
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2700–2710
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

2700

Neural Transition Based Parsing of Web Queries: An Entity Based
Approach

Rivka Malca and Roi Reichart
Technion, Israel Institute of Technology

srikim@st.technion.ac.il, roiri@technion.ac.il

Abstract

Web queries with question intent manifest a
complex syntactic structure and the processing
of this structure is important for their interpre-
tation. Pinter et al. (2016) has formalized the
grammar of these queries and proposed semi-
supervised algorithms for the adaptation of
parsers originally designed to parse according
to the standard dependency grammar, so that
they can account for the unique forest gram-
mar of queries. However, their algorithms
rely on resources typically not available out-
side of big web corporates. We propose a new
BiLSTM query parser that: (1) Explicitly ac-
counts for the unique grammar of web queries;
and (2) Utilizes named entity (NE) informa-
tion from a BiLSTM NE tagger, that can be
jointly trained with the parser. In order to
train our model we annotate the query tree-
bank of Pinter et al. (2016) with NEs. When
trained on 2500 annotated queries our parser
achieves UAS of 83.5% and segmentation F1-
score of 84.5, substantially outperforming ex-
isting state-of-the-art parsers.1

1 Introduction

Web queries, authored by users in order to search
for information, form a major gate to the Web,
and their correct interpretation is hence invaluable.
While earlier research (Bergsma and Wang, 2007;
Barr et al., 2008) suggested that many queries are
trivial in structure, Pinter et al. (2016) (henceforth
PRS16) demonstrated that this is often not the
case. Particularly, they demonstrated that queries
related to questions that are answered in Commu-
nity Question Answering (CQA) sites (social QA
forums such as Yahoo Answers), follow a complex
dependency grammar. As such queries are quite
frequent (e.g. an early study (White et al., 2015)

1Our code and data are available at: https:
//bitbucket.org/riki_malca/ptsparser/
src/master.

showed that they constitute∼10% of all queries is-
sued to search engines) and their interpretation can
benefit from structural analysis (e.g. (Tsur et al.,
2016)), effective query parsing is of importance.2

In order to properly describe the syntactic struc-
ture of queries, PRS16 extended the standard de-
pendency grammar so that it accounts for depen-
dency forests that consist of syntactically indepen-
dent segments, each of which has its own internal
dependency tree. Additionally, they constructed a
query treebank consisting of 4,000 CQA queries,
manually annotated according to the query gram-
mar. Examples of annotated queries from the tree-
bank are given in Figures 2 and 4.

PRS16 presented two algorithms that can adapt
off-the-shelf dependency parsers trained on stan-
dard edited text, so that they can produce syntactic
structures that conform to the query grammar. Im-
portantly, their methods do not contain any change
to the states and transitions of the parser. Instead,
they require millions of unannotated queries each
paired with the title (usually a grammatical ques-
tion) of the Yahoo Answers question page that was
clicked by the user who initiated the query; it is the
alignment between the query and the title that pro-
vides the training signal for their algorithms. Un-
fortunately, millions of (query, title) pairs are typ-
ically not available outside of big web corporates,
and the practical value of the PRS16 algorithms is
hence limited. Moreover, despite the unique su-
pervision signal, their parsers achieve a segmenta-
tion F1-score of up to 70.4, which leaves a large
room for improvement.

In this paper we present a transition-based BiL-
STM query parser that requires no distant super-
vision. Our parser is based on two ideas: (a) We
change the standard transition system so that the
parser explicitly supports the PRS16 query gram-

2In the rest of the paper we will refer to queries with ques-
tion intent, like those addressed in PRS16, simply as queries.

https://bitbucket.org/riki_malca/ptsparser/src/master
https://bitbucket.org/riki_malca/ptsparser/src/master
https://bitbucket.org/riki_malca/ptsparser/src/master

2701

mar (§ 3.2); and (b) Observing that entities are
very frequent in CQA queries and provide a strong
structural signal (§ 4), we extend our parser to con-
sider information from a named entity (NE) tag-
ger. We explore both sequential and joint training
of the NE tagger and the parser and demonstrate
the superiority of the joint approach.

As another contribution of this paper, we anno-
tate the dataset of PRS16 with NEs (§ 4). We use
this data to establish our observation about the im-
portance of NEs for query parsing, and in order to
train and test our entity-aware parser.

We split the PRS16 corpus to train (2500
queries), development (750) and test (750) sec-
tions (§ 6). In this training setup our segmentation
and entity-aware parser achieves a segmentation
F1-score of 84.5 (100 on single-segment queries,
60.7 on multi-segment queries) and a dependency
parsing UAS of 83.5. Our model outperforms its
simpler variants that do not utilize segmentation
and/or NE information. For example, the BiLSTM
parser of Kiperwasser and Goldberg (2016), which
forms the basis for our model, scores 67.7 in seg-
mentation F1 and 77.0 in UAS.

We note that our training setup is very dif-
ferent than that of PRS16. They trained their
parser on edited text from the OntoNotes 5 corpus
(Weischedel et al., 2013) augmented with millions
of (query, title) pairs, and their test set consists of
the 4000 queries of the query treebank, as they do
not train on queries.3 While our work is not di-
rectly comparable to theirs, it is worth mentioning
that their best model scores 70.4 in segmentation
F1 and 76.4 in UAS, much lower than the numbers
we report here for our best models.

2 Previous Work

We divide this section to two: We start with works
that analyze the structure of queries and the role of
NEs in their processing, and then discuss work on
parsing of user generated content on the web.

Query structure and entity analysis As noted
in PRS16, web queries differ from standard sen-
tences, as they tend to be shorter and have a unique
dependency structure. Hence, prior to PRS16 sev-
eral works have addressed the syntactic structure
of web queries. However, all these works were
restricted to tasks that are much simpler than full

3In some setups they used the segmentation signal from
the queries and experimented with a five fold cross-validation
over the 4000 queries

dependency parsing, including POS tagging (Ben-
dersky et al., 2010; Ganchev et al., 2012), phrase
chunking (Bendersky et al., 2011), semantic tag-
ging (Manshadi and Li, 2009; Li, 2010) and clas-
sification of queries into syntactic classes (Allan
and Raghavan, 2002; Barr et al., 2008).

NER has been recognized as a fundamental
problem in query processing by Guo et al. (2009),
and many works since (e.g. (Alasiry et al., 2012;
Eiselt and Figueroa, 2013; Zhai et al., 2016)) ex-
plored various models and features for the task.
Differently from those works, our goal is to de-
sign a BiLSTM model that can be easily inte-
grated with modern BiLSTM parsers. We hence
use simple input features and a simple NE scheme
(e.g. see (Guo et al., 2009) for more fine-grained
distinctions). More sophisticated features, en-
tity schemes and deep learning architectures (e.g.
(Lample et al., 2016)) are left for the future.

Syntactic parsing of Web data Only a handful
of papers aimed to parse web data. One important
example is the shared task of Petrov and McDon-
ald (2012) on parsing web data from the Google
Web Treebank, consisting of texts from the email,
weblog, CQA, newsgroup, and review domains.
Other relevant works are the tweet parsers of Fos-
ter et al. (2011), Kong et al. (2014) and Liu et al.
(2018). However, all these works did not address
the unique properties of web queries with question
intent that express information needs in a concise
manner (e.g. with one or more phrases or sentence
fragments) and follow a forest-based grammar.

PRS16 were the first, and to the best of our
knowledge the only work to address the parsing
of web queries with question intent. However,
as noted in § 1 their algorithms rely on millions
of (query, title) pairs, which deems their algorithm
impractical for most users. In practice, they started
with a query log of 60M Yahoo Answers pages and
ended up using 7.5M queries as distant supervi-
sion. In this paper we aim to overcome this limita-
tion by introducing a high quality query parser that
can train on several thousands annotated queries to
provide higher UAS and segmentation F1 figures
compared to those reported in PRS16 (see footnote
3 for their training protocol and data).

We finally note that joint parsing and NER was
explored in past (Reichart et al., 2008; Finkel and
Manning, 2009, 2010), but for edited text, stan-
dard grammar and different modeling techniques.
Our work re-emphasizes the strong ties between

2702

NER and parsing, in the context of query analysis.

3 Segmentation-Aware Parsing

In this section we present a parser that explicitly
accounts for the query dependency grammar of
PRS16. We start (§ 3.1) with a brief description of
the BiLSTM parser of Kiperwasser and Goldberg
(2016) (henceforth KG16), that forms the basis for
our parser, and then describe our query parser.

3.1 The KG16 BiLSTM Parser
KG16 presented a BiLSTM model for transition
based dependency parsing (Figure 1). Given a sen-
tence s with words w1, ..., wn and corresponding
POS tags p1, ..., pn, the word wi is represented as:

xi = e(wi) ◦ e(pi) (1)

where e(wi) and e(pi) are the embeddings of wi
and pi, respectively, and ◦ is the vector concatena-
tion operator. 4

The BiLSTM consists of two LSTMs:
LSTMforward and LSTMbackward. Given
an input vector xi, LSTMforward(xi) captures
the past context, and is calculated using the
information in the input vectors x1, . . . , xi−1.
Similarly, LSTMbackward(xi) captures the future
context and is calculated using the information in
the input vectors xn, . . . , xi+1. vi, the resulting
representation of xi, is given by:

vi = BiLSTM(x1..n, i) (2)

= LSTMforward(xi) ◦ LSTMbackward(xi)

The parser implements the arc-hybrid system
(Kuhlmann et al., 2011) which uses a configura-
tion c = (σ, β,A) where σ = [s0, s1, ..] is a stack,
β = [b0, b1..] is a buffer and A is a set of depen-
dency arcs. The arc-hybrid system allows three
transitions: SHIFT , LEFTarc and RIGHTarc.
At each step the parser scores the possible transi-
tions and selects the highest scoring one.

The parser represents each configuration by the
concatenation of the BiLSTM embeddings of the
first word in the buffer (b0) and the three words
at the top of the stack (s0, s1 and s2). Then,
a multi-layer perceptron (MLP) with one hidden
layer scores the possible transitions given the cur-
rent configuration:

MLPθ(c) =W 2 · tanh(W 1 · c+ b1) + b2 (3)
4The embedding vectors are initialized using the Xavier

initialization (Glorot and Bengio, 2010) and trained as part of
the BiLSTM.

Figure 1: A sketch of the KG16 arc-hybrid parser.

where θ = W 1,W 2, b1, b2 are the MLP parame-
ters and c = vs0 ◦ vs1 ◦ vs2 ◦ vb0 .

The parser employs a margin-based loss (MBL)
function at each step:

MBL = max(0, 1−max
to∈G

MLPθ(c)[to]

+ max
tp∈T\G

MLPθ(c)[tp])
(4)

where T is the set of possible transitions and G
is the set of correct transitions. The losses are
summed throughout the parsing of a sentence and
the parameters are updated accordingly.

The parser employs a dynamic oracle (Gold-
berg and Nivre, 2013), which enables exploration
in training. We next describe our modification of
the KG16 parser. Specifically, we change the tran-
sition logic so that it can directly account for the
query grammar defined in PRS16.

3.2 A Segmentation-Aware BiLSTM Parser
In order for our parser to directly account for the
forest-based query grammar of PRS16, we follow
previous work (e.g. Nivre (2009)) and modify its
set of actions and transition logic. Before we do
that, we start with a more standard modification.

An arc-eager KG16 parser The first step in the
design of our parser is changing the arc-hybrid
system of the KG16 parser to an arc-eager system
(Nivre, 2008). To do that we change the defini-
tions of the RIGHTarc and LEFTarc transitions
and add a REDUCE transition. The (original) arc-
hybrid and the (modified) arc-eager KG16 parsers
are denoted with PH and PE , respectively.

The motivation for this change is the addition
of the REDUCE transition that explicitly facili-

2703

tates segmentation. After the words in the stack σ
are reduced, they cannot be connected to the un-
processed words in the buffer β. This state con-
stitutes a segmentation point. We use this con-
nection between theREDUCE transition and the
segmentation operation as an integral part of our
new segmentation-aware parser, and hence all the
following parsers extend this arc-eager parser.

A segmentation-aware parser In our parser,
denoted as PB (for BASIC), a configuration c =
(σ, β1, β2, A) consists of a stack σ = [s0, s1, ..],
two buffers: β1 = [b10, .., b1last] and β2 =
[b20, .., b2last], and a dependency arcs set A. The
buffers β1, β2 contain the unprocessed tokens, and
the words within β2 form the current segment. We
expand the configuration representation to include
not only the representations of the first token in the
buffer β1 (b10) and the three tokens at the top of
the stack σ (s0, s1, s2) but also the representation
of the last token in the buffer β2 (b2last).

Given a sentence s = w1, . . . , wn, the initial
configuration is ([ROOT], [wi | i > 1], [w1], ∅).
In the final configuration the stack σ contains only
the ROOT token (we refer to this as an empty
stack) and both buffers, β1 and β2 are empty. The
new transition set, described in Table 1, includes a
new transition: PushToSeg. This transition adds a
new token to the current segment by pushing the
top token of β1 to the end of β2. The REDUCE
transition preconditions have also been modified:
this transition is only allowed if β2 is empty or
there is more then one word in the stack.

This new parser performs a two-step process
that repeats until convergence, to induce a parse
forest. The first step is segment allocation, consist-
ing of a sequence of PushToSeg transitions. When
the parser reaches a configuration in which β2 and
σ are empty, only this transition is allowed. There
can be one or more consecutive PushToSeg transi-
tions, each pushes a new token from β1 to β2. This
step ends once the parser selects any other tran-
sition, to form a segmentation point. In the sec-
ond step the allocated segment is parsed. In this
step the parser acts as an arc-eager parser with β2
as the main buffer, and the PushToSeg transition
and the β1 buffer being ignored until the segment
is completely parsed (the PushToSeg transition is
forbidden while the stack is not empty).

An example of the parsing process is provided
in Figure 2. Appendix A provides a proof that the
parser is complete and sound as required in Nivre

(2008) from any dependency parser.
We next describe two auxiliary segmentation

models that can be integrated with our parser.

3.3 Auxiliary Segmentation Models

We consider two models: one is independent of
the parser while the other is added as a component
to the parser.

Independent segmentation model Similarly to
our parser, this model, denoted as SEG, is a BiL-
STM that feeds an MLP classifier which predicts
for every input word whether it is a segmentation
point or not. The loss is a sum of word level MBL
functions (equation 4). The input word representa-
tion, xi, and the definition of the hidden word vec-
tor, vi, are as in equations 1 and 2, respectively;
the output scores vector oseg(wi) is derived from
the hidden vector, hseg, as in equation 3:

hseg(vi) = tanh(W 1
s · vi + b1s)

oseg(vi) =W 2
s · hseg(vi) + b2s

(5)

where W 1
s ,W

2
s , b

1
s, b

2
s are parameters.

We consider two ways through which our PB

parser uses the information from the SEG model.
The parser we denote with PS concatenates the
SEG hidden vector of the top word of the stack to
the configuration representation:

cseg = vs0 ◦ vs1 ◦ vs2 ◦ vb10 ◦ vb2last ◦ h
seg(s0)

Alternatively, the parser we denote with PFS (for
FULL SEG) concatenates the hidden vectors of
all the configuration elements to the configuration
representation:

cfull seg =vs0 ◦ vs1 ◦ vs2 ◦ vb10 ◦ vb2last
◦hseg(s0) ◦ hseg(s1) ◦ hseg(s2)
◦hseg(b10) ◦ hseg(b2last)

This segmentation model can be trained indepen-
dently of the parser or jointly with it. In develop-
ment data experiments independent training was
superior so we report results with this option.

Configuration-based segmentation model
This model, denoted as FLAG, predicts whether a
given parser configuration is a segmentation point.
The answer is positive if the processed words
(words in the stack σ) are in the same segment
and the unprocessed words (words in the buffer
β2 or β1) are not in this segment.

2704

Transition Precondition
LEFTarc (σ|i, β1, j|β2, A) ⇒ (σ, β1, j|β2, A ∪ (j, l, i)) ¬[i = 0] ∧ ¬∃k∃l′[(k, l′, i) ∈ A]
RIGHTarc (σ|i, β1, j|β2, A) ⇒ (σ|i|j, β1, β2, A ∪ (i, l, j))
REDUCE (σ|i, β1, β2, A) ⇒ (σ, β1, β2, A) [∃k∃l[(k, l, i) ∈ A]]

∧¬[size(β2)! = 0 ∧ (size(σ) == 1)]
SHIFT (σ, β1, i|β2, A) ⇒ (σ|i, β1, β2, A)
PushToSeg (σ, i|β1, β2, A) ⇒ (σ, β1, β2|i, A) size(σ) == 1

Table 1: The transition logic of the segmentation-aware parser. The bold items are the new transitions
and conditions of our parser, compared to a standard arc-eager parser.

invent toy school project

root

dobj nn

root

Action β2 β1 σ Arcs
1 PushToSeg [invent] [toy, school, project] [ROOT] ∅
2 PushToSeg [invent, toy] [school, project] [ROOT] ∅
3 RIGHTarc [toy] [school, project] [ROOT, invent] A = (ROOT, invent)
4 RIGHTarc [] [school, project] [ROOT, invent, toy] A = A ∪ (invent, toy)
5 REDUCE [] [school, project] [ROOT, invent] A
6 REDUCE [] [school, project] [ROOT] A
7 PushToSeg [school] [project] [ROOT] A
8 PushToSeg [school, project] [] [ROOT] A
9 SHIFT [project] [] [ROOT, school] A
10 LEFTarc [project] [] [ROOT] A = A ∪ (project, school)
11 RIGHTarc [] [] [ROOT, project] A = A ∪ (ROOT, project)
12 REDUCE [] [] [ROOT] A

Figure 2: Example of the application of our segmentation-aware parser to the multi-segment query invent
toy school project (borrowed from PRS16). First, a sequence of PushToSeg transitions is performed in
order to insert the first segment invent toy to the buffer β2 (transitions 1-2). Then, the segment is parsed
until the buffer β2 and the stack σ are empty (3-6). Similarly, the second segment school project is
pushed to the buffer β2 through a sequence of PushToSeg transitions (7-8) and then parsed (9-12).

The model is a simple MLP that receives a
parser configuration as input and produces a hid-
den vector (denoted with hflag(c)) and a scores
vector (denoted with oflag(c)). The equations for
hflag(c) and oflag(c) are similar to equation 5, and
the loss is an MBL loss as in equation 4.

Information from this model is integrated into
the parser configuration representation through:

cflag(c) = c ◦ hflag(c)
We refer to this parser as PFl (for FLAG). The

FLAG model must be trained jointly with the
parser as its input is a parser configuration.

As shown in § 7, adapting the KG16 parser to
explicitly account for multiple segments improves
over the KG16 parser in the task of query pars-
ing. We next show how additional gains can be
achieved when recognizing the role of NEs.

4 Entities in Query Parsing

In this section we explore the role of NEs in the
syntactic structure of queries. We first describe
our NE annotation process, and then qualitatively
demonstrate the valuable structural cues they pro-
vide. In § 5 we will describe extensions of the
segmentation-aware BiLSTM parser (§ 3.2) that
integrate information from a BiLSTM NE tagger.

Data We consider five entity types: Location
(e.g ”London”), Person (e.g ”Marilyn Monroe”),
Organization (e.g ”Google”), Product (e.g ”Iphone
4”) and Other (e.g. see Figure 4 for NEs such
as ”song name” and ”computer game”). Two hu-
man annotators annotated the dataset. Of the 4000
queries, 400 were randomly selected for initial
tagging by both annotators, so that they could dis-
cuss ambiguous cases and resolve conflicts (the
labeled micro-F1 score between the annotators at
this stage was 85.6). Then, the remaining 3600
queries were equally split between the two annota-
tors, who again consulted each other in ambiguous
cases (the inter-annotator micro-F1, measured on
a randomly sampled set of 100 queries, was 92.0).

NEs as a dependency parsing signal The
dataset consists of 3010 single-segment (hence-
forth SSG) and 990 multi-segment (henceforth
MSG) queries. 62.5% of the queries (59% of the
SSG and 72% of the MSG) contain at least one
NE. Figure 3 (top) provides segment and query
level NE statistics. The middle part of the fig-
ure shows the proportion of segments and queries
that start with an NE. Finally, the bottom part of
the table provides word level statistics. The fig-
ures clearly demonstrate the prominence of NEs

2705

Figure 3: Top: Query and segment level NE distri-
bution (numbers are averages across the queries in
the relevant subset). Middle: NE type distribution
(the ”only names” column refers to queries that
consist of named entities only, and the ”any name”
column refers to queries that contain at least one
named entity). Bottom: The percentage of queries
and segments that start with an NE.

in queries and the segmentation signal they pro-
vide. For example, as many as 35.4% of segments
within the MSG queries start with an NE (42% of
the first segments and 30% of the other segments).
Finally, Figure 4 presents three example queries
where NEs provide invaluable cues about the syn-
tactic structure.

Now that we have established the importance of
NEs for query parsing, we are ready to describe
our entity-aware query parser.

5 A Segmentation and Entity-Aware
BiLSTM Parser

Here we describe the integration of NE signals in
our segmentation-aware query parser (§ 3.2).

A BiLSTM NE tagger Our NE tagger is a BiL-
STM with an MLP classification layer, very simi-
lar to our independent segmentation model (SEG,
§ 3.3). We denote the MLP’s hidden state with
hne(wi) and its output scores vector with one(wi).
The model equations are:

hne(wi) = tanh(W 1
n · vi + b1n)

one(wi) =W 2
n · hne(wi) + b2n

(6)

The margin-based loss (MBL) function we use
in this model is:

MBL = max(0, 1−MLPθ(wi)[necorrect]+

MLPθ(wi)[nepredicted])

(7)

where θ = (W 1
n , b

1
n,W

2
n , b

2
n) are the model pa-

rameters, nepredicted is the named entity type pre-
dicted by model and necorrect is the gold named
entity type. MLPθ(wi)[nei] is the score given by
the MLP to the nei named entity type.

NE-aware parsing We consider two methods
for integrating information from the NE tagger
into the parser. In both methods, we construct a
new feature representation for each input word,
denoted with vMi , where M stands for the inte-
gration method. The new word representations are
then used in the configuration representation (§ 3).

The first method, denoted with Hi (for Hidden),
uses the hidden vector hne(wi):

vHii = vi ◦ hne(wi)

The second method, denoted with Fi (for Final),
uses the NE embeddings:

vFii = vi ◦ e(nepredicted(wi))

For both methods vi is the word representa-
tion generated by the parser (equation 2). For
vFii , nepredicted(wi) is the named entity type
predicted by the tagger for the word wi and
e(nepredicted(wi)) is its embedding (part of the
parser parametrization).

2706

premiere 16 and pregnant new zealand

root
cc

conj

amod
root root

(a) ”16 and pregnant” is a name
of a television series; ”new
zealand” is a name of a place.

tom waits chocolate jesus meaning

root
nnconj

root root

(b) ”tom waits” is a name of a
person; ”chocolate jesus” is a
name of a song.

skyrim marry jarl elisif

dobj

amod
rootroot

(c) ”skyrim” is a name of a
computer game; ”jarl elisif” is
a name of a character in the
game.

Figure 4: Three example queries from the PRS16 dataset, along with their parse trees. NEs provide an
important signal about the structure of the queries.

Tagger and parser training We consider two
approaches:

(a) Independent training: First, the tagger is
trained with the gold NEs of the training set (§ 4),
then the tagger is applied to the training set, and fi-
nally the parser is trained with the gold parse trees
and the tagger’s NE tagging of the training set.

(b) Joint training: The parameters of both mod-
els are updated together, each update is taking
place after observing a single input sentence. In
this joint model, the parser and the tagger are both
using the same BiLSTM to learn the word repre-
sentation vi. The loss function of this model is the
sum of the losses of the parser (sum of the step-
wise losses of Eq. 4) and the tagger (Eq. 7):

MBLjoint =MBLparser +MBLner (8)

6 Experiments

Task and data Our task is the query parsing
task of PRS16, but unlike them we do not use
millions of unannotated queries. Instead, we ex-
periment with a supervised setup were the parser
is trained on parsed web queries and no unanno-
tated queries are used. For our experiments we
randomly split the PRS16 dataset of 4000 queries
annotated with dependency structures and POS
tags,5 into train, development and test sections.
This split is done so that: (a) The train set con-
sists of 2500 queries while the dev and the test sets
consist of 750 queries each; (b) For each k ≥ 1,
k-segment queries are split between the three sets
so that to keep the 2500:750:750 proportion. As a
result, the train, dev and test sets contain 618, 185
and 186 MSG queries, respectively, for the total of
989 MSG queries.

We consider the evaluation measures of PRS16:
(a) The standard dependency parsing Unlabeled
Attachment Score (UAS); and (b) Segmentation

5webscope.sandbox.yahoo.com (dataset L-28)

Hyper-parameter Value
Word embedding dim. 100, 200, 300
POS tag embedding dim. 25, 50, 100
Named entity embedding dim. 6
Hidden units in MLP 100
BiLSTM hidden dim. 50,125,200
BiLSTM output dim. 125
α (for word dropout) 0.25
pagg (for exploration training) 1

Table 2: The hyper-parameters considered in our
development data experiments.

F1-score, where a segment is considered correct if
both its start and end point are correctly identified.

Models and baselines We experiment with
three model families: (a) The baseline KG16
parser and our arc-eager variant of the parser
(§ 3.1, § 3.2); (b) Our segmentation-aware parsers
(§ 3.2, § 3.3); and (c) Our segmentation and entity-
aware parsers (§ 5) where the parser and the NE
tagger are trained either jointly or independently
(we also consider the integration of NE informa-
tion into the original (arc-hybrid) KG16 parser).6

Hyper-parameter tuning Following (Kiper-
wasser and Goldberg, 2016) and due to the large
number of models we experiment with, we con-
sider a relatively small grid of hyper-parameter
values, focused around the values chosen by these
authors, as described in Table 2.

To avoid a very large number of experiments,
we tune the parameters for the original KG16 arc-
hybrid model (PH) and for our arc-eager ver-
sion of the parser (PE). We then report test-set
results for the PH model with its tuned hyper-
parameters, and for all the other models with the
hyper-parameters that were estimated for the PE

model. While this setup gives an unfair advantage

6A comment about naming conventions: unless H (for
the arc-hybrid KG16 parser) or E (for the arc-eager KG16
parser) is part of the model name, a model is an extension of
our PB parser.

webscope.sandbox.yahoo.com

2707

for the baseline PH model, it helps us avoid an ex-
pensive model-specific tuning process. The auxil-
iary segmentation models (§ 3.3) and the NE tag-
ger (§ 5) use the hyper-parameters of Table 2, but
for these models we do not perform any tuning –
for each hyper-parameter with more than one op-
tion, we use the leftmost number from the table.

7 Results

Our results are presented in Table 3. We focus
on selected members of each model family, and
within each model family we focus on the sim-
plest models (PH , PE and PB , with segmentation
and entity information when appropriate), and on
the most complex ones. We make sure to include
the best performing model of each category, which
happens to be one of the most complex models for
all families, emphasizing the quality of our model-
ing choices. The results for the full list of models
are in the spp. material.

The Baseline parsers section of the table
demonstrates the impact of moving from the arc-
hybrid variant to an arc-eager variant of KG16, to
better support segmentation. While the PH model
performs slightly better than PE in terms of UAS
(78.3 vs. 77.0), the segmentation F1-score of PE

is 4.3 points better (72.0 vs. 67.7). Interestingly,
this improvement is not achieved through better
segmentation of MSG queries, but by avoiding un-
necessary segmentation decisions on SSG queries.

The segmentation-aware parsers section of the
table shows that further extending the arc-eager
KG16 parser to explicitly account for segmenta-
tion results in substantial segmentation improve-
ments. Particularly, the overall F1-score of PB

– our segmentation-aware parser that does not
use information from any auxiliary segmentation
models – is as high as 77.4. This amounts to 5.4
and 9.7 additional F1 points compared to the arc-
eager and the original arc-hybrid KG16 parsers,
respectively. Information from auxiliary segmen-
tation models (PS+Fl and PFS+Fl) does not sub-
stantially increase performance in this family.

When considering entity information, the per-
formance of our models and of the PE baseline
substantially improves. However, while the UAS
of the PE baseline increases to 80.2 (PE+Fi with
independent training), its segmentation F1-score
does not cross the 66.9 bound (PE+Hi with joint
training).7 The gain of the segmentation-aware

7The UAS numbers of the pH models with entity infor-

Model UAS Seg. F1-score
all msg ssg all msg ssg

Baseline parsers
PH 77.0 74.9 78.3 67.7 51.5 77.9
PE 75.4 70.5 77.0 72.0 47.6 87.6

Seg. aware parsers - no entity information
PB 76.7 73.4 77.8 77.4 48.7 95.6
PS+Fl 77.1 74.1 78.1 76.0 53.3 90.8
PFS+Fl 76.6 72.1 78.0 77.4 52.1 93.8

Seg. and entity parsers - independent training
PE+Hi 80.2 70.3 83.3 63.3 34.3 80.3
PE+Fi 80.2 70.8 83.2 61.4 42.0 73.2
PHi 79.3 68.3 82.8 63.3 40.5 100
PFi 80.9 69.5 84.5 79.1 45.2 100
PS+Fl+Hi 80.6 70.5 83.8 77.0 48.3 100
PS+Fl+Fi 81.2 71.5 84.2 80.6 49.0 100
PFS+Fl+Hi 81.6 72.3 84.6 80.1 54.1 100
PFS+Fl+Fi 80.6 70.4 83.9 81.7 52.8 100

Seg. and entity parsers - joint training
PE+Hi 79.3 66.7 83.4 66.9 26.2 90.2
PE+Fi 79.8 67.7 83.6 66.1 36.9 83.6
PHi 79.7 66.5 83.4 75.1 33.1 100
PFi 81.6 70.5 85.1 78.6 43.7 100
PS+Fl+Hi 81.6 71.9 84.6 82.0 53.4 100
PS+Fl+Fi 83.5 73.2 86.7 84.5 60.7 100
PFS+Fl+Hi 79.6 67.3 83.5 76.0 36.1 100
PFS+Fl+Fi 82.4 72.1 85.7 81.2 51.4 100

Table 3: Results. Best numbers within each model
section are highlighted in bold. H and E stand for
the arc-hybrid and arc-eager KG16 parser, while
B is our segmentation aware parser without any
auxiliary segmentation model or NE information.
All models where these letters do not appear re-
fer to extensions of our segmentation-aware parser
(B). S: independent segmentation model. FS:
full independent segmentation model. Fl: config-
uration based segmentation model. Hi: NE aware
parser (Hidden). Fi: NE aware parser (Final).

parser from entity information is much more sub-
stantial. First, regardless of how the entity infor-
mation is integrated into the model (Hi vs. Fi)
and of whether the auxiliary segmentation mod-
els (S, FS and Fl) are used or not, the model
perfectly segments the SSG queries. Moreover, it
demonstrates substantial performance boosts with
respect to all measures. Our best performing
model, PS+Fl+Fi with joint training (bold result
in the bottom model section of the table) improves
the original KG16 parser (PH , top row of the ta-
ble) by 6.5 UAS points (83.5 vs. 77.0) and by 16.8
segmentation F1 scores (84.5 vs. 67.7).

Overall, joint training of the parsing and NER

mation are similar to those of the pE models, but their seg-
mentation quality is lower. Due to space limitations, we do
not provide these numbers.

2708

saddest love story anime

nsubj

amod
root root

(a) Gold tree.

saddest love story anime

nsubj

amod
root root

(b) The PB parser (perfect)
tree.

saddest love story anime

amod dobj
root root

(c) The PH parse tree.

Figure 5: Example multi-segment query where PB succeeds and PH fails.

pokemon strong dragon types

dep

xcomp
root root

(a) Gold tree.

pokemon strong dragon types

dep

xcomp
root root

(b) The (perfect) tree of the
PS+Fl+Fi parser when trained
jointly with the named entity
tagger.

pokemon strong dragon types

dobj
root root root

(c) The PS+Fl parse tree.

Figure 6: Example multi-segment query where the PS+Fl+Fi parser succeeds when trained jointly with
the named entity tagger, and PS+Fl fails.

verizon lg v8 lost lock code

aux dobj dobj

dobj
root root

(a) Gold tree.

verizon lg v8 lost lock code

aux dobj dobj

dobj
root root

(b) The (perfect) tree of the
PS+Fl+Fi parser when trained
jointly with the named entity
tagger.

verizon lg v8 lost lock code

aux aux dobj dobj dobj
root

(c) The erroneous tree of the
PS+Fl+Fi parser when trained
independently of the named en-
tity tagger.

Figure 7: Example multi-segment query where the PS+Fl+Fi parser succeeds when trained jointly with
the named entity tagger, and fails when using a pre-trained named entity tagger.

models improves over independent training for
both segmentation F1 and parsing UAS (in 5 of
8 cases for each measure, two bottom model sec-
tions of the table). This improvement comes
mostly from SSG queries (7 of 8 UAS cases and
the 2 cases where segmentation F1 could im-
prove), but at the cost of some degradation on
MSG queries. Moreover, our best model is a
jointly trained one.

While the goal of this paper is mostly to im-
prove the syntactic analysis of web queries, our
simple NE tagger provides decent results. When
trained independently of the parser its test-set (la-
beled) micro-F1 score is 85.6. When trained
jointly with the parser it achieves similar scores in
some cases: e.g. when jointly trained with the best
performing parsing model, PS+Fl+Fi, it achieves
a micro-F1 of 85.2. Yet, in other cases such as
joint training with PS+H and PS+Fi its micro-F1
drops to 78.0 and 78.5, respectively.

Finally, figure 5-7 provide some qualitative
analysis of our models and baselines.

8 Conclusions

We presented a new BiLSTM transition-based
parser for web queries. Our parser is the first
that explicitly accounts for the forest-based query
grammar of PRS16. Moreover, we demonstrated
the importance of NEs for understanding the syn-
tactic structure of web queries, annotated the
Query Treebank of PRS16 with NEs, and demon-
strated how to effectively use NE information in
the syntactic parsing of web queries.

In future work we intend to explore methods for
closing the performance gap our algorithms still
have for MSG queries (both UAS and segmenta-
tion F1) and for SSG queries (UAS only). Rel-
evant directions include improving the transition
logic of our parser, the BiLSTM NE model and
the interactions between the two models.

Acknowledgements

We would like to thank Yuval Pinter, Daniel Her-
shcovich and the Technion NLP group members
for their valuable feedback.

2709

References
Areej Alasiry, Mark Levene, and Alexandra Poulovas-

silis. 2012. Detecting candidate named entities in
search queries. In Proceedings of SIGIR.

James Allan and Hema Raghavan. 2002. Using part-of-
speech patterns to reduce query ambiguity. In Pro-
ceedings of SIGIR.

Cory Barr, Rosie Jones, and Moira Regelson. 2008.
The linguistic structure of english web-search
queries. In Proceedings of EMNLP.

Michael Bendersky, W Bruce Croft, and David A
Smith. 2010. Structural annotation of search queries
using pseudo-relevance feedback. In Proceedings of
CIKM.

Michael Bendersky, W Bruce Croft, and David A
Smith. 2011. Joint annotation of search queries. In
Proceedings of ACL.

Shane Bergsma and Qin Iris Wang. 2007. Learning
noun phrase query segmentation. In Proceedings of
EMNLP-CoNLL.

Andreas Eiselt and Alejandro Figueroa. 2013. A
two-step named entity recognizer for open-domain
search queries. In Proceedings of IJCNLP.

Jenny Rose Finkel and Christopher D Manning. 2009.
Joint parsing and named entity recognition. In Pro-
ceedings of NAACL-HLT .

Jenny Rose Finkel and Christopher D Manning. 2010.
Hierarchical joint learning: Improving joint parsing
and named entity recognition with non-jointly la-
beled data. In Proceedings of ACL.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner,
Joseph Le Roux, Stephen Hogan, Joakim Nivre,
Deirdre Hogan, Josef Van Genabith, et al. 2011. #
hardtoparse: Pos tagging and parsing the twitter-
verse. In proceedings of the Workshop On Analyzing
Microtext (AAAI 2011).

Kuzman Ganchev, Keith Hall, Ryan McDonald, and
Slav Petrov. 2012. Using search-logs to improve
query tagging. In Proceedings of ACL (Volume 2:
Short Papers).

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of AISTAT .

Yoav Goldberg and Joakim Nivre. 2013. Training de-
terministic parsers with non-deterministic oracles.
Transactions of the Association of Computational
Linguistics 1:403–414.

Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. 2009.
Named entity recognition in query. In Proceedings
of SIGIR.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics
4:313–327.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser for
tweets. In Proceedings of EMNLP.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of ACL.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL.

Xiao Li. 2010. Understanding the semantic structure
of noun phrase queries. In Proceedings of ACL.

Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan
Schneider, and Noah A. Smith. 2018. Parsing tweets
into universal dependencies. In Proceedings of
NAACL.

Mehdi Manshadi and Xiao Li. 2009. Semantic tagging
of web search queries. In Proceedings of the ACL-
IJCNLP.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics 34(4):513–553.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of ACL.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Yuval Pinter, Roi Reichart, and Idan Szpektor. 2016.
Syntactic parsing of web queries with question in-
tent. In Proceedings of NAACL.

Roi Reichart, Katrin Tomanek, Udo Hahn, and Ari
Rappoport. 2008. Multi-task active learning for
linguistic annotations. In Proceedings of ACL-08:
HLT .

Gilad Tsur, Yuval Pinter, Idan Szpektor, and David
Carmel. 2016. Identifying web queries with ques-
tion intent. In Proceedings of WWW.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2013. OntoNotes Release 5.0.
https://catalog.ldc.upenn.edu/LDC2013T19.

https://catalog.ldc.upenn.edu/LDC2013T19

2710

Ryen W. White, Matthew Richardson, and Wen-tau
Yih. 2015. Questions vs. queries in informational
search tasks. In Proceedings of WWW.

Ke Zhai, Zornitsa Kozareva, Yuening Hu, Qi Li, and
Weiwei Guo. 2016. Query to knowledge: Unsuper-
vised entity extraction from shopping queries using
adaptor grammars. In Proceedings SIGIR.

A Parser correctness

In this appendix we discuss the correctness of
our segmentation-aware dependency parser, as de-
scribed in §3.2 of the main paper.

According to Nivre (2008), a parsing system is
correct for a class G of dependency graphs if and
only if it is sound and complete for G. We prove
correctness for the set G of all possible depen-
dency trees. The system is sound if and only if
for every sentence x and every transition sequence
C0,m for x, it holds that GC0,m ∈ G. The system
is complete for the class G of all possible depen-
dency trees if and only if for every sentence x and
every dependency graph Gx ∈ G, there is a transi-
tion sequence C0,m for x such that GC0,m = Gx.

We prove that our segmentation-aware parser is
sound by showing that its resulting dependency
graph is necessarily a valid parse tree. In order
to do that we show that in every possible out-
put graph of the parser each word has exactly one
head.

We start by showing that a word must have at
least one head. This stems from the fact that a
word processing is completed once it is reduced.
This can be done using the REDUCE transition
or the LEFTarc transition. The preconditions of
the REDUCE transition prevent a node from be-
ing reduced without a head. The LEFTarc transi-
tion, by definition, reduces the node after assign-
ing it with a head. There can be no more than one
head to each node as the arcs are created using
the RIGHTarc and LEFTarc transitions. If the
RIGHTarc transition is applied to a word, it in-
serts the node to the stack. Once a node is in the
stack, RIGHTarc cannot be applied to it and the
LEFTarc preconditions prevent the generation of
a second head. If the LEFTarc transition applies
to the word, the word is automatically reduced and
cannot have additional heads, as discussed above.

To prove completeness we develop a valid tran-
sition sequence that produces any given depen-
dency tree Gx for a sentence x. We denote the
transition sequence that produces a dependency

graph Gx for a sentence x in the arc-eager sys-
tem as Ceager0,m (x,Gx). Ceager0,m (x,Gx) exists ac-
cording to the completeness of the arc-eager sys-
tem. We also denote the sub-graph of a segment
s within a dependency tree Gx as Gsx. An in-
put sentence contains one or more segments. We
construct the transition sequence by performing
|s| PushToSeg transitions for every segment s in
x followed by performing Ceager0,m′ (s,Gsx) with the
stack σ and the buffer β2. This transition sequence
produces a valid tree Gx for sentence x.

