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Abstract

Grammatical error correction (GEC) systems
deployed in language learning environments
are expected to accurately correct errors in
learners’ writing. However, in practice, they
often produce spurious corrections and fail to
correct many errors, thereby misleading learn-
ers. This necessitates the estimation of the
quality of output sentences produced by GEC
systems so that instructors can selectively in-
tervene and re-correct the sentences which are
poorly corrected by the system and ensure that
learners get accurate feedback. We propose
the first neural approach to automatic qual-
ity estimation of GEC output sentences that
does not employ any hand-crafted features.
Our system is trained in a supervised man-
ner on learner sentences and corresponding
GEC system outputs with quality score labels
computed using human-annotated references.
Our neural quality estimation models for GEC
show significant improvements over a strong
feature-based baseline. We also show that a
state-of-the-art GEC system can be improved
when quality scores are used as features for re-
ranking the N-best candidates.

1 Introduction

The task of automatically correcting various kinds
of errors in written text, termed as grammatical
error correction (GEC), is primarily aimed at as-
sisting language learning and providing correc-
tive feedback to second-language learners. GEC
systems are expected to give precise corrections
and have the ability to correct most learner mis-
takes. In reality, however, this is not the case.
State-of-the-art GEC systems (Junczys-Dowmunt
et al., 2018; Grundkiewicz and Junczys-Dowmunt,
2018; Chollampatt and Ng, 2018) have a precision
below 70% and a recall around 40% when evalu-
ated on benchmark datasets. This level of perfor-
mance is impressive since GEC is a difficult task

given the diversity and complexity of language er-
rors. However, in real-world use cases such as
language learning, erroneous feedback from auto-
matic GEC systems can potentially mislead lan-
guage learners. To prevent this, the instructor can
intervene and re-correct the system’s corrections
when necessary, before they are provided as feed-
back to learners. Having quality estimates for the
system’s output sentences can help instructors to
decide whether to check and fix the system’s cor-
rections (for higher quality corrections) or to ig-
nore the system’s corrections altogether and re-
correct the original learner-written sentences (for
lower quality ones) instead. This can significantly
make the process of post-editing easier and faster.
Such quality estimates can also directly help end
users — the language learners — to decide on the
extent to which the system’s corrections can be
trusted and seek assistance from instructors and
other sources to get better corrective feedback if
needed. In this paper, we propose a neural ap-
proach to automatic quality estimation of GEC
output.

Quality of language output applications can re-
fer to several aspects such as fluency, grammat-
icality, adequacy, and post-editing effort. While
reference-based metrics such as MaxMatch or M2

(Dahlmeier and Ng, 2012) and GLEU (Napoles
et al., 2016a, 2015) are used to evaluate GEC
systems with human-annotated references, a few
reference-less GEC metrics have been proposed
to evaluate fluency, grammaticality, and ade-
quacy (Napoles et al., 2016b; Asano et al., 2017;
Choshen and Abend, 2018b). However, there has
been no work in GEC addressing the estimation of
post-editing effort. Also, to our knowledge, this is
the first supervised approach to quality estimation
(QE) for GEC system outputs, similar to the super-
vised QE task in machine translation (MT) (Specia
et al., 2009). Our neural models for GEC QE are
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based on variants of the predictor-estimator archi-
tecture (Kim et al., 2017a), where knowledge from
a pre-trained network for a word-prediction task is
transferred to another network that estimates the
quality score. Apart from re-implementing the
recurrent predictor-estimator models, we propose
convolutional variants that are faster to train and
run. We release our source code1 publicly.

In summary, the contributions of this paper are:
(1) we propose the first supervised approach to
QE of GEC system outputs, (2) we present neural
QE models that outperform a strong feature-based
baseline for estimating post-editing effort and an
automatic GEC evaluation metric, (3) we propose
new convolutional neural architectures for QE that
can be potentially utilized for QE tasks in other
language applications, and (4) we show that the
performance of a state-of-the-art GEC system can
be improved by adding QE scores as features in
re-ranking the N-best candidates.

2 Related Work

The task of quality estimation became popular in
machine translation (MT) through the studies by
Blatz et al. (2004) and Specia et al. (2009). Much
of the later work in QE of MT was through the
shared tasks in Workshop on Machine Translation
(WMT) campaigns (Bojar et al., 2016b) from 2012
onwards (Callison-Burch et al., 2012). Supervised
methods of quality assessment have been applied
to other natural language processing tasks such as
text simplification (Štajner et al., 2016), language
generation (Dušek et al., 2017), and in assisting
interpreters (Stewart et al., 2018).

In the context of GEC, Heilman et al. (2014) at-
tempted to predict grammaticality of learner sen-
tences using regression with a variety of linguis-
tic features such as the number of misspellings,
language model scores, etc. They use a dataset
of learner sentences manually annotated with sub-
jective scores of grammaticality. However, their
method was to assess learner writing and not for
system evaluation. To evaluate GEC systems,
Napoles et al. (2015) developed reference-less
metrics known as grammaticality-based metrics
or GBMs. GBM scores are based on the num-
ber of errors detected using third-party tools or
determined by a grammaticality prediction model
(Heilman et al., 2014). Their method ignores the
source sentence completely and judges the system

1https://github.com/nusnlp/neuqe

outputs independently for grammaticality. Asano
et al. (2017) improved their method to account for
fluency as well as faithfulness to the source sen-
tence. Choshen and Abend (2018b) provide an-
other measurement for meaning preservation us-
ing a semantic annotation scheme. Contrary to
prior work in GEC reference-less evaluation, our
work is aimed at estimating post-editing effort
in terms of translation error rate (Snover et al.,
2006) and an automatic evaluation metric, Max-
Match (Dahlmeier and Ng, 2012), in a supervised
approach. We propose variants of the predictor-
estimator architecture (Kim and Lee, 2016b; Kim
et al., 2017a) and compare them to a competitive
feature-based baseline, QuEst (Specia et al., 2013,
2015) that has been successfully used for a number
of language pairs in MT QE and for other applica-
tions (Stewart et al., 2018). It has also been the
baseline for WMT QE tasks.

3 Quality Estimation of GEC

Quality estimation (QE) of GEC can be defined
as the task of estimating a quality score q̂ given
a source sentence S and its corresponding GEC
system-corrected hypothesis,H . We formulate the
GEC QE task as a supervised regression task to
predict the quality scores, following the MT QE
approach (Specia et al., 2009). The score is es-
timated using a trained regression model f with
parameters θ, such that q̂ = f(S,H, θ). The
model f is trained and evaluated by utilizing a set
of learner-written sentences and their correspond-
ing corrected hypotheses produced by a “black-
box” GEC system, i.e., neither the GEC system’s
model scores nor internal states will be known to
the QE system. The gold-standard quality scores
are obtained by comparing the system-corrected
sentences and human-corrected references. We are
primarily interested in estimating the post-editing
effort for correcting the output sentences. Simi-
lar to MT QE, we assess GEC post-editing effort
scores using human-targeted translation error rate
or HTER (Snover et al., 2006). HTER is the min-
imum number of edit operations (insertions, dele-
tions, substitutions, or shifts of word sequences)
needed to transform the hypothesis sentence to the
reference sentence, normalized by the length of
the reference. A low HTER score indicates less
post-editing effort.

HTER =
number of edits

number of reference tokens

https://github.com/nusnlp/neuqe
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In MT, the reference translations for HTER are
targeted, i.e., they are created by post-editing sys-
tem translated sentences. However, in GEC, high-
quality datasets annotated by experts with mini-
mal edits are available (Dahlmeier et al., 2013;
Yannakoudakis et al., 2011) and GEC systems are
typically trained to make minimal changes to in-
put sentences. Hence, the actual human annotated
references can be substituted for post-edited ref-
erences of output sentences2. We also experiment
with estimating an automatic GEC evaluation met-
ric, MaxMatch or M2 (Dahlmeier and Ng, 2012)
as the quality score. M2 is the most widely used
GEC evaluation metric that computes the F0.5-
score of phrase-level edits made by a system.

4 Neural Quality Estimation Model

Our neural quality estimation (NQE) model uses
the predictor-estimator architecture (Kim et al.,
2017a) to model the regression function f . Re-
current variants of the model have achieved the
first and second places for WMT 2017 and 2016
sentence-level QE tasks, respectively (Kim and
Lee, 2016a; Kim et al., 2017b). The key idea be-
hind the model is to employ a preliminary predic-
tor neural network that is trained for the “word
prediction” task, i.e., to predict the probabilities of
the words in the target sentence given the source
sentence and the remaining target context (the
words in the target sentence other than the pre-
dicted word). The predictor networks are trained
using large parallel texts (potentially erroneous
learner sentences and their corresponding human-
corrected sentences). The knowledge from the
predictor network is transferred to the estimator
network that is trained to estimate the quality score
q̂ given the source sentence S and its correspond-
ing system hypothesis H . Specifically, a pre-
trained predictor network takes as input S and H
(in place of the target sentence) and predicts prob-
ability scores for words in H . The intuition is that
hypothesis words that are likely to match the ref-
erence sentence will be assigned higher probabil-
ities. The hidden representations from the predic-
tor network, called quality vectors, having infor-
mation about the quality of the hypothesis words,
become the input to the estimator network that es-
timates the quality score. The estimator networks

2Since we use the original annotations instead of human
post-edits as reference corrections, our HTER scores are the
same as TER scores. Nevertheless, we use the term HTER
for consistency with the QE task in MT.

are trained using learner sentences and their corre-
sponding GEC system-corrected hypotheses. The
gold quality score is obtained by comparing a hy-
pothesis and the corresponding human-corrected
reference. We use high-quality datasets annotated
minimally to train the estimator networks. Apart
from re-implementing the recurrent neural net-
work (RNN)-based predictor-estimator model, we
build fully convolutional neural network (CNN)-
based variants for both the predictor and the esti-
mator.

4.1 Predictor Network

The inputs to the predictor network are the source
sentence S with source tokens s1, ..., sm and its
corresponding target sentence T with target tokens
t1, ..., tn. The predictor networks are trained to
predict each target token tj given the source sen-
tence S and the remaining target tokens excluding
the predicted target token, denoted by T−j . The
output of the predictor network is a softmax prob-
ability score normalized across the target vocabu-
lary, Vt:

p(t|S, T−j) =
exp(oj,t)∑

t′∈Vt
exp(oj,t′)

where oj,t is the node corresponding to the word t
in the predictor’s output vectors oj ∈ R|Vt|, when
tj is predicted (see Figure 1). Predictor networks
estimate the output probability by an architecture
that extends the encoder-decoder neural network
for sequence-to-sequence translation (Bahdanau
et al., 2015). Traditional encoder-decoder mod-
els use a bidirectional RNN on the source sen-
tence and a forward RNN on the target side to
capture the target context preceding the predicted
target word. The predictor network additionally
employs another backward RNN in the decoder to
capture the target context following the predicted
word (Kim and Lee, 2016b). In the case of QE, the
entire target sentence is available as input, unlike
the case of sequence-to-sequence translation. Pre-
dictor networks are originally based on RNNs with
gated recurrent units or GRUs (Cho et al., 2014)
and a soft-attention mechanism similar to that in
(Bahdanau et al., 2015). We use separate attention
mechanisms for the forward and backward RNNs
of the decoder in our implementation of the pre-
dictor network.

Due to the recent success of multilayer convo-
lutional encoder-decoder neural networks for MT
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(Gehring et al., 2017) and subsequently for GEC
(Chollampatt and Ng, 2018) that enables better
capturing of the local context, we create a mul-
tilayer convolutional variant of the predictor net-
work. Using CNNs also helps in efficient par-
allelization and improves training and inference
speed as shown in (Gehring et al., 2017). We use
a similar architecture, which is explained in detail
in (Chollampatt and Ng, 2018). In addition, anal-
ogous to the backward RNN in the decoder, we
use a secondary CNN mechanism in each decoder
layer for the convolutional predictor to capture the
target words following the predicted target word.
The first CNN uses k − 1 pre-paddings (paddings
at the beginning), where k is the convolutional ker-
nel width. This ensures that the decoder state cor-
responding to the previous target word does not
include the target word to be predicted in its com-
putation. For the same reason, the secondary CNN
uses k − 1 post-paddings (paddings at the end).
The convolutional predictor uses separate multi-
step attention mechanisms (Gehring et al., 2017)
for both the CNNs in each decoder layer. Addi-
tionally, for the prediction of the target word tj ,
the nearby target embeddings tj−1 and tj+1 are
also used with a maxout non-linearity (Bahdanau
et al., 2015) as done in the RNN-based predictor.
The predictor network is trained to minimize the
negative log-likelihood loss of the target words,
similar to the neural language modeling objective
(Bengio et al., 2003). The overall architecture of a
predictor model is shown in Figure 1.
Quality Vectors: While training and testing the
estimator, the internal hidden representations from
the predictor for every hypothesis word, termed as
quality vectors, are used as inputs to the estimator
network. Specifically, we use the “pre-prediction”
quality vectors in (Kim et al., 2017a), which per-
formed the best for our GEC QE task. The quality
vector qj ∈ Rh corresponding to the hypothesis
word tj is given by qj = hj ◦w>tj where hj ∈ Rh

is the final hidden vector after the maxout layer
(Figure 1), wtj is the column vector corresponding
to the target word tj in the final linear transforma-
tion matrix W ∈ Rh×|Vt| (Figure 1) that projects
hj to the size of the target vocabulary Vt, and ◦
represents element-wise multiplication.

4.2 Estimator Network

The estimator network takes the quality vectors
(§4.1) as input and quality scores as labels during

Figure 1: Architecture of a predictor model. For
our proposed CNN-based variant multiple layers
of CNNs are stacked (only one is shown in the fig-
ure).

training. Our re-implementation of the estimator
network in Kim et al. (2017b) uses a bidirectional
recurrent network with GRU cells to aggregate the
quality vectors. The concatenated final states of
the forward and the backward RNNs (with GRU
cells) are used as the aggregated summary vector,
which is projected to a scalar value using an affine
transformation and clipped to the range between 0
and 1 using a sigmoid function.

We also propose a variant of the estimator net-
works using CNNs that achieves faster training
and inference, and performs competitively. CNNs
help to aggregate local quality statistics around
quality vectors, thereby identifying sequences of
words that have a higher or lower quality. In our
proposed convolutional estimator model (Figure
2), the quality vectors q1, ...,qn are transformed
to q′1, ...,q

′
n where q′j ∈ Rh′

and h′ is the size of
the hidden layer of the estimator. The transformed
quality vectors are fed to a convolutional neural
network with kernel width kq and h′ filters, fol-
lowed by the rectified linear units or ReLU (Nair
and Hinton, 2010) operation. Sufficient paddings
are added on the left and right to retrieve back the
same number of output vectors as the input vec-
tors. The input vectors are added to the output vec-
tors as residual connections. The resulting vector
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Figure 2: The proposed convolutional estimator
neural network with attention-based pooling and
residual connections.

after these operations over a single convolutional
window around q′j , denoted by uj ∈ Rh′

, is given
by

uj = ReLU

(
Conv(q′

j−
⌊
kq
2

⌋, · · · ,q′
j+

⌊
kq
2

⌋)
)
+q′j

u1, ...,uj , ...,un are aggregated into a summary
vector u ∈ Rh′

using a weighted pooling based on
attention weights αj for each uj :

αj =
exp(veu

>
j )∑n

k=1 exp(veu>k )

u =
∑n

j=1 αjuj

where ve ∈ Rh′
is a trainable parameter. The sum-

mary vector u is then fed through another affine
transformation with weights Wu ∈ Rh′×h′

and
biases bu ∈ Rh′

followed by ReLU resulting in
the output vector u′. The quality score q̂ is com-
puted by projecting u′ to a scalar value using an
affine transformation with weights Wq ∈ Rh′×1

and bias bq ∈ R followed by a sigmoid operation
σ to limit the score to between 0 and 1.

q̂ = σ(u′Wq + bq)

The network is trained using mean square error
(MSE) as the loss function. We use the pre-trained
predictor model only to generate input vectors to
the estimator. The predictor parameters are not

updated while training the estimator. We apply
dropout (Srivastava et al., 2014) to both the RNN-
based and CNN-based estimator networks on the
inputs to each layer during training. For the CNN-
based predictor and estimator, learning is stabi-
lized using strategies in (Gehring et al., 2017) such
as the initialization and weight normalization of
CNNs and controlling the variance of activations
after residual connections.

5 Experimental Setup

5.1 GEC System

The data to train and evaluate the NQE models
require GEC system-generated hypotheses. For
this, we train a single multilayer convolutional
neural network GEC model initialized with pre-
trained embeddings following (Chollampatt and
Ng, 2018) on Lang-8 corpus only, following the
same pre-processing method with 5,000 sentence
pairs set aside for validation. The remaining data
consists of 2.15M sentence pairs (25.47M source
tokens and 28.94M target tokens). For training
the model, we use only the annotated sentence
pairs after sub-word segmentation (1.28M sen-
tence pairs with 18.50M source sub-words and
21.88 target sub-words). During decoding, a beam
width of 12 is used and the top candidate is chosen
without any re-scoring.

5.2 Datasets

For training the QE models, we use sen-
tences from the NUS Corpus of Learner En-
glish or NUCLE (Dahlmeier et al., 2013) and
sentences from the training scripts of the Cam-
bridge Learner Corpus-First Certificate Exami-
nation3 (FCE) (Yannakoudakis et al., 2011) and
their corresponding hypotheses generated by the
GEC system described in §5.1. We use sen-
tences from the FCE development set and CoNLL-
2013 (Ng et al., 2013) test set and their GEC
system-generated hypotheses as our development
data. We separately test on two datasets, the FCE
test set and the CoNLL-2014 test set (Ng et al.,
2014). The statistics of the datasets are given in
Table 1. The gold-standard scores are obtained
by computing HTER using TERp (Snover et al.,
2009) and sentence-level M2 using the MaxMatch
scorer with the GEC hypotheses and the reference

3The file IDs of training, development, and testing scripts
of FCE are obtained from the FCE dataset for error detection
at https://www.ilexir.co.uk/datasets/index.html
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sentences src. words hyp. words

Train 86,293 1,614,120 1,620,399
Development 3,635 63,782 63,890
FCE (test) 2,769 41,457 41,531
CoNLL-2014 1,312 30,144 30,109

Table 1: Statistics of the datasets used for QE.

sentences. When multiple references are avail-
able, the gold-standard score is chosen to be the
best score (lowest HTER or highest M2) among
the scores computed against each reference sepa-
rately.

5.3 NQE Models and Training
We build variants of the NQE models denoted by
NQEXY, where X indicates the predictor architec-
ture and Y indicates the estimator architecture. X
and Y can be recurrent (R) or convolutional (C),
of which NQERR is our replication of (Kim et al.,
2017a). The predictor models are trained and vali-
dated using parallel data from Lang-8 with 2.15M
and 5000 sentence pairs, respectively (described in
§5.1). For the predictor models, we use a source
and target vocabulary size of 30,000 words, with
500-dimensional source and target embeddings,
and 700-dimensional hidden layer. For our con-
volutional predictor model, a kernel width of 3
and 7 encoder and decoder layers are used. We
train the predictor network with ADADELTA op-
timizer (Zeiler, 2012) with a batch size of 64. We
clip gradients by their `2-norm with a threshold
of 5.0 (Pascanu et al., 2013). The estimator net-
works, both recurrent and convolutional variants,
use a hidden layer dimension of 100. They are
trained with the Adam optimizer (Kingma and Ba,
2015) with an initial learning rate of 0.0005 and
batch size of 32. We use dropout with a proba-
bility of 0.5 during training. Our final model is
NQEALL, which averages the estimated scores of
all variants, namely, NQERR, NQECR, NQECC,
and NQERC.

5.4 Baselines
We use two non-neural baselines for comparison
to our neural QE models.
AVERAGE: The average score of training sen-
tences is used as the estimated score for all test
sentences.
QUEST: We use the standard 17 sentence-level
features in QuEst++ (Specia et al., 2015) which

has been used as the baseline for WMT QE tasks
from 2012 to 2017. The features are based on
word-level statistics from the source-hypothesis
sentence pairs, and statistics and features from lan-
guage and lexical translation models trained using
a parallel corpus. The descriptions of the 17 fea-
tures can be found in (Bojar et al., 2017). We use
the Lang-8 corpus to train the language and trans-
lation models for QuEst.

5.5 Evaluation

We evaluate primarily using the Pearson’s corre-
lation coefficient (PCC) metric following the rec-
ommendations in (Graham, 2015) and the recent
WMT shared tasks (Bojar et al., 2016a, 2017). It is
shown in (Graham, 2015) that aggregates of gold
score distributions are easier to predict and met-
rics such as mean absolute error (MAE) and root
mean square error (RMSE) over-estimate systems
that predict the aggregates accurately despite these
systems performing poorly on tail ends of the dis-
tribution (higher quality and lower quality sam-
ples). PCC does not suffer from this weakness.
We use William’s Test (Williams, 1959) follow-
ing (Graham, 2015) to assess the significance of
the improvements. However, we also report the
root mean square error (RMSE) which reflects the
estimator’s loss and shows the deviation from the
AVERAGE baseline.

6 Experiments and Results

6.1 Estimating Post-Editing Effort

We compare the QE models in terms of their
performance in estimating the post-editing effort
(HTER). The results, including those of the sig-
nificance tests, are shown in Table 2. On the FCE
test set, all NQE models significantly outperform
the baseline QuEst (p < 0.001), with the best
single model being our NQECR model (78.28%
PCC). The NQE models achieve high PCC (≥
75%) compared to QuEst (35%). On the CoNLL-
2014 dataset, however, only the NQERC model
with our proposed convolutional estimator signifi-
cantly outperforms all other single models includ-
ing QuEst. The overall best performance on FCE
is achieved by the average model, NQEALL, sig-
nificantly outperforming NQECR (p < 0.05) and
all other systems (p < 0.001). On CoNLL-2014,
NQEALL and NQERC achieve statistically similar
results and outperform all other systems signifi-
cantly (p < 0.01).
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FCE CoNLL-2014 Dev.

PCC↑ RMSE↓ PCC↑ RMSE↓ PCC↑ RMSE↓

AVERAGE - 0.2082 - 0.0972 - 0.1755
QUEST 0.3539 0.1935 0.4113 0.0865 0.5021 0.1514
NQERR 0.7753 0.1283 0.4334 0.0954 0.6581 0.1309
NQECR 0.7828 0.1263 0.3096 0.0917 0.6730 0.1283
NQECC 0.7495 0.1351 0.3888 0.0916 0.6653 0.1293
NQERC 0.7644 0.1361 0.4787 0.0806 0.6415 0.1383
NQEALL 0.7881 0.1258 0.4687 0.0858 0.6811 0.1270

Table 2: Results of the NQE models in estimating post-editing effort (HTER). The matrices on the right
show the results of the William’s significance tests. A dark green cell indicates the system labeled on the
row significantly outperforms the system labeled on the column (p-values shown in the color bar).

FCE CoNLL-2014

PCC↑ RMSE↓ PCC↑ RMSE↓

AVERAGE - 0.4529 - 0.4302
QUEST 0.2506 0.4585 0.2182 0.4129
NQERR 0.3594 0.4235 0.2100 0.3970
NQECR 0.4066 0.4153 0.1992 0.4104
NQECC 0.4129 0.4123 0.2017 0.4038
NQERC 0.4028 0.4158 0.2104 0.4014
NQEALL 0.4186 0.4106 0.2210 0.3999

Table 3: Results of the NQE models for sentence-
level M2 estimation.

6.2 Estimating M2 Score

We use NQE models to estimate the MaxMatch
(M2) GEC evaluation metric at the sentence-level,
which computes F0.5 based on phrase-level edits.
Results are shown in Table 3. All models sig-
nificantly outperform the baseline QuEst on FCE
(p < 0.01) test set. NQEALL is significantly bet-
ter than all other systems except NQECC on FCE
(p < 0.01). The PCC on CoNLL-2014 turns out
to be much lower for all systems with the NQE
models not significantly better than the baseline.
Estimating M2 appears to be more difficult com-
pared to estimating post-editing effort with HTER
scores. This could be because M2 is a phrase-
level measure with phrase-boundaries determined
by matching with gold annotations, unlike HTER
which is a token-level evaluation measure.

6.3 Improving GEC Performance

We use the estimated sentence-level M2 scores
as features to improve the performance of down-
stream GEC by using them as an additional fea-
ture during re-scoring the N-best candidates from
a high-performing GEC baseline. Our GEC base-
line is built on the multilayer convolutional ar-
chitecture initialized with pre-trained embeddings
and re-scoring (Chollampatt and Ng, 2018). We
use the same hyper-parameter settings. The base-
line GEC system consists of an ensemble of 3
sets of 4 models each. The first set consists of
the 4 models released by Chollampatt and Ng
(2018). The second set of 4 models is trained us-
ing a label-smoothed cross entropy loss function
(Szegedy et al., 2016) which has been found to be
effective in neural machine translation (Vaswani
et al., 2017; Edunov et al., 2018). We use a
smoothing parameter of 0.1 following Vaswani
et al. (2017). The third set of 4 models con-
sists of high-recall models that make use of three
techniques proposed by Junczys-Dowmunt et al.
(2018): (1) pre-training decoder parameters (2)
source word dropout, and (3) edit-weighted nega-
tive log-likelihood. The parameters of the decoder
are initialized using the parameters from a pre-
trained neural language model (NLM) of the same
architecture as our decoder except for the attention
mechanism. We train this NLM using 100 million
sentences (1.42 billion words) from the Common
Crawl corpora released by Buck et al. (2014) for
one epoch. We use the reported hyper-parameters
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(Junczys-Dowmunt et al., 2018) for the other two
techniques. The 12-best candidates produced by
this ensemble are then re-scored using edit opera-
tions and language model features following Chol-
lampatt and Ng (2018).

The performance of the baseline system (Base
GEC) in terms of document-level F0.5 computed
by M2scorer on the FCE and CoNLL-2014 test
sets is reported in Table 4. When we use the
development set used by Chollampatt and Ng
(2018) consisting of 5.4k sentences from NU-
CLE to train the re-scorer, Base GEC system
achieves a competitive performance compared to
the top GEC systems with the best-published re-
sults on CoNLL-2014 test set: G&J (Grund-
kiewicz and Junczys-Dowmunt, 2018), JGGH
(Junczys-Dowmunt et al., 2018), and C&N (Chol-
lampatt and Ng, 2018). When we make use of
the spelling error correction system (+SpellCheck)
proposed by Chollampatt and Ng (2017), which is
also used by G&J and C&N, our baseline achieves
the highest reported F0.5 on the CoNLL-2014 test
set (56.43) when trained on public corpora alone.
To the Base GEC system, we add the sentence-
level M2 scores estimated by the final NQE model
(NQEALL) as a feature in the re-scorer. Since our
NQE models use NUCLE during training, we use
our development set consisting of 3.6k sentences
from FCE and CoNLL-2013 to re-train the re-
scorer instead of sentences from NUCLE so that
the feature weights will not be biased. We ob-
serve a slight drop in performance upon retraining,
potentially due to the fewer number of sentences
and error annotations in this new development set.
The added feature scores are also in the logarith-
mic scale, similar to LM and the encoder-decoder
model score. When the estimated M2 score is
added, we find a significant improvement of 1.18
F0.5 on the FCE test set and a significant improve-
ment of 0.25 F0.5 score on the CoNLL-2014 test
set (p < 0.001). Significance testing is done using
sign test by bootstrap re-sampling (Koehn, 2004)
with 100 samples. The smaller margin of improve-
ment on CoNLL-2014 is expected due to the low
PCC values (Table 3). When we add spelling er-
ror correction, the results reach 48.70 F0.5 score
on FCE and 56.52 F0.5 score on CoNLL-2014.
However, the results obtained by training the re-
scorer with our development set (FCE+CoNLL)
and adding the NQE models should not be directly
compared to the top systems (G&J, JGGH, and

FCE CoNLL-2014

Best published results

G&J (2018) w/ SpellCheck – 56.25
JGGH (2018) – 55.8
C&N (2018) w/ SpellCheck – 54.79

Re-scorer trained with 5.4k sents. from NUCLE

Base GEC 47.53 55.86
+ SpellCheck 47.79 56.43

Re-scorer trained with FCE+CoNLL dev set

Base GEC 47.29 55.72
+ M2 (NQEALL) 48.47∗ 55.97∗

+ SpellCheck 48.70 56.52

Base GEC + M2 (Oracle) 76.70 80.74

Table 4: Performance (in terms of F0.5 in %) when
NQE-estimated sentence-level M2 scores are used
as features in re-scoring. ∗ indicates statistically
significant improvement compared to Base GEC
(p < 0.001).

C&N) as they do not make use of the FCE data.
We also re-score using oracle sentence-level M2

scores instead of the NQE estimated scores. We
find that GEC performance can reach up to 80.74
F0.5 for CoNLL-2014 and 76.70 F0.5 on FCE. This
shows that improving automatic QE can substan-
tially improve downstream GEC simply via re-
scoring.

7 Discussion and Analysis

Our results show that the NQE models perform
better than feature-based baselines for QE of GEC.
The crucial component of the NQE model that
enables it to make better score estimates is the
predictor network whose internal representations
(quality vectors) are used as input to the estima-
tor. The sum of nodes of a quality vector corre-
sponds to the output node of the predictor network
for a particular target word, and a softmax oper-
ation across all vocabulary words results in the
predicted probability value. In Figure 3, we an-
alyze the probability outputs by our convolutional
predictor network for four GEC hypotheses for a
source sentence ‘We are all looking forward for
you answer .’. Hypothesis 1 is the source sen-
tence itself and the predictor has rightly identified
the location of error by giving a low probability
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We are all looking forward for you answer . </s>

1.000 0.995 0.999 0.999 1.000 0.038 0.844 0.743 1.000 1.000

1.000 0.995 0.999 0.997 1.000 0.805 0.322 0.970 1.000 1.000

1.000 0.995 0.999 0.996 1.000 0.922 0.003 0.939 1.000 1.000

We are all looking forward for you to answer . </s>

1.000 0.995 0.999 0.999 1.000 0.726 0.999 0.980 0.944 1.000 1.000

We are all looking forward to your answer . </s>

We are all looking forward to the answer . </s>

10

Hypothesis 1: Erroneous source sentence itself.

Hypothesis 2: Grammatically correct and matches the human-annotated reference.

Hypothesis 3: Grammatically correct, but not faithful to the source sentence.

Hypothesis 4: Grammatically correct and faithful to the source sentence.

Figure 3: Probabilities predicted by the convolu-
tional predictor for different GEC hypotheses.

score to the erroneous preposition ‘for’ (0.038).
In Hypothesis 2, which also matches the actual
human-annotated reference, the phrase ‘for you’
is replaced with ‘to your’. The correct preposition
‘to’ gets a higher probability score. In Hypothesis
3, where a less suitable word ‘the’ is used, a lower
probability score (0.003) is assigned compared to
the word ‘your’ (0.322) in Hypothesis 2, despite
Hypothesis 3 being grammatically correct. This
indicates that the predictor rightly considers the
faithfulness to the source sentence as well. When
we analyze Hypothesis 4, which is grammatically
correct and also faithful to the source, the proba-
bilities of all words are much higher. Note that this
hypothesis does not match the human annotated
reference (Hypothesis 2). It is impractical to have
human-annotated references that cover all possi-
ble corrections for all source sentences. This issue
of reference-coverage has been noted previously
in GEC literature (Bryant and Ng, 2015; Napoles
et al., 2016b; Choshen and Abend, 2018a). This
example shows that QE systems can potentially
address this issue, similar to the reference-less
evaluation measures for GEC.

We study if the estimator networks are able
to count edits, which is the basis of estimating
HTER. To do this, we take an example sentence
of 14 tokens: ‘It will be incredible if we have a
chance to watch the show .’ as the source and
the hypothesis as well as the reference. We substi-
tute tokens one by one with an arbitrary token ‘X’,
thereby increasing HTER linearly. Figure 4 shows
the performance of the NQE models compared to
true HTER scores (straight line). We find that with
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Figure 4: Estimated HTER scores of NQE models
increasing with the number of incorrect substitu-
tions.

increasing substitutions, all NQE models show an
increasing trend, with the models having convolu-
tional components NQECR, NQECC, and NQERC
having Pearson’s correlation coefficients (PCC) of
0.982, 0.976, and 0.986, respectively, and 0.939
PCC for the recurrent variant NQERR compared to
true HTER scores. The average model NQEALL
has the highest PCC value of 0.995. This example
illustrates that the NQE models are able to capture
edit counts for estimating HTER scores.

8 Conclusion and Future Work

We propose the first supervised approach to qual-
ity estimation (QE) for GEC system outputs. We
propose several neural QE model variants that per-
form significantly better than feature-based base-
lines in estimating the post-editing effort of GEC
output sentences. We also show that the QE vari-
ants perform reasonably well on a more difficult
task of estimating quality in terms of a GEC eval-
uation metric, M2, by showing that the estimated
scores are useful in improving GEC performance
via N-best re-scoring. In future, the general frame-
work of QE for GEC can be used to train on sub-
jective human rankings of hypotheses as well, so
that the system can learn the intuitions underlying
human judgments of quality instead of estimating
a pre-defined measure such as HTER or M2.
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