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Abstract

Recurrent neural network language models
(RNNLMs) are the current standard-bearer
for statistical language modeling. However,
RNNLMs only estimate probabilities for com-
plete sequences of text, whereas some applica-
tions require context-independent phrase prob-
abilities instead. In this paper, we study how
to compute an RNNLM’s marginal probabil-
ity: the probability that the model assigns to
a short sequence of text when the preceding
context is not known. We introduce a sim-
ple method of altering the RNNLM training
to make the model more accurate at marginal
estimation. Our experiments demonstrate that
the technique is effective compared to base-
lines including the traditional RNNLM prob-
ability and an importance sampling approach.
Finally, we show how we can use the marginal
estimation to improve an RNNLM by training
the marginals to match n-gram probabilities
from a larger corpus.

1 Introduction

Recurrent neural networks (RNNs) are the state-
of-the-art architecture for statistical language
modeling (Jozefowicz et al., 2016; Melis et al.,
2018), the task of assigning a probability distri-
bution to a sequence of words. The relative like-
lihoods of the sequences are useful in applica-
tions such as speech recognition, machine transla-
tion, automated conversation, and summarization
(Mikolov et al., 2010; Bahdanau et al., 2014; See
et al., 2017; Wen et al., 2017). Typically, RNN
language models (RNNLMs) are trained on com-
plete sequences (e.g., a sentence or an utterance),
or long sequences (e.g. several documents), and
used in the same fashion in applications or testing.
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A question arises when we want to compute the
probability of a short sequence without the preced-
ing context. For instance, we may wish to query
for how likely the RNNLM is to generate a partic-
ular phase aggregated over all contexts. We refer
to this context-independent probability of a short
phrase as a marginal probability, or marginal.

These marginal probabilities are useful in three
board categories of applications. First, they allow
us to inspect the behavior of a given RNNLM. We
could check, for example, whether an RNNLM-
based generator might ever output a given offen-
sive phrase. Second, the marginals could be used
in phrase-based information extraction, such as
extracting cities by finding high-probability x’s in
the phrase “cities such as x” (Soderland et al.,
2004; Bhagavatula et al., 2014). Finally, we can
use the phrase probabilities to train an RNNLM
itself, e.g. updating the RNNLM according to
n-gram statistics instead of running text (Chelba
et al., 2017; Noraset et al., 2018). In our experi-
ments, we show an example of the last application.

Estimating marginals from an RNNLM is chal-
lenging. Unlike an n-gram language model (Chen
and Goodman, 1996), an RNNLM does not explic-
itly store marginal probabilities as its parameters.
Instead, previous words are recurrently combined
with the RNN’s hidden state to produce a new
state, which is used to compute a probability dis-
tribution of the next word (Elman, 1990; Mikolov
et al., 2010). When the preceding context is ab-
sent, however, the starting state is also missing. In
order to compute the marginal probability, in prin-
ciple we must marginalize over all possible previ-
ous contexts or all continuous-vector states. Both
options pose a severe computational challenge.

In this paper, we study how to efficiently
approximate marginal probabilities from an
RNNLM, without generating a large amount of
text. Given an RNNLM and a phrase, our goal is
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to estimate how frequently the phrase will occur in
text generated by the RNNLM. We present two ap-
proaches that can be used to estimate the marginal
probabilities: sampling for the starting state, and
using a single starting state with altered RNNLM
training. We show empirically that we can use a
zero vector as a starting state of an RNNLM to
compute accurate marginal estimates, but we must
randomly reset the RNNLM state to zero during
training and add a unigram likelihood term to the
RNNLM training objective. Finally, we demon-
strate that we can use marginal estimation to in-
corporate n-gram statistics from a larger corpus to
improve the perplexity of an RNNLM trained on a
similar, but smaller corpus.

2 Marginal Estimation

The goal of marginal estimation is to determine
the likelihood of a short phrase where the preced-
ing context is not known; we refer to this likeli-
hood as a marginal probability. In other words,
the marginal probability of a query refers to how
likely a language model will generate a query re-
gardless of context.

2.1 Problem settings
An RNNLM (Mikolov et al., 2010) defines a prob-
ability distribution over words conditioned on pre-
vious words as the following:

P (w1:T ) =

T∏
t=1

P (wt|w1:t−1)

P (wt|w1:t−1) = P (wt|ht) ∝ exp(θ(w)o ht)

ht = g(ht−1, wt−1)

where w1:t−1 is a sequence of previous words, θwo
denotes the output weights of a wordw, and g(·) is
a recurrent function such as an LSTM (Hochreiter
and Schmidhuber, 1997) or GRU unit (Cho et al.,
2014).

An initial state, h1 is needed to start the recur-
rent function g(h1, w1), and also defines the prob-
ability distribution of the first word P (w1|h1).
In the standard language model setting, we com-
pute h1 using a start-of-sentence symbol for w0

(“<s>”), and a special starting state h0 (usually
set to be a vector of zeros ~0). This initialization
approach works fine for long sequences, because
it is only utilized once and its effect is quickly
swamped by the recurrent steps of the network.
However, it is not effective for estimating marginal

probabilities of a short phrase. For example, if
we naively apply the standard approach to com-
pute the probability of the phrase “of the”, we
would obtain:

P (of the) =P (of|h1 = g(~0,<s>))×
P (the|h2 = g(h1,the))

The initial setting of the network results in low
likelihoods of the first few tokens in the evalu-
ation. For instance, the probability P (of the)
computed in the above fashion will likely be a bad
underestimate, because “of the” does not usu-
ally start a sentence.

We would like to compute the likelihood of
standalone phrases, where rather than assuming
the starting state we instead marginalize out the
preceding context. Let the RNN’s state prior to our
query sequence be z ∈ Rd, a vector-valued ran-
dom variable representing the RNN initial state,
and let w1:T be a short sequence of text. The
marginal probability is defined as:

P (w1:T ) =

∫
P (w1:T |z)P (z)dz (1)

The integral form of the marginal probability is in-
tractable and requires an unknown density estima-
tor of the state, P (z).

2.2 Trace-based approaches
The integral form of the marginal probability in
Eq 1 can be approximated by sampling for z. In
this approach, we assume that there is a source of
samples which asymptotically approaches the true
distribution of the RNN states as the number of
samples grows. In this work, we use a collection
of RNN states generated in an evaluation, called a
trace.

Given a corpus of text, a trace of an RNNLM
is the corresponding list of RNN states, H(tr) =

(h
(tr)
1 , h

(tr)
2 , ..., h

(tr)
M ), produced when evaluating

the corpus. We can estimate the marginal prob-
ability by sampling the initial state z from H as
follows:

P (w1:T ) = Ez∼H(tr)

[
P (w1|z)

T∏
t=2

p(wt|ht)
]

(2)

where h2 = g(zψ, w1) and ht = g(ht−1, wt−1) for
t > 2 (i.e. the following states are the determin-
istic output of the RNN function). Given a large
trace this may produce accurate estimates, but it
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is intractably expensive and also wasteful, since in
general there are very few states in the trace that
yield a high likelihood for a sequence.

To reduce the number of times we run the model
on the query, we use importance sampling over the
trace. We train an encoder to output for a given n-
gram query a state “near” the starting state(s) of
the query, zχ = qχ(w1:T ). We define a sampling
weight for a state in the trace, h(tr), proportional
to the dot product of the state and the output of the
encoder, zχ , as the following:

P (h(tr)|w1:T ) =
exp(zχh

(tr))∑
h′(tr)∈H(tr)

exp(zχh′(tr))

This distribution is biased to toward states that are
likely to precede the query w1:T . We can estimate
the marginal probability as the following:

P (w1:T ) =

E
z∼P (h(tr)|w1:T )

[
P (z)

P (z|w1:T )
P (w1|z)

T∏
t=2

p(wt|ht)
]

Here the choice of the prior P (z) is a uniform dis-
tribution over the states in the trace. The encoder,
qχ(w1:T ), is a trained RNN with its input reversed,
and zχ is the final output state of qχ. To train the
encoder, we randomly draw sub-strings wi:i+n of
random length from the text used to produce the
trace, and minimize the mean-squared difference
between zχ and h(tr)i .

2.3 Fixed-point approaches
While the trace-based approaches work on an
existing (already trained) RNNLM, they might
take several samples to accurately estimate the
marginal probability. We would like to have a sin-
gle point as the starting state, named zψ. We can
either train this vector or simply set it to a zero
vector. Then the marginal probability in Eq 1 can
be estimated with a single run i.e. p(zψ) = 1.0 and
p(z) = 0.0 if z 6= zψ. The computation is reduced
to:

P (w1:T ) = P (w1|zψ)
T∏
t=2

P (wt|ht) (3)

where h2 = g(zψ, w1) and the rest of the state
process is as usual, ht = g(ht−1, wt−1). In this
paper, we set zψ to be a zero vector, and call this
method Zero.

As we previously discussed, our fixed-point
state, zψ, is not a suitable starting state of all n-
grams for any given RNNLM, so we need to train
an RNNLM to adapt to this state. To achieve this,
we use a slight modification of the RNN’s trun-
cated back-propagation through time training al-
gorithm. We randomly reset the states to zψ when
computing a new state during the training of the
RNNLM (a similar reset was used for a different
purpose—regularization—in Melis et al. (2018)).
This implies that zψ is trained to maximize the
likelihood of different subsequent texts of different
lengths, and thus is an approximately good starting
point for any sequence. Specifically, a new state is
computed during the training as follows:

ht = rzψ + (1− r)g(ht−1, wt−1)

where r ∼ Bern(ρ) and ρ is a hyper-parameter
for the probability of resetting a state. Larger ρ
means more training with zψ, but it could disrupt
the long-term dependency information captured in
the state. We keep ρ relatively small at 0.05.

In addition to the state reset, we introduce a uni-
gram regularization to improve the accuracy of the
marginal estimation. From Eq 3, zψ is used to pre-
dict the probability distribution of the first token,
which should be the unigram distribution. To get
this desired behavior, we employ regularization to
maximize the likelihood of each token in the train-
ing data independently (as if reset every step). We
call this a unigram regularizer:

LU = −
T∑
t=1

logP (wt|zψ)

and we add it to the training objective: Ltext =
−
∑T

t=1 logP (wt|ht). Thus, the overall training
loss is: L = Ltext + LU .

3 Experiments and Results

3.1 Experimental Settings
We experiment with a standard medium-size
LSTM language model (Zaremba et al., 2014)
over 2 datasets: Penn Treebank (PTB) (Mikolov
et al., 2010) and WikiText-2 (WT-2) (Merity et al.,
2017). We use weight tying (Inan et al., 2017)
and train all models with Adam (Kingma and Ba,
2014) for 40 epochs with learning rate starting
from 0.003 and decaying every epoch at the rate
of 0.85. We use a batch size of 64 and trun-
cated backpropagation with 35 time steps, and
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PTB WT-2
E(·) PPL E(·) PPL

Zero 3.828 90.18 4.432 104.08
Zero(RU) 0.425 91.92 0.801 106.23
Trace-IW 0.661 - 0.862 -
Zero(R) 2.968 93.70 3.519 109.02
Zero(U) 1.007 90.15 1.713 102.56
Trace-Rand 1.105 - 1.742 -
n-grams 26,070 47,130

Table 1: The average error of different marginal es-
timation approaches and the testing perplexity. The
RNNLM trained with state-reset (R) and unigram (U)
regularization has the lowest error when using a zero
starting state to estimate the marginals.

employ variational dropout (Gal and Ghahramani,
2016). The final parameter set is chosen as the one
minimizing validation loss. For the query model
qχ(w1:T ) used in importance sampling, we use the
same settings for the model and the training pro-
cedure as the above.

3.2 Marginal Estimation

In this subsection, we evaluate the accuracy of
each approach at estimating marginal probabili-
ties. Given a model and a phrase, we first obtain
a target marginal probability, Ptext(w1:T ), from a
frequency of the phrase occurring in a text gener-
ated by the model. Then, we use each approach
to estimate the marginal probability of the phrase,
Pest(w1:T ). To measure the performance, we com-
pute the absolute value of the log ratio (lower is
better) between the target marginal probability and
the estimated marginal probability (Pest):

E(w1:T ) =
∣∣log(Ptext(w1:T )/Pest(w1:T ))

∣∣ (4)

This evaluation measure gives equal importance to
every n-gram regardless of its frequency.

In the following experiments, we generate ap-
proximately 2 million and 4 million tokens for
PTB and WT-2 models respectively. The prob-
ability of phrases occurring in the generated text
serves as our target marginal. We form a test set
consisting of all n-grams in the generated text for
n ≤ 5 words, excluding n-grams with frequency
less than 20 to reduce noise from the generation.
For the trace-based estimations, we average the
marginal probabilities from 100 samples.

Table 1 shows the average discrepancy between
marginal probabilities estimated by generated-text

1 2 3 4 5
Zero 1.02 4.18 6.15 8.78 10.8
Zero(RU) 0.38 0.72 0.95 1.54 2.10
Trace-IW 0.70 0.81 0.92 1.22 1.48
n-grams 10.7 20.7 10.5 3.7 1.5

Table 2: The error aggregate by n-gram lengths. This
shows the same trend as in Table 1, but Trace-IW per-
forms better for longer n-grams.

statistics and the methods discussed in Section
2 (Eq 4). From the table, the RNNLM trained
with the state-reset and the unigram regulariza-
tion (Zero(RU)) performs better than both zero-
start and trace-based approaches on the traditional
model. The importance sampling method (Trace-
IW) has the second lowest error and performs bet-
ter than random sampling (Trace-Rand). Abla-
tion analysis shows that both state-reset and the
unigram regularization contribute to the accuracy.
Note that the trace-based methods use the same
model as Zero.

To show how performance varies depending on
the query, we present results aggregated by n-
gram lengths. Table 2 shows the errors of the
WT-2 dataset. When the n-gram length is greater
than 2, Trace-IW has better accuracy. This makes
sense because the encoder has more evidence to
use when inferring the likely start state.

3.3 Training with marginal probabilities
We now turn to an application of the marginal es-
timation. One way that we can apply our marginal
estimation techniques is to train an RNNLM with
n-gram probabilities in addition to running text.
This is helpful when we want to efficiently in-
corporate data from a much larger corpus without
training the RNNLM on it directly (Chelba et al.,
2017; Noraset et al., 2018). In this work, we frame
the problem as a regression and use a loss equal to
the squared difference of log probabilities:

LN =
α

2K

K∑
k

(logPtext(x
(k)
1:T )− logPest(x

(k)
1:T ))

2

where α is a hyper-parameter and set to 0.1. Fol-
lowing the result in Table 1, we use the Zero
method to estimate Pest(x

(k)
1:T ) as in Eq 3, and add

LN to the training losses that use the running text
corpus.

To evaluate the approach, we follow the Noraset
et al. (2018) experiment in which bi-gram statis-
tics from the training text of WT-103 are used to
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Loss PPL
L(2)text (Zero) 104.08
L(2)text + L

(2)
U (Zero(U)) 102.56

L(2)text + L
(2)
U + L(103)N 93.95

Table 3: Test perplexities of RNNLMs trained on dif-
ferent loss functions. Using n-gram probabilities from
a larger corpus (WT-103) improves perplexities.

improve an RNNLM trained using WT-2. In our
experiment, we use n-grams up to n = 5 with fre-
quency greater than 50. We ignore n-gram con-
taining <unk>, because the vocabulary sets are
different. Table 3 shows the result. Since we do
not use the same setting as in the original work,
we cannot directly compare to that work – they
use different optimization settings, more expen-
sive n-gram loss, and Kneser-Ney bi-gram lan-
guage model. However, we see that the proposed
n-gram loss is beneficial when combined with the
unigram loss. Importantly, unlike the approach
in Noraset et al. (2018), our approach requires no
sampling which makes it several times faster.

In addition, we present our preliminary result
comparing training with the marginal probabil-
ity of n-grams to training with the complete data.
Given a limited budget of optimization steps, we
ask whether training on n-grams is more valu-
able than training on the full corpus. To keep
the results compatible, we use the vocabulary set
of WikiText-2 and convert all OOV tokens in the
training data of WikiText-103 to the “<unk>” to-
ken. Figure 1 shows the loss (average negative
log-likelihood) of the validation data as the num-
ber of optimization steps increases.

We can see that training with the marginals does
not perform as well as training with WikiText-103
training data, but outperforms the model trained
only with WikiText-2 training data. This might
be due to our choice of n-grams and optimiza-
tion settings such as a number of n-grams per
batch, weight of the n-gram loss, and the learning
rate decay rate. We leave exploring these hyper-
parameters as an item of future work.

4 Conclusion

We investigated how to estimate marginal prob-
abilities of n-grams from an RNNLM, when the
preceding context is absent. We presented a sim-
ple method to train an RNNLM in which we occa-
sionally reset the RNN’s state and also maximize

0 100 200 300
steps in hundreds

4.5
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6.5
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ss

WT-2 text
WT-2 text and WT-103 n-grams
only WT-103 text (WT-2's vocab)

Figure 1: Loss in negative log-likelihood over steps
in training. The loss computed using the valid data
from WikiText-2 corpus. Training with n-grams from a
larger corpus is helpful, but not as well as training with
the running text from a larger corpus itself.

unigram likelihood along with the traditional ob-
jective. Our experiments showed that an RNNLM
trained with our method outperformed other base-
lines on the marginal estimation task. Finally, we
showed how to improve RNNLM perplexity by
efficiently using additional n-gram probabilities
from a larger corpus.

For future work, we would like to evaluate our
approaches in more applications. For example, we
can use the marginal statistics for information ex-
traction, or to detect and remove abnormal phrases
in text generation. In addition, we would like to
continue improving the marginal estimation by ex-
perimenting with recent density estimation tech-
niques such as NADE (Uria et al., 2016).
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