 vs 39.7 points;
the tied+L model has 20M parameters compared
to 36M of the tied model) – that is, a smaller
model outperforms a larger model. Thus, our
decoupling mechanism not only allows models
to have better perplexity, but also more compact
word embeddings, which are of a higher quality
also as measured on word similarity: .42/.61/.68
for the tied+L embeddings of size 300, compared
to .39/.55/.64 for the tied embeddings of size 600.

3.4 Experiments on word2vec models

Table 3 presents the evaluation of word2vec mod-
els on the three word similarity datasets. We ran
the experiments only on the Wiki corpus due to its
higher coverage (50K vocabulary), and used em-
beddings of size 300.

Our results on CBOW show that the tied+L ar-
chitecture obtains comparable results to the non-

https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model

2940

Perplexity Spearman’s ρ
Hidden Emb Model Size Valid Test SimLex RW MEN

600 300 non-tied 50M 40.0 39.2 .33/.34 .52/.50 .55/.60
tied+L 20M 39.3 38.5 .42 .61 .68

600 non-tied 66M 40.8 40.0 .33/.34 .52/.50 .55/.60
tied 36M 40.5 39.7 .39 .55 .64
tied+L 36M 38.6 37.9 .42 .59 .70

Table 2: Results on Wiki on LM (perplexity; lower is better) and word similarity (Spearman’s ρ; for
non-tied models, results for input and output matrix are reported).

Model Type SimLex RW MEN

CBOW non-tied .38 .51 .63
tied+L .38 .50 .65

skipgram non-tied .39 .52 .74
tied .18 .25 .50
tied+L .35 .51 .72

Table 3: Results (ρ) for word2vec models.

tied architecture with almost half the parameters
(15.1M vs 30M). This confirms that tying with an
additional linear transformation is appropriate not
only for language models but for word learning
models more generally.

The skipgram algorithm shows a small degra-
dation of performance for the tied+L architecture
with respect to the non-tied one; note that, as ex-
plained in Section 2.3, tying makes the most sense
for CBOW. However, the fact that standard tying
obtains much worse results (similarly to the re-
sults of Press and Wolf, 2017) shows that the linear
mapping substantially relaxes the tying constraint.

4 Conclusions

Overall, our simple modification to tied language
modelling architectures generalises previous work
by allowing tying without imposing constraints
on the number of hidden and embedding dimen-
sions. This leads to flexible architectures with a
more efficient use of both hidden states and em-
beddings. For word representation learning mod-
els, having an additional linear transformation re-
duces the number of parameters while maintain-
ing learning capacity. In general, reducing model
size without harming performance is a desirable
feature in practice, for example in the case of lan-
guage models running on mobile devices, and it is

also desirable on theoretical grounds, since it is a
better use of the learning capacity of neural net-
works.

Acknowledgements

We thank Germán Kruszewski and the AMORE
team for the helpful discussions. This project
has received funding from the European Research
Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme
(grant agreement No 715154), and from the
Ramón y Cajal programme (grant RYC-2015-
18907) and the Catalan government (SGR 2017
1575). We gratefully acknowledge the support of
NVIDIA Corporation with the donation of GPUs
used for this research. This paper reflects the au-
thors’ view only, and the EU is not responsible for
any use that may be made of the information it
contains.

References
Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.

Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49:1–47.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating Semantic Models with Gen-
uine Similarity Estimation. Comput. Linguist.,
41(4):665–695.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9 8:1735–
80.

2941

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A
loss framework for language modeling. In ICLR’17.
arXiv preprint arXiv:1611.01462.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of re-
current network architectures. In Proceedings of
the 32Nd International Conference on International
Conference on Machine Learning - Volume 37,
ICML’15, pages 2342–2350. JMLR.org.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better Word Representations with Re-
cursive Neural Networks for Morphology. In Pro-
ceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 104–
113. Association for Computational Linguistics.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and Optimizing LSTM
Language Models. In ICLR’18. arXiv preprint
arXiv:1708.02182.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. pages 1–12. ArXiv preprint
arXiv:1301.3781.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In
Eleventh Annual Conference of the International
Speech Communication Association.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2011. Ex-
tensions of recurrent neural network language
model. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on,
pages 5528–5531. IEEE.

Ofir Press and Lior Wolf. 2017. Using the Output Em-
bedding to Improve Language Models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 157–163. Association
for Computational Linguistics.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM Neural Networks for Language Mod-
eling. In INTERSPEECH.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.

