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Abstract

Knowledge Graph (KG) embedding has
emerged as an active area of research result-
ing in the development of several KG embed-
ding methods. Relational facts in KG often
show temporal dynamics, e.g., the fact (Cris-
tiano Ronaldo, playsFor, Manchester United)
is valid only from 2003 to 2009. Most of
the existing KG embedding methods ignore
this temporal dimension while learning em-
beddings of the KG elements. In this paper,
we propose HyTE, a temporally aware KG
embedding method which explicitly incorpo-
rates time in the entity-relation space by as-
sociating each timestamp with a correspond-
ing hyperplane. HyTE not only performs KG
inference using temporal guidance, but also
predicts temporal scopes for relational facts
with missing time annotations. Through ex-
tensive experimentation on temporal datasets
extracted from real-world KGs, we demon-
strate the effectiveness of our model over both
traditional as well as temporal KG embedding
methods.

1 Introduction

Knowledge Graphs (KGs) are large multi-
relational graphs where nodes correspond to en-
tities, and typed edges represent relationships
among them. KGs encode factual beliefs in the
form of triple (entity, relation, entity), e.g., (Brus-
sels, isCapitalOf, Belgium). Examples of a few
KGs include NELL (Mitchell et al., 2018), YAGO
(Suchanek et al., 2007), and Freebase (Bollacker
et al., 2008). KGs have been found to be useful
for a variety of tasks, viz., Information Retrieval
(Kotov and Zhai, 2012; Xiong and Callan, 2015),
Question Answering (Dong et al., 2015; Bordes
et al., 2015; Yao and Durme, 2014), among oth-
ers.

KG embedding has emerged as a very active
area of research over the last few years, resulting

in the development of several techniques (Bordes
et al., 2013; Nickel et al., 2016b; Yang et al., 2014;
Lin et al., 2015; Trouillon et al., 2016; Dettmers
et al., 2018; Guo et al., 2018). These methods
learn high-dimensional vectorial representations
for nodes and relations in the KG, while preserv-
ing various graph and knowledge constraints.

We note that KG beliefs are not universally
true, as they tend to be valid only in a specific
time period. For example, (Bill Clinton, presi-
dentOf, USA) was true only from 1993 to 2001.
KG beliefs with such temporal validity marked
are called as temporally scoped. These temporal
scopes are increasingly available on several large
KGs, e.g., YAGO (Suchanek et al., 2007), Wiki-
data (Erxleben et al., 2014). The mainstream KG
embedding methods ignore the availability or im-
portance of such temporal scopes while learning
embeddings of nodes and relations in the KGs.
These methods treat the KG as a static graph with
the assumption that the beliefs contained in them
are universally true. This is clearly inadequate and
it is quite conceivable that incorporating temporal
scopes during representation learning is likely to
yield better KG embeddings. In spite of its impor-
tance, temporally aware KG embeddings is a rela-
tively unexplored area. Recently, a KG embedding
method which utilizes temporal scopes was pro-
posed in (Jiang et al., 2016). However, instead of
directly incorporating time in the learned embed-
dings, the method proposed in (Jiang et al., 2016)
first learns temporal order among relations (e.g.,
wasBorIn→ wonPrize→ diedIn). These relation
orders are then incorporated as constraints during
the KG embedding stage. Thus, the embedding
learned by (Jiang et al., 2016) is not explicitly tem-
porally aware.

In order to overcome this challenge, in this
paper, we propose Hyperplane-based Temporally
aware KG Embedding (HyTE), a novel KG em-
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bedding technique which directly incorporates
temporal information in the learned embeddings.
HyTE fragments a temporally-scoped input KG
into multiple static subgraphs with each subgraph
corresponding to a timestamp. HyTE then projects
the entities and the relations of each subgraph onto
timestamp specific hyperplanes. We learn the hy-
perplane (normal) vectors and the representation
of the KG elements distributed over time jointly.
Our contributions are as follows.

• We draw attention to the important but rel-
atively unexplored problem of temporally
aware Knowledge Graph (KG) embedding.
In particular, we propose HyTE, a temporally
aware method for learning Knowledge Graph
(KG) embedding.

• In contrast to previous time-sensitive KG em-
bedding methods, HyTE encodes temporal
information directly in the learned embed-
dings. This enables us to predict temporal
scopes for previously unscoped KG beliefs.

• Through extensive experiments on multiple
real-world datasets, we demonstrate HyTE’s
effectiveness.

We have made HyTE’s source code and
datasets used in the paper available at
https://github.com/malllabiisc/HyTE

2 Related Work

Temporal fact and event extraction: Time, apart
from being an information, also introduces a sep-
arate dimension to knowledge. Thus temporal
scoping of relational facts is an imperative part
of automatic knowledge graph construction and
completion. T-YAGO (Wang et al., 2010) ex-
tracts temporal facts from semi-structured data
like Wikipedia Infoboxes, and categories using
only regular expressions. On the other hand, sys-
tems like PRAVDA harvests temporal informa-
tion from free text sources using label propaga-
tion. CoTS (Talukdar et al., 2012b) uses integer
linear program based approach to model tempo-
ral constraints and proposes joint inference frame-
work with few seed examples.

A method for discovering temporal ordering
among factual relations was proposed in (Taluk-
dar et al., 2012a). The task of extracting tem-
porally rich events and time expressions and or-
dering between them is introduced in TempEval

challenge (UzZaman et al., 2013; Verhagen et al.,
2010). Various approaches (McDowell et al.,
2017; Mirza and Tonelli, 2016) made for solving
the task proved to be effective in other temporal
reasoning tasks. Although we try to attend to a
similar problem, the method proposed in this pa-
per is more related to relational embedding learn-
ing paradigm than scoping temporal facts from the
web.

Relational embedding learning methods: An
enormous amount of research has been done in
this field, especially for KG completion or link
prediction task (Bordes et al., 2013). (Nickel et al.,
2016a) provides a detailed review of the recent
KG embedding learning methods. These can be
broadly categorized into two different paradigms.
TransE(Bordes et al., 2013), TransH(Wang et al.,
2014), TransR (Lin et al., 2015), TransD (Ji et al.,
2015) are the translational distance-based models.
Here the main theme is to minimize the distance
between two entity vectors where one of them is
translated by a relation vector. The realm of ma-
trix factorization based methods includes bilinear
model RESCAL (Nickel et al., 2011), DistMult
(Yang et al., 2014), HoIE (Nickel et al., 2016b).
Some of the other notable models are Neural Ten-
sor Networks(NTN) (Socher et al., 2013). We also
provide some background on the traditional meth-
ods in section 3. However, the temporal dimension
remains silent in all of these inference methods.

Link prediction through embeddings of the
graph nodes and edges, are not only useful for in-
ference over KG but also important for predict-
ing incomplete pieces of the KG itself. Learn-
ing temporally steered embeddings is an impor-
tant but proportionately less explored problem.
Only some handful of methods have been pro-
posed for this purpose. t-TransE (Jiang et al.,
2016) learns time aware embedding by learning
relation ordering jointly with TransE. They try to
inflict temporal order on time-sensitive relations
e.g. wasBornIn → wonPrize → diedIn.
t-TransE does not use the time information di-
rectly, whereas we incorporate time directly in
our learning algorithm. Another approach Know-
Evolve (Trivedi et al., 2017) models the non-linear
temporal evolution of KG elements using bilinear
embedding learning method. They deploy recur-
rent neural network to capture non-linear dynam-
ical characteristics of the embeddings. However,
they restrict their domain to event-based interac-

https://github.com/malllabiisc/HyTE
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Figure 1: In the figure, the vectors eh, er and et correspond to the triple (h, r, t) that is valid at time τ1 and τ2.
eh(τ1), er(τ1) and et(τ1) are the projections of this triple on the hyperplane corresponding to time τ1 (similarly for time
τ2). Our method HyTE minimizes the translational distance,

∑
i ‖et(τi) + er(τi)− et(τi)‖1, in order to learn the temporally

aware representations of entities and relations in this triple.

tion type of datasets which are fairly dense in na-
ture. Leblay and Chekol (2018) propose a method
for temporal embedding learning using side infor-
mation from the atemporal part of the graph. How-
ever, we use purely temporal KG to learn the tem-
porally aware embedding.

3 Background: KG Embedding

In this section, we provide an overview of the ex-
isting methods for knowledge graph representa-
tion learning (Bordes et al., 2013), (Wang et al.,
2014). Consider a KG G with a set of entities E.
The set of directed edges, D+ consists of triples
(h, r, t), where the edge direction is from h to t
and the edge label (also popularly known as rela-
tion) is r.

3.1 TransE and TransH

TransE (Bordes et al., 2013) is a simple and effi-
cient translational distance model. It interprets the
relation as a translation vector between head and
tail entity vectors. Given two entity vectors eh, et
∈ Rn, it tries to map the relation as a translation
vector er ∈ Rn , i.e., eh + er ≈ et for observed
triple (h, r, t). So the distance based scoring func-

tion used for plausible triples is hereby,

f(h, r, t) = ‖eh + er − et‖l1/l2 ,

where, ‖ · ‖l1/l2 is the l1 or l2-norm of the differ-
ence vector. f(h, r, t) will be minimized for ob-
served or correct triples. In order to differentiate
between correct and incorrect triples, their TransE
score difference is minimized using margin based
pairwise ranking loss. More formally, we optimize∑

x∈D+

∑
y∈D−

max(0, f(x)− f(y) + γ),

with respect to the entity and relation vectors. γ is
a margin separating correct and incorrect triples.
D+ is the set of all positive triples, i.e., observed
triples in KG. The negative samples are drawn ran-
domly from the set -

D− = {(h′ , r, t)|h′ ∈ E, (h
′
, r, t) /∈ D+}

∪ {(h, r, t′)|t′ ∈ E, (h, r, t
′
) /∈ D+}.

TransE fails to model the many-to-one, one-to-
many, many-to-many type of relations as it does
not learn a distributed representation of entities
when it is involved with many relations. In order
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to tackle these situations, TransH was proposed.
TransH (Wang et al., 2014) models a relation r
as a vector on a relation specific hyperplane and
project entities associated with it on that particular
hyperplane in order to learn distributed represen-
tation of the entities.

We notice that not only the role of the entities
changes with time, but also the relationship be-
tween them changes. In this paper, we intend to
capture this temporal behavior of the entities and
relations and try to learn their embeddings accord-
ingly. As discussed above, TransH (Wang et al.,
2014) uses relation specific hyperplanes in order to
prevent an entity from exhibiting identical charac-
teristic when it is involved with different relations.
Taking inspiration from the objective of TransH,
we propose a hyperplane based method for learn-
ing KG representation distributed in time.

4 Proposed Method: HyTE

In this section, we present a detailed description
of HyTE (Figure 1) which not only exploits the
relational properties among entities but also uses
the temporal meta-data associated with them.

4.1 Temporal Knowledge Graph

Usually knowledge graphs are treated as a static
graph consisting of triples in form of (h, r, t).
Adding a separate time dimension to the triple
makes the KG dynamic. Consider the quadru-
ple (h, r, t, [τs, τe]), where τs and τe denote the
start and end time during which the triple (h, r, t)
is valid. Unlike (Jiang et al., 2016), we incor-
porate this time meta-fact directly into our learn-
ing algorithm to learn temporal embeddings of the
KG elements. Given the timestamps, the graph
can be dismantled into several static graphs con-
sisting of triples that are valid in the respective
time steps, e.g., knowledge graph G can be ex-
pressed as G = Gτ1 ∪Gτ2 ∪ · · · ∪GτT , where τi,
i ∈ 1, 2, · · · , T are the discrete time points.

We constructed this temporal component-
graphs (Gτ ) from the quadruples by consider-
ing (h, r, t) to be a positive triple at each time
point between τs and τe. Now, given a quadru-
ple (h, r, t, [τs, τe]), we consider it to be a pos-
itive triple for each time point between τs and
τe. So, we include (h, r, t) in each Gτ , where
τs ≤ τ ≤ τe. The set of positive triple corre-
sponding to time τ is denoted as D+

τ .

4.2 Projected-Time Translation

TransE considers entity and relation vectors in the
same semantic space for a static graph. We ob-
serve that time is the main source of different
many-to-one, one-to-many or many-to-many rela-
tions, e.g., (h, r) pair can be associated with dif-
ferent tail entity t at different points of time. Thus
traditional methods fail to disambiguate them di-
rectly. In our time guided model, we want the en-
tity to have a distributed representation associated
with different time points.

We represent time as a hyperplane i.e., for T
number of time steps in the KG, we will have T
different hyperplanes represented by normal vec-
tors wt1 , wt2 , · · · , wtT . Thus, we try to segregate
the space into different time zones with the help
of the hyperplanes. Now, triples valid at time τ
(i.e., the sub graph Gτ ) are projected onto time
specific hyperplane wτ , where their translational
distance (TransE Section 3 our case) is minimized.
To illustrate, in Figure 1, the triple (h, r, t) is valid
for both time frame τ1 and τ2. Hence they are
projected on hyperplanes corresponding to those
times.

Now we compute the projected representation
on wτ as,

Pτ (eh) = eh − (w>τ eh)wτ ,

Pτ (et) = et − (w>τ et)wτ ,

Pτ (er) = er − (w>τ er)wτ ,

where we restrict ‖wτ‖2 = 1.
We expect that a positive triple, valid at time

τ , will have the mapping as Pτ (eh) + Pτ (er) ≈
Pτ (et). Thus, we use the following scoring func-
tion.

fτ (h, r, t) = ‖Pτ (eh) + Pτ (er)− Pτ (et)‖l1/l2 .

We learn {wτ}Tτ=1 for each time stamp τ , along
with the entity and relation embeddings. So, by
projecting the triple into its time hyperplane, we
incorporate temporal knowledge into the relation
and entity embeddings, i.e., the same distributed
representation will have a different role in differ-
ent points in time.

Optimization : As mentioned in section 3.1 ,
we minimize the margin-based ranking loss.

L =
∑
τ∈[T ]

∑
x∈D+

τ

∑
y∈D−τ

max(0, fτ (x)−fτ (y)+γ),
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where, D+
τ is the set of valid triples with time-

stamp τ . The negative samples are drawn from the
set of all negative samples, D−τ . We explored two
different types of negative sampling:

• Time agnostic negative sampling(TANS)
considers the set of all the triples that does not
belong to the KG, irrespective of timestamps.
More formally, for time step τ the negative
samples are drawn from the set,

D−τ = {(h′ , r, t, τ)|h′ ∈ E, (h
′
, r, t) /∈ D+

} ∪ {(h, r, t′ , τ)| t′ ∈ E,

(h, r, t
′
) /∈ D+}. (1)

• Time dependent negative sampling(TDNS)
emphasizes on time. Along with the time ag-
nostic negative sample, we add extra negative
samples which are present in the KG but do
not exist in the subgraph for a particular time
stamp. Thus we draw negative samples from
the set,

D−τ = {(h′ , r, t, τ)|h′ ∈ E, (h
′
, r, t) ∈ D+

, (h
′
, r, t, τ) /∈ D+

τ }∪

{(h, r, t′ , τ)| t′ ∈ E, (h, r, t
′
) ∈ D+,

(h, r, t
′
, τ) /∈ D+

τ }. (2)

The above mentioned loss L is minimized sub-
jected to the constraints.

‖ep‖2 ≤ 1,∀ p ∈ E, ‖wτ‖2 = 1,∀ τ ∈ [T ]

We enforce the first one by adding l2- regulariza-
tion of entity vectors with L. We take care of
the second constraint by normalizing the time em-
beddings viz., the hyperplane normal vectors after
each update of stochastic gradient descent.

We perform link prediction as well as tempo-
ral scoping in order to show the effectiveness of
HyTE. For link prediction, we train the model us-
ing the optimization procedure as described with
time agnostic negative sampling (TANS, Equation
1). The temporal scoping task (Section 5.5) re-
quires the time hyperplanes to be well structured
in the embedding space. The time-dependent neg-
ative sampling (TDNS Equation 2) is more suit-
able in case of the temporal scoping problem.

Datasets #Entity #Relations Train/Valid/Test

Wikidata12K 12,554 24 32.5k/4k/4k
YAGO11K 10,623 10 16.4k/2k/2k

Table 1: Details of datasets used. Please see Section 5.1 for
details.

5 Experiments

We evaluate our model and compare with differ-
ent state-of-the-art baselines based on Link predic-
tion(Section 5.3,5.4) and Temporal scoping (Sec-
tion 5.5). Evaluation metrics used are same as that
of the traditional KG embedding method (Bordes
et al., 2013) for link prediction task. For temporal
scoping task, we present an evaluation criteria as
none of the baselines are applicable for this task.

5.1 Datasets

Knowledge Graphs such as Wikidata (Erxleben
et al., 2014) and YAGO (Suchanek et al., 2007)
have time annotations on a subset of the facts. We
extracted the temporally rich subgraph from them
for testing our algorithm as well as the baselines.

YAGO11k: In the YAGO3 knowledge graph
(Mahdisoltani et al., 2013), some temporally as-
sociated facts have meta-facts as (#factID, oc-
curSince, ts), (#factID, occurUntil, te). The to-
tal number of time annotated facts containing both
occursSince and occursUntil are 722,494. Out of
them, we selected top 10 most frequent tempo-
rally rich relations. In order to handle sparsity, we
recursively remove edges containing entity with
only a single mention in the subgraph. This en-
sures a healthy connectivity within the graph. Fi-
nally, we obtain a purely temporal graph of 20.5k
triples and 10,623 entities by following this proce-
dure.

Wikidata12k: We extracted this temporal
Knowledge Graph from a preprocessed dataset
of Wikidata proposed by (Leblay and Chekol,
2018)1. We followed a similar procedure as de-
scribed in YAGO11k. Here also, we distill out
the subgraph with time mentions for both start and
end. We ensure that no entity has only a sin-
gle edge connected to it. We select top 24 fre-
quent temporally rich relations for this case, which
resulted in 40k triples with 12.5k entities. The
dataset is almost double in size with respect to
YAGO11k.

1https://staff.aist.go.jp/julien.leblay/datasets/
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5.2 Method Compared
For evaluating the performance of our algorithm,
we compare against the following methods:

• t-TransE (Jiang et al., 2016): This method
uses a temporal ordering of relations to model
knowledge evolution in the temporal dimen-
sion. They regularize the traditional embed-
ding score function with observed relation or-
dering with respect to head entities.

• HolE (Nickel et al., 2016b): We consider this
method as a representative of the state-of-the-
art in non-temporal KG representation learn-
ing.

• TransE (Bordes et al., 2013): This is a sim-
ple but effective translation based model. We
build HyTE on top of TransE and demon-
strate the gains over this method.

• TransH (Wang et al., 2014): This method
models each relation as different hyperplanes
on which the translation operations are car-
ried out. Our proposed method, HyTE also
modifies TransE in a similar fashion by treat-
ing the timestamps as hyperplanes.

• HyTE : Our proposed method. Please see
Section 4 for more details.

5.3 Entity Prediction
The task here is to predict the missing entity,
given an incomplete relational fact with its time.
We experimented with both YAGO11K and Wiki-
data12k dataset. Training is done in perspective of
both head and tail prediction. More formally, for
generation of negative sample from a correct triple
(h, r, t, τ), we split them in two parts - (h, r, ?, τ)
(for tail entity prediction) and (?, r, t, τ) (for head
entity prediction). In this task, we follow the
TANS (Equation 1) procedure for generating neg-
ative samples, i.e., for each of tail and head query
terms we randomly replace an entity such that
newly generated triple is not observed in the graph,
for eg, we sample t′ such that t′ ∈ E \ t and
(h, r, t

′
, τ) /∈ D+

τ .
Ranking Protocol: For a test triple (h, r, t, τ),

we generate corrupted triples by replacing tail en-
tity (for tail prediction) or head entity (for head
prediction) with all possible entities. Filtered pro-
tocol, proposed by (Bordes et al., 2013), says that
the corrupted triples must not be a part of the graph

itself. To illustrate, given a test triple (h, r, t)
for tail prediction task, we compute scores for
the candidate set C(h, r) = {(h, r, t′ : ∀t′ ∈
E)}\(Train∪Test∪V alid)∪(h, r, t) . We rank
all the triples in C(h, r) in the increasing order of
their score and find the rank of the actual triple
(h, r, t). We report the mean rank over all the test
queries (MR) and proportion of correct entities in
top 10 rank (Hits@10).

5.4 Relation Prediction
The aim of this task is to predict the relation be-
tween two entities, i.e, for a given time-stamped
triple with missing relation (h, ?, t, τ), we pre-
dict the relation r. For evaluation, we corrupt the
triples with all possible relations and report the
rank of the actual relation. We report Hits@1 for
this task as the number of relations are quite less
in numbers for both the datasets, 10 and 24 for
YAGO11k and Wikidata12k respectively. Please
note that we do not train our model separately for
this task, rather we report the values obtained by
the exact same model used for head and tail entity
prediction.

The main motivation for this task is to deal with
the relational conflict between two entities at a par-
ticular time-scope. For example, given the year
1992, a person ’X’ and a city ’Y’, one would like
to know if he/she was bornIn or diedIn that city
in that year. Through the explicit use of tempo-
ral information during training, we find that our
method HyTE outperforms the baseline methods
in both the datasets (as shown in 6.1)

5.5 Temporal Scope Prediction
Given the scarcity of time annotations of the KG
facts, predicting time for atemporal part of the KG
is an important problem. Unlike the previous base-
line methods, our model can predict the time scope
for a given triple. In order to perform better in this
task, we want the hyperplanes to be well separated
even after maintaining consistency with the posi-
tive triples. To incorporate this nature during train-
ing, we use the time-dependent negative sampling
technique (TDNS Equation 2). Rest of the training
procedure remains the same as the link prediction
task. The model is trained on the same train split
used for link prediction. In this task, we predict
the time interval or the time instance τ for a given
test triple (h, r, t, ?). We project the relation and
the entities of the triple on all the time hyperplanes
and check the plausibility of that test triple on each
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Dataset YAGO11K Wikidata12K

Metric Mean Rank Hits@10(%) Mean Rank Hits@10(%)
tail head tail head tail head tail head

Trans-E (Bordes et al., 2013) 504 2020 4.4 1.2 520 740 11.0 6.0
TransH (Wang et al., 2014) 354 1808 5.8 1.5 423 648 23.7 11.8
HolE (Nickel et al., 2016b) 1828 1953 29.4 13.7 734 808 25.0 12.3
t-TransE (Jiang et al., 2016) 292 1692 6.2 1.3 283 413 24.5 14.5

HyTE 107 1069 38.4 16.0 179 237 41.6 25.0

Table 2: Mean Rank (lower the better) and Hits@10(higher the better) for different methods for Entity Prediction task.
Proposed method HyTE outperforms all the traditional approaches. The better performance of HyTE over t-TransE can be
attributed to the fact that it incorporates time directly. Please see Section 6.1 for details.

Dataset YAGO11K Wikidata12K
Metric Mean Rank Hits@1(%) Mean Rank Hits@1(%)

Trans-E (Bordes et al., 2013) 1.7 78.4 1.35 88.4
TransH (Wang et al., 2014) 1.53 76.1 1.4 88.1
HolE (Nickel et al., 2016b) 2.57 69.3 2.23 83.96
t-TransE (Jiang et al., 2016) 1.66 75.5 1.97 74.2

HyTE 1.23 81.2 1.13 92.6

Table 3: Mean Rank (lower the better) and Hits@1 (higher the better) for different methods for Relation Prediction Task.
Proposed method HyTE outperforms all the traditional approaches. Even though t-TransE imposes implicit relation ordering,
HyTE beats it with a high margin. Please see Section 6.1 for details.

Negative Sampling YAGO11K Wikidata12k

TANS (Equation 1) 14.0 29.3
TDNS (Equation 2) 9.88 17.6

Table 4: The predicted Mean Rank (lower the better) for
temporal Scoping. The number of classes are 61 and 78 for
YAGO11K and Wiki-data12k respectively. The results depict
the effectiveness of TDNS. Please see Section 6.2

of them. For evaluation, we order the time frames
in increasing order of their plausibility score for
that particular triple. Now, we select the rank of
the time(τ ) associated with the test triple. If the as-
sociated time is an interval, we consider the lowest
rank among the times in between the interval.

6 Results

Implementation details: For all the methods, we
have kept batch size b = 50k on both the datasets.
The dimensions of the embeddings (d) are varied
in the range {64, 128, 256}. The margins(η) for all
the methods are chosen from the set {1, 2, 5, 10}.
Learning rate used for SGD, lr ∈ {0.01, 0.001,
0.0001}.

The best configuration is chosen by correspond-
ing lowest MR on the validation set. For both
YAGO11k and Wikidata12k, we obtained d = 128,
η = 10, lr = 0.0001 using l1-norm in the scoring
function.

Both YAGO11k and Wikidata12k contain time
annotations to the granularity of days. For the

temporal scoping task, we only deal with year
level granularity by dropping the month and date
information. Timestamps are then treated as 61
and 78 different intervals for YAGO and Wiki-
data respectively. The main motive behind hav-
ing time classes is to distribute the time annota-
tions in the KG uniformly. For example, less fre-
quent year mentions are clubbed into same time
class but years with high frequency forms individ-
ual classes. We take care of the unbalance that
may occur in terms of number of triples in a par-
ticular interval by applying a minimum threshold
of 300 triples per interval during construction. To
illustrate, in Wikidata there are classes like 1596-
1777, 1791-1815 with a large span as the events
occurring on those points of time are quite less in
KG. The years like 2013, 2014 being highly fre-
quent are self-contained.

6.1 Performance analysis & comparison

The obtained results for different tasks are based
on the above mentioned hyperparameters.

Link Prediction: The results reported in Table
2 demonstrate the efficacy of HyTE. We observe
that our model outperforms the traditional state-
of-the-art link prediction model HolE (Nickel
et al., 2016b) by a significant margin in both the
datasets. We also show a large boost in perfor-
mance over TransE (Bordes et al., 2013). This
significant gain empirically validates our claim
that including temporal information in a principled
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Test quadruples TransE HyTE
Gordon Carroll, ?, Baltimore,[1928, 1928] diedIn, wasBornIn wasBornIn,diedIn
S.Laubenthal, ?, Washington.,[2002, 2002] wasBornIn,diedIn diedIn, wasBornIn
Eugene Sander, ?, Cornell Univ.,[1959, 1965] worksAt,graduatedFrom graduatedFrom, isAffiliatedTo
Ernesto Maceda, ?, Nacionalist Party, [1971,1987] isMarriedTo, diedIn isAffiliatedTo,diedIn

Table 5: Example of Qualitative Results on relation prediction. The order of prediction is in descending order. Correct one is
in bold. Please refer Section 6.2 for details.

fashion helps to learn richer embeddings of the KG
elements. We notice that HolE is performing sig-
nificantly poor in terms of MR but it exceeds the
other baselines in Hits@10 by a large margin.

Again, in comparison with the temporal model
t-TransE (Jiang et al., 2016), HyTE proves to be
effective. t-TransE performs better than TransE
and HolE due to its implicit time incorporation
through relation ordering. HyTE with its direct
inclusion of time in the relation-entity semantic
space outperforms all of them.

Relation prediction: Again, in this scenario,
we show improvement over baselines. We hypoth-
esize that time scope information helps to disam-
biguate among relations e.g. traditional methods
like TransE or HolE will confuse between rela-
tions like wasBornIN, diedIn. Where time infor-
mation surely helps to resolve that conflict. From
Table 3, we validate this claim. In Section 6.2, we
also demonstrate some qualitative result in favor
of our assertion.

Temporal scoping of facts: We report the rank
of correct time instance of the triple. If the triple
scope is an interval of time, we consider the low-
est rank that corresponds to the time within that
interval. The ranks are reported in table 4 for both
the datasets. The baseline model t-TransE (Jiang
et al., 2016) is not applicable here as it does not
use the time meta-facts directly. We also observe
that the HyTE hyperplanes form a sequential map
in the space. We discuss it with details in subsec-
tion 6.2.

6.2 Qualitative results

Table 5 contains some of the qualitative analy-
ses for the relation prediction task. We mention
some of the cases where transE is confusing be-
tween the temporal relations like wasBornIn and
diedIn. Consider the second example in Table 5,
where transE wrongly predicts wasBornIn . HyTE
predicts diedIn as it has a prior knowledge that
S.Laubenthal “was born in 1943”, “created Ex-
calibur on 1973” from the training data. As the
query year is 2002, our method comes to such

Figure 2: The figure illustrates 2-d PCA projection of the
128 dimensional time embeddings which are obtained after
training HyTE for temporal scoping task. We observe that
the trained time representations are forming natural clusters
and ordering. Please ref Section 6.2

a conclusion through its relative temporal order-
ing. We see many examples of this kind, where
HyTE is naturally learning some relation ordering
in parallel with the temporal direction. We observe
many type inconsistency in relation prediction
for our model, e.g., for this fact (Lauren Miller,
wasBornIn, Lakeland,Florida,[1982,1982]), our
model predicts isMarriedTo. This can be at-
tributed to the fact that we do not impose any type
related constraints in our model. We will look
forward to incorporating type and temporal con-
straints within our model as future work.

In Figure 2, we show a 2-d PCA projection of
the 128-dimensional normal vectors of the hyper-
planes. These vectors are trained for the tem-
poral scoping task with time-dependent negative
sampling (Equation 2). This figure demonstrates
the ability of HyTE to structure the hyperplanes
in the entity-relation space according to the data.
Also, note that we do not regularize the model
with any ordering constraint, but it learns the tem-
poral ordering as well as the clustering from the
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data itself. We hypothesize that this phenomenon
emerges due to TDNS (Equation 2). However, in
case of link prediction, we notice that the extra
samples are affecting performance as they origi-
nate from the KG itself.

7 Conclusion

We propose HyTE, a hyperplane-based method for
learning temporally aware knowledge graph em-
beddings. Our method exploits temporally scoped
facts of KG to perform link prediction as well as
prediction of time scopes for unannotated tempo-
ral facts. Through extensive experiments on real-
world datasets, we demonstrate effectiveness of
HyTE over both traditional and time aware em-
bedding methods. In future, we would like to in-
corporate type consistency information to further
improve our model and also integrate HyTE with
open-world knowledge graph completion (Shi and
Weninger, 2018). We are hopeful that our pro-
posed temporal representation learning algorithm
will motivate further research on temporal KG em-
bedding learning.
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