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Abstract

Distant supervision is an effective method to
generate large scale labeled data for relation
extraction, which assumes that if a pair of en-
tities appears in some relation of a Knowledge
Graph (KG), all sentences containing those en-
tities in a large unlabeled corpus are then la-
beled with that relation to train a relation clas-
sifier. However, when the pair of entities has
multiple relationships in the KG, this assump-
tion may produce noisy relation labels. This
paper proposes a label-free distant supervision
method, which makes no use of the relation
labels under this inadequate assumption, but
only uses the prior knowledge derived from the
KG to supervise the learning of the classifier
directly and softly. Specifically, we make use
of the type information and the translation law
derived from typical KG embedding model
to learn embeddings for certain sentence pat-
terns. As the supervision signal is only de-
termined by the two aligned entities, neither
hard relation labels nor extra noise-reduction
model for the bag of sentences is needed in
this way. The experiments show that the ap-
proach performs well in current distant super-
vision dataset.

1 Introduction

Distant Supervision was first proposed by
Mintz (2009), which used seed triples in Freebase
instead of manual annotation to supervise text. It
marked text as relation r if (h, r, t) can be found
in a known KG, where (h, t) is the pair of entities
contained in the text. This method can generate
large amounts of training data, therefore widely
used in recent research. But it can also produce
much noise when there are multiple relations
between the entities. For instance in Figure 1, we
may wrongly mark the sentence “Donald Trump
is the president of America” as relation born-in,

⇤ Corresponding author.

Figure 1: The mislabeled sentences produced by
Distant Supervision.

with the seed triple (Donald Trump, born-in,
America).

Previous works have tried different ways to ad-
dress this issue. One way named Multi-Instance
Learning(MIL) divided the sentences into differ-
ent bags by (h, t), and tried to select well-labeled
sentences from each bag (Zeng et al., 2015) or re-
duced the weight of mislabeled data (Lin et al.,
2016). Another way tended to capture the reg-
ular pattern of the translation from true label to
noise label, and learned the true distribution by
modeling the noisy data (Riedel et al., 2010; Luo
et al., 2017). Some novel methods like (Feng et al.,
2017) used reinforcement learning to train an
instance-selector, which will choose true labeled
sentences from the whole sentence set. These
methods focus on adding an extra model to reduce
the noisy label. However, stacking extra model
does not fundamentally solve the problem of inad-
equate supervision signals of distant supervision,
and will introduce expensive training costs.

Another solution is to exploit extra supervision
signal contained in a KG. Weston (2013) added the
confidence of (h, r, t) in the KG as extra super-
vision signal. Han (2018) used mutual attention
of KG and text to calculate a weight distribution
of train data. Both of them got a better perfor-
mance by introducing more information from KG.
However, they still used the hard relation label de-
rived from distant supervision, which also brought
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Figure 2: An instance of our label-free distant supervision method.

in much noise.
In this paper, we tend to avoid supervision by

hard relation labels, and make full use of prior
knowledge from a KG as soft supervision signal.
We consider the TransE model proposed by Bor-
des (2013), which encodes entities and relations
of a KG into a continuous low-dimensional space
with the translation law h + r ⇡ t, where h, r, t

describe the head entity, the relation and the tail
entity respectively. Inspired by TransE model, we
use t� h, instead of a concrete relation label r, as
the supervision signal and make the sentence em-
bedding close to t � h. Concrete relation labels
may introduce mislabeled sentences, while t � h

is label-free, which is only determined by the two
aligned entities and the the translation law.

Our assumption is that each relation r in a
KG has one or more sentence patterns that can
describe the meaning of r. For the example in
Figure 2, we first replace the entity mentions in
a sentence with the types of the aligned enti-
ties in the KG to form a sentence pattern. For
example, “in Guadalajara, Mexico” will be re-
placed by “in PLACE, PLACE” to form a sen-
tence pattern “in A, B” which conveys the mean-
ing of “B contains A” and indicates the relation
contains. For this sentence pattern, there may
be a group of sentences sharing the same pat-
tern but with different aligned entity pairs. In
the first sentence “The talks, in Ankara, Turkey,
continued late into the evening”, (Turkey �
Ankara) implies both “/location/country/capital”
and “/location/location/contains” as there are mul-
tiple relations between Ankara and Turkey in
the KG. But in the similar sentence “She raised
the family comfortably in Guadalajara, Mexico.”,
(Mexico � Guadalajara) only implies “/loca-

tion/location/contains” as there is no relation of
“/location/country/capital” between Mexico and
Guadalajara in the KG. As both (Turkey �
Ankara) and (Mexico �Guadalajara) will be
used to supervise the learning of the encoder for
the pattern “in A, B”, it makes the embedding of
the sentence pattern closer to the correct relation
“/location/location/contains” instead of the wrong
relation “/location/country/capital”. In this way,
we do not need to label the sentences with the hard
relation labels anymore.

The main contributions of this paper can be
summarized as follows:

• As compared to existing distant supervision
for relation extraction, our method makes
better use of the prior knowledge derived
from KG to address the wrong labeling prob-
lem.

• The proposed approach tends to supervise the
learning process directly and softly by the
type information and translation law, both de-
rived from KG. Neither hard labels nor ex-
tra noise-reduction model for the bag of sen-
tences is needed in this way.

• In the experiments, we show that the label-
free approach performs well in current distant
supervision dataset.

2 Related works

Relation extraction is intended to find the relation-
ship between two entities given an unstructured
text. Traditional methods use artificial character-
istics or tree kernels to train a classification model
(Culotta and Sorensen, 2004; Guodong et al.,
2002). Recent works concentrate on deep neural
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networks to avoid error propagation during gen-
erating features (Ebrahimi and Dou, 2010; Zeng
et al., 2014; Zhou et al., 2016; Zheng et al., 2017).
More complicated models were proposed to learn
deeper semantic features, like PCNN (Zeng et al.,
2015) and attention pooling CNN (Wang et al.,
2016), graph LSTMs (Peng et al., 2017).

Most of the early works were trained on the
standard dataset by manual annotation, such as
SemEval-2010 Task 8. In actual scenarios, it will
cost a lot of manual resources to generate labeled
data. Distant supervision (Mintz et al., 2009)
aimed to obtain large-scale training data automat-
ically, which becomes the most versatile supervi-
sion method. However, it suffers from the noisy
label problem. Many works concentrate on deal-
ing with the noise of distant supervision. Multi-
instance learning (Riedel et al., 2010; Surdeanu
et al., 2012) addresses the problem in bag-level,
which divides sentences into different bags by
(h, t). Zeng (2015) selects the most correct sen-
tence from each bag. Lin (2016) introduces atten-
tion mechanism by distributing different weight to
each sentence in the same bag, which reduces the
effect of noisy labels and increases utilization of
train data. Luo (2017) uses a transition matrix to
characterize the inherent noise, convert true dis-
tribution to noise distribution. The model is en-
hanced by curriculum learning. Feng (2017) trains
an instance selector to select correct labeled sen-
tences by reinforcement learning.

Most of the above methods introduce a com-
plicated extra model to deal with the noisy label
problem. Our work tends to avoid the noisy label
from distant supervision, by using entity informa-
tion and translation law in KG to introduce more
supervision signal.

KG is composed of many triples like (head, re-
lation, tail), which describe relationships between
head entities and tail entities. TransE is first pro-
posed by (Bordes et al., 2013) to encode triples
into a continuous low-dimensional space, which
based on the translation h+r ⇡ t. Many follow-up
works like TransH (Wang et al., 2014), DistMult
(Yang et al., 2014), and TransR (Lin et al., 2015),
proposed advanced method of translation by intro-
ducing different embedding spaces. Some recent
works attempt to jointly learn text and KG triples,
including (Xie et al., 2016) and (Xiao et al., 2016).
These models tend to strengthen the representation
of entities and relationships for KG tasks, but not

for text representation.

3 Methodology

Here we present LFDS (Label-Free Distant Su-
pervision) that essentially avoids noisy labels in-
troduced by traditional distant supervision. Fig-
ure 2 shows an instance of our method. First, we
pre-train representations for entities and relations
based on the translation law h + r ⇡ t defined
by typical KG embedding models such as TransE.
Second, for each sentence in the train sets, we re-
place the entity mentions with the types of the en-
tities in the KG. An attention mechanism is then
applied to calculate the importance of words with
regard to the sentence pattern. Third, we train the
sentence encoder by the margin loss between t�h

and sentence embedding. Note we do not use the
noisy relation labels to train the model. Finally,
for prediction, we calculate the embedding of test
sentences, then compare the sentence embedding
with all relation embeddings learned by TransE,
and choose the closest relation as our predicted re-
sult. We describe these four parts in details as be-
low.

3.1 KG Embedding

We use typical KG embedding models such as
TransE to pre-train the embedding of entities and
relations. We intend to supervise the learning by
t � h instead of hard relation label r. Concretely
speaking, given two entities, h and t, we regard
the translation based upon TransE between h and
t as the target relation representation. TransE in-
terprets relationships as translations operating on
low-dimensional embeddings of entities, with the
formula h+r ⇡ t, where h, r, t represent head en-
tity, relation, and tail entity separately. The model
is proved to perform well in predicting the tail en-
tity when given head entity and relation.

The problem is that there may be multi-
ple relations between t and h. As the ex-
ample in Figure 2, the vector calculated by
Turkey � Ankara contains information for both
relations: “/location/country/capital” and “/loca-
tion/location/contains”. While supervising the
learning of the sentence pattern “in PLACE,
PLACE”, it is difficult to distinguish the two re-
lations by supervision signal from only one sen-
tence. However, other sentences with the simi-
lar pattern but different aligned entity pairs can
push the embedding of the pattern close to another
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vector, such as Mexico � Guadalajara, which
only represents “/location/location/contains” rela-
tion. As a result, the pattern will be closer to its
correct relation “/location/location/contains”.

Our work chooses TransE instead of other KG
embedding models such as TransH or TransR, be-
cause TransE builds representations for h and t in-
dependent from fixed relation type r as the model
assumes we do not know the specific relation r

when training the encoder with supervision from
t� h.

3.2 Sentence Embedding
In order to get a better representation of sentences,
we had tried a variety of NRE models, such as Bi-
LSTM(Zhou et al., 2016), SDP-LSTM (Yan et al.,
2015), and typical CNN models. We chose PCNN
(Zeng et al., 2015) to encode the sentence finally,
which performs the best in our experiments. The
encoder contains three parts as below.

Word Embeddings and Attentions. Instead
of encoding sentences directly, we first replace
the entity mentions e in the sentences with cor-
responding entity types typee in the KG, such as
PERSON, PLACE, ORGANIZATION, etc. We
then pre-train the word embedding by word2vec.

Attention mechanism is further applied to cap-
ture the importance of words with regards to the
types information of entities as we assume the
words close to the types information are more im-
portant.

First, we calculate the similarity between each
word w

j and two entity types respectively:

A

j
1 = f(typee1 , w

j
) (1)

A
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defined as cosine similarity in this paper. typee1
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We use the average weights of two entities as the
attention of word w
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j is derived as follows:
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2
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Figure 3: The sentence encoder with word atten-
tion and PCNN.

Position embedding. Zeng (2014) first pro-
posed PFs to specify entity pairs. PF is a series
of relative distances from current word to the two
entities. For instance, for the sentence “Damas-
cus, the capital of Syria”, the distances from “cap-
ital” to the two entities are 3 and -2 respectively.
The initial embedding matrix is randomly gener-
ated. Then we look up vector in the matrix by the
two relative distances. The final position embed-
ding will be the concatenation of [PF1, PF2]. As
a result, we get a representation for each word:

w

j
= [WF

j
, PF

j
1 , PF

j
2 ]

Then the input sentence representation will be:

x = w

1
, w

2
, ..., w

n

Piecewise-CNN. It was proved by (Zeng et al.,
2015) that piecewise max pooling layer performs
well in relation extraction, which tends to capture
structural information between two entities. For
each sentence, we use CNN to obtain a represen-
tation, then divide it into three parts by the two
entities index. For each part, we perform a max
pooling layer, thus we get 3-dimensional vector:

pi = [pi1 , pi2 , pi3 ]

The shape of final vector will be (bz, dc ⇤ 3),
where bz represents batch size and dc is the num-
ber of channels.
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The structure of whole model is shown in Fig-
ure 3.

3.3 Margin loss
In order to make the sentence embedding encoded
by the PCNN model and relation embedding spec-
ified by t� h based on the translation law as close
as possible, we use margin loss with linear layer
instead of cross-entropy loss with softmax layer.
For the sentence embedding via PCNN layer, we
perform a linear transformation to make its dimen-
sion equal to the relation representation.

se = W ⇤ PCNN(x) + b (6)

Where W is the transformation matrix with shape
(dc⇤3, embedding dim). Then we define margin
loss between t� h and se as follows:

L =

X

se2S
[(t�h�se+��(rand(t

0�h, t�h

0
)�se))]+

(7)
Where rand(a, b) means choosing a or b. t0�h

is a negative instance of t� h, which is generated
by randomly replacing t with other entities in KG,
so does t� h

0. For each sentence, we decrease the
distance between t � h and se, while increase the
distance between the negative instance and se. � is
the reasonable margin between positive triple and
negative triple. If the margin is already larger than
�, the loss of the sentence will be zero.

Another point to note is the special label NA in
the dataset, which means there is no relationship
between the two entities in the KG. In this case,
t � h is pointless and will confuse our encoder.
To deal with this issue, we generate a fixed rela-
tion for NA, used as the negative relation for those
sentences having some relationships. The mini-
mum distance from NA to other relations is forced
to be greater than 2 ⇤ �, where � is the margin in
loss function. When the model is used for predic-
tion, the NA is also included.

The training target of our model is shown as
Figure 4, including the sentence encoder we in-
troduced above.

3.4 Prediction
We build a sentence encoder which can output a
sentence embedding with the same dimension as
relation embedding from the KG. For a new test
sentence, we first encode it with the model, then
calculate the similarity between the sentence em-
bedding and the embeddings of all candidate re-
lations. The most similar relation to the sentence

Figure 4: The training target.

embedding is the predicted category.

r = argmax

i
(f(Se, ri)) (8)

4 Experiments

Our experiments aim to provide positive evidence
for the two main questions: (1) Whether or not the
sentence pattern can express the essential part of
the sentence? (2) Whether the abundant supervi-
sion signal in a KG is helpful to predict the true
label for those mislabeled sentences?

To this end, we first introduce the widely used
dataset for distant supervision, and evaluate our
performance on the dataset. To further investigate
the effectiveness of our model with noisy data, We
divide the sentences in dataset into different cat-
egories, and show the study about some specific
cases.

4.1 Datasets
The most widely used dataset was generated by
Riedel (2010). It aligns the entities in Freebase
with the New York Times (NYT) corpus, which
contains all the news during 2005-2007. The sen-
tences derived from news in 2005-2006 were used
as the training data, while those from year 2007
were used as test data. After the alignment, there
are 522,611 training sentences and 172,448 test
sentences, labeled by 53 candidate relations in
Freebase, and an extra label NA, which means
there is no relation between the two entities in
Freebase.

According to previous work (Mintz et al.,
2009), we evaluate our model in the held-out eval-
uation and manual evaluation. The held-out evalu-
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Parameter Settings
Kernel size k 3
Sentence embedding size 100
Word embedding size 50
Position embedding size 5
Number of Channels 250
Margin 2
Learning rate 0.001
Dropout 0.5
Batch size 128

Table 1: Parameter settings.

ation calculates the precision-recall curves on the
whole test set. For the false positives produced by
the noisy labels in the test data, the precision will
drop rapidly as the recall increases. In order to
measure the precision, we need manual evaluation
to check misclassified samples.

4.2 Experimental settings
4.2.1 Word Embeddings
In this paper, we use word2vec to train word em-
beddings on the NYT corpus. The window size of
word2vec model is set as 5, and the embedding
size is 50. We preserve those words appearing
more than 10 times as vocabulary.

4.2.2 KG embeddings
We train the entities and relationships on FB40k1

(Lin et al., 2015), which is generated for knowl-
edge graph completion, with about 40,000 entities
and 1318 relations. We set the embedding size as
100 instead of 50, which performs better in our
experiment. Besides, we set the margin as 1 and
train with learning rate 0.01. In order to test the
performance of the vectors, we evaluate our model
in KG completion tasks. The hit@10 of our final
TransE model is 0.67, which is evaluated by pre-
dicting the closest 10 tail entities with specified
head entities and relationships.

4.2.3 Parameter Settings
We use three-fold validation to determine the
hyper-parameters. In the network layer, we try
{3, 4, 5} for the kernel size, {100, 150, 200, 250,
300} for the number of channels, {5, 10, 15} for
the position embedding size. In the update proce-
dure, we use adaptive gradient descent with try-
ing {0.1, 0.05, 0.01, 0.001} for the initial learn-
ing rate, and {64, 128, 256} for the mini-batch
size. In the dropout operation, we set the proba-
bility as 0.5 referring to most of the classical ex-

1https://github.com/thunlp/KB2E.

Figure 5: Performance comparison with Tradi-
tional methods.

periments. Table 1 shows our final setting for all
hyper-parameters.

4.3 Comparison with Traditional Methods

4.3.1 Held-out Evaluation

The held-out evaluation is performed directly on
the test data. For the labels produced by distant su-
pervision may not be precise, held-out evaluation
is an approximate measure of our model, which is
usually depicted by the precision-recall curve.

We select six representative models for com-
parison. Mintz (Mintz et al., 2009) proposed
a feature-based model that first used distant su-
pervision. MultiR (Hoffmann et al., 2011) is
a multi-instance learning model under the at-
least-one assumption. PCNN+MIL (Zeng et al.,
2015) proposed the piece-wise pooling method,
which is used as the encoder of our works.
PCNN+ATT (Lin et al., 2016) performed selec-
tive attention over instances and got better results
in the datasets. SEE (He et al., 2018) is a novel
work that learned syntax-aware entity embedding
for relation extraction and achieved state-of-the-
art. The precision-recall curves are shown in Fig-
ure 5, where LFDS denotes our label-free distant
supervision method.

We can observe from the figure that our LFDS
method has an overall good performance com-
pared to current works, especially with the growth
of recall. It demonstrates that our model has a
good classification ability in general, because the
sentence pattern can capture the meaning of rela-
tions better than a sentence. The result can answer
the first question we proposed at section 4.
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Accuracy Top 100 Top 200 Top 500 Average
Mintz 0.77 0.71 0.55 0.676
MultiR 0.83 0.74 0.59 0.720
PCNN+MIL 0.86 0.80 0.69 0.783
PCNN+ATT 0.86 0.83 0.73 0.807
SEE 0.91 0.87 0.77 0.850
LFDS 0.90 0.88 0.83 0.869

Table 2: Precision values for the top 100, 200 and
500 sentences.

4.3.2 Manual Evaluation
For the wrong labels produced by distant super-
vision, there will be many false positives in our
evaluation inevitably, thus causing a sharp decline
in the held-out precision-recall curves. Manual
evaluation is necessary to evaluate the model more
precisely. Following the previous works, we se-
lected the top 100, top 200, and top 500 sentences,
which is ranked by the predicted confidence, then
evaluated the precision artificially. The result is
shown in table 2.

We can see that the precision is higher than
held-out evaluation, because manual evaluation
avoid the effect of wrong labels. Our LFDS
method achieved a consistently higher precision
compared with current works, especially when re-
call increases. Compared to held-out evaluation,
manual evaluation can show our model’s ability in
differentiating noisy sentence. Detail analysis will
be shown in Section 4.4.

In the manual procedure, we found some wrong
cases caused by entity types. The entity types in
Freebase can be ambiguous, where “ORGANIZA-
TION” may be confused with “PLACE”. It causes
error propagation in our experiments.

4.4 Case Study

To further prove the effectiveness of our model,
especially in distinguishing noisy labels, we se-
lect some specific relationships for detail analysis.
The noisy labels are produced by the entity pairs
which have multiple relationships between them.
In this case, different relationships will share the
same entity pairs in knowledge graph. We de-
fined this kind of relationships as “overlapping”
relationships. The more entity pairs it shares with
other relation, the overlapping degree of the rela-
tion is higher, which means the relation is harder
to distinguish.

Case 1: Non-overlapping Relations. The first
case is the non-overlapping relation. For triples
of the non-overlapping relation r1 as (h, r1, t),

there are few triples like (h, r2, t) in KG, where r2
is another relation in our candidate relations set.
That means for this kind of relation, almost no
noisy label will be produced. One of these rela-
tion is /business/person/company. There are near
200 sentences in the test set, with our evaluation
of precision achieving 0.98. It proves that our en-
coder with sentence pattern and label-free super-
vision is effective in basic classification, which is
a convincing answer of the first question we pro-
posed at section 4.

Case 2: Partly-overlapping Relations. The
second case is the partly-overlapping relation, in
which two relations may share a certain number of
entity pairs in Freebase. For instance, the relation
/location/country/capital shares many entity pairs
with /location/location/contains but not all entity
pairs in Freebase have both capital and contain

relations.
For those entity pairs having both relations, tra-

ditional distant supervision would produce two la-
bels for sentences such as:

“The talks, in Ankara, Turkey, contin-
ued late into the evening.”

The noisy labels in the train set are hard to dif-
ferentiate. Recent noise reduction methods com-
mit to improving the distinguishing ability of the
model by adding extra models. Our experiment
proves that our label-free supervision method not
only achieves better differentiation performance
but also does not need to train extra noise reduc-
tion models. Cases are shown in Table 3.

The prediction results indicate that the model
is capable of learning the embedding of the sen-
tence pattern we want. For instance, the model
captures the pattern like “in PLACE, PLACE”,
and tends to predict the sentence with this pat-
tern for /location/location/contains, while the pat-
tern “PLACE, the capital of PLACE” for /loca-
tion/country/capital respectively. When both two
relations are labeled for the same sentence in the
test set, our model can predict the correct label
with the corresponding patterns.

Another similar but more interesting ex-
ample is /people/person/nationality and /peo-
ple/person/place lived. In this case, the two rela-
tions share a certain number of entity pairs in Free-
base like the previous example. But because of
the incompleteness of Freebase, many sentences
with only one label are actually wrongly labeled.
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Sentence Label with normal distant
supervision

Prediction with LFDS Pattern

The talks, in Ankara, Turkey,
continued late into the evening.

/location/location/contains
/location/country/capital

/location/location/contains in PLACE, PLACE

..., said Mr.Cho, 25, who was
born in Seoul, South Korea, and
educated at a boarding school in
Scotland.

/location/location/contains
/location/country/capital

/location/location/contains in PLACE, PLACE

On Wednesday, suicide bomb-
ings killed 33 people in Algiers,
the capital of Algeria.

/location/location/contains
/location/country/capital

/location/country/capital PLACE, the capital of
PLACE

Farah has lived in India, Eu-
rope and South Africa, and only
started revisiting Mogadishu in
1996, after two decades away.

/people/person/nationality /people/person/place lived PERSON lived in
PLACE

He was George Mcgovern of
South Dakota – not Frank church
of Idaho, who was involved in
other antiwar legislation.

/people/person/place lived /people/person/nationality PERSON of PLACE

Table 3: The comparison between labels from normal distant supervision and our label-free relation
prediction

For example,the sentence “Farah has lived in In-
dia, ...” is labeled with only one relation /peo-
ple/person/nationality because there is only one
nationality relation in Freebase. But the ac-
tual meaning of the sentence is to say Farah’s
place lived is India. This type of wrongly label-
ing problem is caused by incompleteness of Free-
base which is very common for many other knowl-
edge graphs.

However, our label-free method can correct
this problem because it essentially learns the
sentence patterns that are determined only by
the sentence itself and the aligned entity pairs.
As shown by the last two examples in Ta-
ble 3, our model successfully learned the pat-
terns “PERSON lived in PLACE” for /peo-
ple/person/place lived and “PERSON of PLACE”
for /people/person/nationality respectively.

These instances show that our model is capa-
ble of learning some sentence patterns and map-
ping them to the corresponding relations in Free-
base, which can distinguish noise sentences effec-
tively. It indicates that our label-free supervision
with prior knowledge introduced by the translation
laws and entity types in KG is effective in avoid-
ing noise, which can answer the second question
we proposed at section 4 credibly.

Case 3: Mostly-overlapping Relations. The
final case is mostly-overlapping relations, in
which the two relations share most entity
pairs in Freebase. One example is /peo-
ple/person/place of birth, which shares most of
its entity pairs with /people/person/place lived in

FB40k, because a person‘s birthplace and resi-
dence are likely to be the same. That means in
the process of training with TransE, the two rela-
tions are updated by similar gradients, which will
produce similar representations for t � h. In this
case, the relations are really hard to differentiate,
because there are not enough distinct supervision
signals in the KG. We tend to resolve this situa-
tion in future work by utilizing prior knowledge
derived from relation paths.

5 Conclusion

In this paper, we argue that the noise label prob-
lem in distant supervision is mainly caused by
the incomplete use of KG information. Thus we
propose a label-free distant supervision method,
which supervises the learning of the embedding of
sentence patterns by t � h and entity types, in-
stead of hard relation labels. We conducted ex-
periments on the widely used relation extraction
dataset and showed that with the recall increasing,
our model performs better than state-of-the-art re-
sults. This demonstrates that our approach can ef-
fectively deal with the noise problem and encod-
ing sentence pattern for relation extraction.

In the future, we plan to utilize more informa-
tion in knowledge graphs to improve the distant
supervision signal. For instance, the reasoning
path can introduce new prior knowledge, which is
a key direction in current works of KG. The path
may produce new supervision signals for two en-
tities even there is no direct connection between
them. We also plan to apply this method to other
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datasets.
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