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Abstract

Extracting typed entity mentions from text is
a fundamental component to language under-
standing and reasoning. While there exist sub-
stantial labeled text datasets for multiple sub-
sets of biomedical entity types—such as genes
and proteins, or chemicals and diseases—
it is rare to find large labeled datasets con-
taining labels for all desired entity types to-
gether. This paper presents a method for
training a single CRF extractor from multi-
ple datasets with disjoint or partially overlap-
ping sets of entity types. Our approach em-
ploys marginal likelihood training to insist on
labels that are present in the data, while fill-
ing in “missing labels”. This allows us to
leverage all the available data within a single
model. In experimental results on the Biocre-
ative V CDR (chemicals/diseases), Biocreative
VI ChemProt (chemicals/proteins) and Med-
Mentions (19 entity types) datasets, we show
that joint training on multiple datasets im-
proves NER F1 over training in isolation, and
our methods achieve state-of-the-art results.

1 Introduction

Identifying entities in text is a vital component
in language understanding, facilitating knowledge
base construction (Riedel et al., 2013), question
answering (Bordes et al., 2015), and search. Iden-
tifying these entities are particularly important in
biomedical data. While large scale Named En-
tity Recognition (NER) datasets exist in news and
web data (Tjong Kim Sang and De Meulder, 2003;
Hovy et al., 2006), biomedical NER datasets are
typically smaller and contain only one or two types
per dataset. Ultimately, we would like to identify
all entity types present across the union of the la-
bel sets during inference while leveraging all the
available annotations to train our models.

While one may train a single model across the
union of all the datasets available, this training

procedure assumes that all labels (from the union
of the tag set) are correctly annotated in every
training instance – which is incorrect. On the other
hand, training separate models on each available
dataset does not take advantage of shared statis-
tical strength from the multiple sources of infor-
mation, and requires resolution of the conflicting
predictions output by the different models.

To remedy these problems, we propose methods
to train a joint model across the multiple tag-sets
of the different datasets, sharing statistical strength
by using a single feature encoder across datasets
while respecting the incompleteness of the labels
during training. Thus, our single model can take
full advantage of all the available annotated re-
sources and predict the full set of relevant types
given a piece of text.

In experiments on three datasets, we show our
methods outperform models that do not consider
the incomplete annotations. We also show that
jointly training on multiple datasets improves per-
formance further and achieves state-of-the-art per-
formance on the Biocreative V CDR dataset.

2 Model

Our models build on state-of-the-art NER systems
(Lample et al., 2016) based on bi-directional Long
Short Term Memory (BiLSTM) feature extractors
fed into a conditional random field (CRF).

The data consists of input sequence of tokens
x = {x1, . . . , xT } where each token is a sequence
of characters xt = {c1, . . . , cKt}. The output con-
sists of labels for each token in the sequence y =
{y1, . . . , yT }. Labeling is done using the BILOU
tagging scheme, following previous observations
that it outperforms the BIO tagging scheme (Rati-
nov and Roth, 2009). We have D such datasets of
input tokens and output labels.



2825

Figure 1: Training example where one label set con-
tains Chemical/Protein and the other contains Chemi-
cal/Disease. Here Chemical and Disease annotations
are given and Outside is ambiguous. Tokens labeled as
Outside could potentially be either Outside or Protein
(top). The shaded labels are the gold labels. The EM
CRF marginalizes over all potential sequences (bot).

2.1 Feature Encoder BiLSTM

Our model takes a sequence of tokens from a sin-
gle abstract as input. Tokens are generated using
byte-pair encodings (BPE) (Gage, 1994; Sennrich
et al., 2016), which have recently been shown to
be effective for tokenization of biological texts by
addressing the issue of rare or out-of-vocabulary
tokens (Verga et al., 2018). BPE starts from white
space tokenization and breaks down the tokens
further. Because all of the evaluations are on the
span level rather than the token level, the use of
BPE does not impact any numerical performance.
Each token t produced from BPE is mapped to a d
dimensional word embedding w.

Character level features have been shown to im-
prove NER accuracy (Lafferty et al., 2001; Lam-
ple et al., 2016; Passos et al., 2014). We encode
characters in a word using another BiLSTM, sim-
ilar to Lample et al. (2016), and obtain a character
based embedding for every word by concatenating
the last hidden state of the forward and backward
character LSTM. We concatenate this character
based embedding with the d-dimensional word
embedding and input it to the word-level BiLSTM.
This feature representation is then projected to the
label dimension L using a linear layer, giving a
matrix of scores [fil] where fil is the score for pre-
dicting label l ∈ [L] for token i ∈ [T ].

2.2 Conditional Random Field (CRF)

BiLSTM-CRF models used for named entity
recognition add a CRF layer (Lafferty et al., 2001)

on the output representations from the BiLSTM
model described. The CRF layer scores all pos-
sible labelings to give a probability of the cor-
rect label sequence under the model. Given an
input sequence of tokens x = {x1, . . . , xT } and
the output matrix of scores [fil], the score for an
output labeling y = {y1, . . . , yT } is given by:
s(x,y) =

∑T
t=1

(
Ayt−1,yt + ft,yt

)
, where A is an

L × L matrix of parameters for transitioning be-
tween output labels. The CRF then generates the
likelihood for the correct labeling by normalizing
this score over all possible output labelings:

logP (y|x) = s(x,y)− logsumexp
y′

s(x,y′) (1)

The log normalization term here is:
logsumexp

y′
s(x,y′) = log

∑
y′ exp s(x,y

′)

where the sum goes over all possible labelings y′

of the sequence and is computed efficiently using
dynamic programming (Lafferty et al., 2001).

2.3 Tagging Multiple Datasets

One way to tag multiple datasets is to concatenate
all the datasets with all the output labels and train
a single BiLSTM-CRF model. However, this as-
sumes that each text snippet is completely anno-
tated across the label sets, which is not true. We
now discuss two models which do not make this
assumption.

2.3.1 Multiple CRFs
We first propose one simple method to get around
the assumption of complete annotation – train sep-
arate CRFs for the label set of each dataset. In par-
ticular, to share statistical strengths on the input to-
kens, we share the BiLSTM feature encoder across
the datasets but use separate CRF layers for each
of the datasets. This is a multi-task learning model
(Caruana, 1998) and is expected to perform bet-
ter than the naive model as it no longer makes the
strict assumption of complete annotation (by us-
ing separate CRFs), and shares statistical strength
across datasets. However, given a new abstract to
tag, this model will generate multiple possible la-
belings from the different CRFs. Moreover, the
labelings output by the different CRFs may be in-
consistent, and how to combine these multiple la-
belings is not obvious. We propose and evaluate
a simple heuristic procedure for merging the out-
puts of the different CRF predictions. Whenever
the different CRF predictions disagree on a span
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of tokens, we choose the prediction from the CRF
that has higher marginal probability of predicting
that span of tokens (Alg. 1 in supplementary).

2.3.2 EM Marginal CRF
We also propose an alternative principled ap-
proach that does not require a heuristic merging
process. In order to label D datasets with some
disjoint labels, we only consider the probability of
the “observed labels” and allow the “unobserved”
tokens to be free. Thus, when tagging dataset
i ∈ [D], we treat the non-entity tokens as poten-
tially taking any entity type label from any of the
other datasets as well as the ‘O’ label.

For a particular input x of length T from a
dataset i ∈ [D] with label set Si, let y be the gold
output label. Let E ⊂ [T ] be the index of tokens
with any entity type label in Si and N ⊂ [T ] be
the index of tokens with ‘O’ label, and let yE be
the output sequence corresponding to indices in
E, and similarly yN be the output sequence for
indices in N . Then, from (1), we get the like-
lihood Pi(yE ∪ yN|x), and a naive CRF trained
on the concatenation of all the data will maximize
this probability. However, since we cannot make
the complete annotation assumption, we should
instead maximize only the marginal probability of
the observed entities on the dataset i, Pi(yE|x),
allowing yN to take any values from the labels of
the other datasets: ∪Dj 6=iSj . Thus,

logPi(yE|x) = log
∑

yN∈∪j 6=iSj

Pi(yE,yN|x)

logPi(yE|x) = logsumexp
yN∈∪j 6=iSj

s(x,yE ,yN )− logZ

where logZ is the log normalization term which is
the same as in (1). Note that since the normaliza-
tion term is the same here as for a standard CRF,
we can still use the same dynamic programming
algorithm as for a regular CRF to compute this
logZ. Now, in order to compute the first term,
we note that it is similar to the computation re-
quired to compute logZ – whereas logZ is ob-
tained by summing over all possible output se-
quences, this term is obtained by summing over all
possible output sequences which have indices in E
fixed to the correct label and indices in N taking
values from ∪j 6=iSj . Thus, this can be computed
using the same dynamic programming algorithm
(Tsuboi et al., 2008), and the implementation of
training this model is compatible with modern au-
tomatic differentiation libraries.

3 Experimental Results

We perform experiments on two benchmark
Biocreative datasets as well as the recently in-
troduced MedMentions data (Murty et al., 2018).
Our experiments consider three types of models.
The single CRF model naively concatenates all
training datasets together and assumes complete
labeling, multi CRF has a single Bi-LSTM fea-
ture encoder with a separate CRF for each dataset
(Section 2.3.1), and EM CRF has a single fea-
ture encoder and a single CRF trained with EM
marginalization (Section 2.3.2). For full dataset
statistics and specific implementation details see
supplementary material.

3.1 Biocreative V / VI

Biocreative V Chemical Disease Relation
(CDR): consists of 1,500 titles and abstracts from
PubMed, human annotated with chemical and
disease mentions (Li et al., 2016), and has been
used in previous NER evluations (Fries et al.,
2017; Leaman and Lu, 2016). Biocreative VI
ChemProt (CP): consists of 2,432 PubMed titles
and abstracts, and contains human annotated men-
tions of both chemicals and proteins (Krallinger
et al., 2017)1.

Our results are shown in Table 1. The top por-
tion of the table shows models trained on single
datasets, and the bottom portion shows models
trained on both CDR and CP. Comparing the top
and bottom portions of the table, we can see that
models trained on both CP and CDR outperform
training on either in isolation. Further, we see in
the bottom section that our EM CRF outperforms
the single CRF model and is generally better than
the multi CRF model.

3.2 Adding Additional Data

Weakly Labeled data The addition of weakly la-
beled data has been used recently to improve the
performance of relation extraction systems (Peng
et al., 2016; Verga et al., 2018). In these ap-
proaches, titles and abstracts from PubMed are an-
notated using Pubtator, a state of the art entity tag-
ging and linking/normalization system (Wei et al.,
2013). We use the same weakly labeled data from
Verga et al. (2018).

Results when adding in the additional weakly
labeled data is shown in Table 2. Our models

1To the best of our knowledge, there is no benchmark re-
sult for this dataset
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CDR ChemProt
Chemical Disease Chemical Protein

Model P R F1 P R F1 P R F1 P R F1
CDR single CRF 91.8 84.7 88.1 80.7 75.0 77.8 - - - - - -
CP single CRF - - - - - - 85.9 84.2 85.0 83.3 81.3 82.3
CDR+CP
single CRF 93.3 91.9 92.6 82.0 75.5 78.6 87.8 86.8 87.3 82.9 83.2 83.0
multi CRF 94.1 91.8 92.9 82.7 76.8 79.6 84.8 88.4 86.6 83.7 81.6 82.6
EM CRF 94.0 91.8 92.9 81.1 77.7 79.4 87.1 87.6 87.3 83.2 83.6 83.4

Table 1: Precision, recall, and F1 for Biocreative V CDR and Biocreative VI ChemProt(CP) Datasets. The top
portion of the table shows models trained on single datasets, the bottom portion trains on both CDR and CP, and
the bottom portion trains on CDR and CP. Highest F1 scores in each section are bolded.

CDR ChemProt
Chemical Disease Chemical Protein

Model P R F1 P R F1 P R F1 P R F1
TaggerOne 92.4 84.7 88.4 83.1 76.4 79.6 - - - - - -
TaggerOne † 94.2 88.8 91.4 85.2 80.2 82.6 - - - - - -
WLD single CRF 97.5 85.2 91.0 84.4 83.0 83.7 86.3 77.5 81.6 80.0 63.7 70.9
CDR+CP+WLD
single CRF 95.7 92.4 94.0 84.5 82.9 83.7 87.6 87.2 87.4 82.0 84.7 83.3
multi CRF 95.6 93.2 94.4 85.7 84.0 84.8 85.6 90.0 87.7 87.3 81.8 84.5
EM CRF 96.6 92.1 94.3 84.9 83.6 84.2 88.9 87.5 88.2 84.0 86.1 85.0

Table 2: WLD trains with weakly labeled data. Highest F1 scores in each section are bolded. † jointly performs
NER and entity linking.

improve further, outperforming the state-of-the-art
TaggerOne model (Leaman and Lu, 2016).

3.3 MedMentions

MedMentions (Murty et al., 2018) is a recently in-
troduced large dataset of PubMed abstracts con-
taining entity linked mentions of many different
semantic types. We used this data to create an ar-
tificially extreme example where two training sets
contain 9 and 10 entity types each. The two type
sets are fully disjoint (further details in supple-
mentary).

In Table 3, we see that the single CRF model
performs very poorly in this extreme setting due
to the large amount of missing annotations. The
multi CRF and EM CRF both perform well and
come close to the performance of a single CRF
trained on the full data, which is approximately
twice as much annotated data.

Model P R F1
single CRF 65.0 24.3 35.3
multi CRF 62.5 50.9 56.1
EM CRF 59.7 54.2 56.8
Full single CRF 60.5 58.3 59.4

Table 3: MedMentions results. Full single CRF is
trained on the full set of annotations. Other models are
trained on the two disjoint training sets.

4 Related Work

Until recently, feature engineered machine learn-
ing models were the highest performing ap-
proaches to NER (Ratinov and Roth, 2009; Passos
et al., 2014). More recently, neural network based
approaches have become state-of-the-art (Lample
et al., 2016; Strubell et al., 2017; Peters et al.,
2017). In BioNLP, many highest performing sys-
tems still use engineered features fed into a CRF
(Wei et al., 2015; Leaman et al., 2015; Leaman and
Lu, 2016). In addition to the two datasets we ex-
plored in this work, there are several other pop-
ular bio NER datasets for chemicals (Krallinger
et al., 2015), species (Wang et al., 2010), diseases
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(Doğan et al., 2014), and genes (Tanabe et al.,
2005).

In concurrent work, Wang et al. (2018) train a
model very similar to our multi-CRF model on
multiple biological NER datasets with non-fully
overlapping labels. Additionally, they experiment
with different ways of sharing the parameters of
the BiLSTM encoder. We believe this work is
complementary to ours, and in many ways deals
with a simpler subset of the tasks we address.
Wang et al. assumes complete labeling in each of
their datasets, and does not attempt to merge the
final results of the multiple CRFS. On the other
hand, we focus on the problem of cohesively la-
beling a dataset with the joint set of the different
label sets, either directly through the EM model or
by the merging process of the multi-CRF model.

Our method of training via marginal likelihood
is the same as Tsuboi et al. (2008), who trained
CRF models for Japanese word segmentation and
POS tagging where only partial annotations of
sentences are available. In comparison, we use the
marginal likelihood training in conjunction with
state-of-the art deep learning models for NER and
use it to tag across multiple disjoint labels sets.

5 Conclusions and Future Work

We’ve introduced a method for training NER mod-
els on multiple datasets containing disjoint label
sets. We show experimentally that this joint train-
ing improves performance and that our EM CRF
methods outperform models using a single CRF.

One interesting problem that our models do not
account for is the existence of overlapping and
non-continuous entity spans. Particularly when
annotating using disjoint label sets, a token could
belong to multiple entity spans from different label
sets. We are interested in investigating this prob-
lem in future work.
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