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Abstract

Many important entity types in web docu-
ments, such as dates, times, email addresses,
and course numbers, follow or closely resem-
ble patterns that can be described by Regular
Expressions (REs). Due to a vast diversity of
web documents and ways in which they are be-
ing generated, even seemingly straightforward
tasks such as identifying mentions of date in a
document become very challenging. It is rea-
sonable to claim that it is impossible to create
a RE that is capable of identifying such enti-
ties from web documents with perfect preci-
sion and recall. Rather than abandoning REs
as a go-to approach for entity detection, this
paper explores ways to combine the expressive
power of REs, ability of deep learning to learn
from large data, and human-in-the loop ap-
proach into a new integrated framework for en-
tity identification from web data. The frame-
work starts by creating or collecting the ex-
isting REs for a particular type of an entity.
Those REs are then used over a large docu-
ment corpus to collect weak labels for the en-
tity mentions and a neural network is trained
to predict those RE-generated weak labels. Fi-
nally, a human expert is asked to label a small
set of documents and the neural network is fine
tuned on those documents. The experimen-
tal evaluation on several entity identification
problems shows that the proposed framework
achieves impressive accuracy, while requiring
very modest human effort.

1 Introduction

Named Entity Recognition (NER) is the task of
automatically locating, extracting, and classifying
contiguous pieces of strings, which represent en-
tities of interest, in text. Classification (or typing)
seeks to assign pre-defined categories (e.g., per-
son, organization, location, expressions of time,
monetary values, and emails) to each extracted
piece of text. NER is a subtask of the broader

problem of Information Extraction (IE) from text
(Chang et al., 2006; Etzioni et al., 2005; Finkel
and Manning, 2009; Nadeau and Sekine, 2007;
Shen et al., 2015). Named entities usually refer
to entity names that describe unique identifiers of
people, locations, movies, events, and organiza-
tions. There is a large class of entities that are
not “named," such as expressions of time, emails,
and course identifiers. Their main characteristic
is that they often follow an underlying syntactical
pattern, which can be fully described or well ap-
proximated by Regular Expressions (REs).

Despite being the workhorse of many entity
recognition tasks, REs have a number of draw-
backs. The construction of highly accurate REs is
difficult and requires specific technical skills. For
a simple task such as recognizing emails, there are
361 REs proposed in RegExLib.com. Moreover,
REs are brittle and difficult to maintain. These ob-
stacles have motivated the work on automatic in-
ference of REs (Banko et al., 2007; Li et al., 2008;
Bartoli et al., 2018) where the objective it to de-
velop approaches that are fast and deployable in
real time. However, the existing approaches tend
to require large number of examples to cover both
the alphabet and the possible syntactic patterns.
Moreover, they often produce overly complicated
or long REs or combinations of REs (Bartoli et al.,
2016). One of the most complete REs for emails
has nearly 6,500 characters (Millner, 2008)!

Web documents are an important domain for
data extraction. Importantly, the Web is not a
place where data follows "underlying syntactical
pattern" at scale. A datetime RE for New York
Times news articles may not work for the articles
at Le Figaro or Al Jazeera. Small typos throw off
REs and produce nothing. This is a concrete Web
example data-timestamp="Thu Oct 05
2017 10:33:05 -0500"> that contains an un-
expected space before "-0500". This small typo
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can easily deem a complex and painstakingly con-
structed datetime RE obsolete. At such scale, any
attempt to fully understand an RE and debug it in
case it fails is futile. New automated or semi-
automated tools are needed to either supersede
REs or to work in tandem with REs. In this work,
we focus on the later.

In this paper, we target the problem of detecting
presence of entity mentions that follow or closely
resemble patterns that can be described by REs.
Unlike much of the previous body of work on this
topic, we do not focus on learning/inferring highly
accuracte REs for entity identification (Prasse
et al., 2012; Bui and Zeng-Treitler, 2014; Li et al.,
2008; Banko et al., 2007; Brauer et al., 2011; Bar-
toli et al., 2016). We aim instead to show that deep
learning can leverage imperfect REs and achieve
very high accuracy while requiring only a modest
human involvement.

Suppose the goal is to recognize datetime string
expressions. We use some reasonable REs R
for datetime to generate a weakly labeled train-
ing dataset from a large corpus of Web documents,
e.g., news articles. We train a deep neural network
on this data. Denote this model MRE . To our
surprise, MRE is already capable of recognizing
the presence of datetime expressions beyond those
recognized by R. Furthermore, with the addition
of a very small number of training samples (be-
tween 20 - 50 instances) from a human labeler,
we obtain a model MRE+human that is supe-
rior to MRE by a significant margin. In general,
complex systems do not generalize easily with the
addition of new data, because the amount of la-
beled data required to provide a good coverage
grows exponentially with the complexity of the
problem (Chiu and Nichols, 2015; Lample et al.,
2016; Huang et al., 2015; Mahajan et al., 2018).
We show that there is an opportunity for faster
convergence to a generalized recognizer for this
class of entities.

The main contributions in this paper are:

• We show how starting from REs R that rec-
ognizes a fraction of entities of a given type
E (say, email) we can pretrain a deep neural
network (NN) model which can be a richer
recognizer of entities of type E than R.

• We show that we can fine tune the pretrained
model to recognize an even larger set of en-
tities of type E with the addition of a small
number of labeled instances, as small as 20.

The paper is organized as follows. Section 2
gives an overview of the related work. Section
3 describes our method. Section 4 presents our
methodology for parameter learning and experi-
mental setup. Section 5 gives the experimental re-
sults. Finally, Section 6 concludes the paper.

2 Related Work

This section will mention several lines of research
we deem the most related to our work.

The problem of inducing regular expressions
has been an active area of work for more than
two decades. One line of work focuses on im-
proving the initial REs by identifying the true
or false matches (Li et al., 2008; Murthy et al.,
2012; Cetinkaya, 2007; Cochran et al., 2015). An-
other line of work attempts to directly induce REs
from positive and negative sample strings (Fer-
nau, 2009; Denis, 2001). The common approaches
include generation of prefix and suffix automa-
tons that represent overlapping syntactical fea-
tures of the entities on character and token level
(Brauer et al., 2011) and the automatic creation of
REs based on genetic programming (Bartoli et al.,
2012, 2014, 2016, 2018).

Constraining NN training to comply with
known rules has also been an active research topic.
Hu et al. (2016) proposes integration of constraints
coming in the form of first order logic rules during
training of NNs. Alashkar et al. (2017) trains an
NN by minimizing a joint loss based on prediction
of labels and adhering to the predefined rules. Lo-
cascio et al. (2016) proposed training LSTM NN
to generate REs from sample pieces of text. Luo
et al. (2018) incorporates knowledge of REs into
training of NNs at three different levels: as the in-
put features to NNs, as regularizations of the out-
puts of NN layers, or as a reward/penalty in the
loss functions in NNs.

Unlike the aforementioned work, we do not at-
tempt to learn explicit REs and do not force the
outputs of NN layers match predetermined rules.
Instead, we leverage REs as a means of generat-
ing a large quantity of weak labels from unlabeled
data and using such data to pre-train an NN to rec-
ognize the provided REs. We fine tune such an NN
on human-labeled data to exceed accuracy of the
REs. A similar approach is effective in other do-
mains. For example, Felbo et al. (2017) proposed
pre-training an NN on millions of tweets labeled
by emojis before fine tuning it for sentiment anal-



1993

𝑡1
𝑡#
𝑡$
𝑡%
…

𝑡&

𝑡' 0
𝑡# 1

… …

𝑡& 1

𝑡# 0

𝑡$ 1

𝑡& 0

RE
Annotator

Human
Annotator

Fine-
tuning

𝑴𝑹𝑬

𝑴𝑹𝑬+𝒉𝒖𝒎𝒂𝒏𝐷23

𝐷4567&

Embedding

BiLSTM

BiLSTM

Fully Connected

Max Pooling

Fully Connected

0/1

O c t , 0 5

Figure 1: Overview of the solution (left) and deep learning architecture (right) used to train model MRE .

ysis. Mahajan et al. (2018) pre-trained an NN on
billions of images labeled by hashtags before fine
tuning it to various computer vision tasks.

3 Methodology

We describe the proposed framework here.

Problem Definition: Given a text string t and an
entity type E , the task is to predict whether t con-
tains an entity mention of type E . We treat this
task as binary classification. To build the classi-
fier, we assume that we are given a large corpus
of unlabeled text strings T = {t1, t2, ..., tn}. The
challenge is to train the classifier with the minimal
human effort. We allow a human expert to help
in two ways: (1) construct a new RE or find an
RE created by others, and (2) label an unlabeled
string. For the purposes of this paper, we assume
that one or more REs suitable for entity identifi-
cation are already available and that human effort
refers only to string labeling. The available REs
might have an arbitrary precision and recall. We
will analyze the impact of the RE quality on clas-
sification accuracy in the experimental section.

Solution Framework: An overview of the pro-
posed framework is illustrated in Figure 1.

STEP 1. All of the unlabeled strings from T are
fed into an RE annotator. If any of the provided
REs ti recognizes ti, it is weakly labeled as yi = 1,
otherwise it is weakly labeled as yi = 0.

STEP 2. An NN model MRE is trained based
on the weakly labeled data DRE = {(ti, yi)|i =
1, 2, ..., n}. Given a large number of sample
strings, it is expected that we can train an NN with
high accuracy on DRE .

STEP 3. A subset of m strings from T are
sampled randomly and a human annotator labels

each of the sampled strings. String ti is labeled
as yi = 1 if the annotator recognizes an entity
type E in ti and as yi = 0, if not. We denote the
resulting strongly labeled data set as Dhuman =
{(ti, yi)|i = 1, 2, ...,m}, where m� n.

STEP 4. The pre-trained NN MRE is fine
tuned with Dhuman data. We call the resulting NN
MRE+human. For comparison, we also train a
randomly initialized NN directly on Dhuman. We
call this NN Mhuman. The expectation is that the
pre-trained NN captures very useful information
about the entity type E and that fine tuning is more
effective than training a new NN from scratch.

RE Annotator: Let us denote the set of REs
available for a specific entity type E as R. R may
be either created by human experts or generated
automatically by tools like (Li et al., 2008; Bartoli
et al., 2018), which require a human-labeled sub-
set of T . Both approaches are human-intensive.

Deep Learning Architectures: We do not have
a preference over any deep learning architecture
to train MRE , as long as it can handle character-
level inputs and produce binary outputs. We have
no strict assumption about the strings in T . They
may contain sentences from a formal news arti-
cle, pieces of HTML code, or a mixture of for-
mal texts and informal texts. For this reason, we
treat ti as a sequence of characters by default.
NN architectures that meet our condition include
but are not limited to: CNNs (Kim, 2014), BiL-
STMs (Lai et al., 2015), and BiLSTM with self-
attentions (Lin et al., 2017). For this paper we im-
plemented a BiLSTM architecture. However, we
also tested a CNN architecture, reaching similar
conclusions. Our architecture contains an embed-
ding layer to project each character into a vector, 2
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Task Data Size Example Labor

Date Time 761,002
data-timestamp="Thu Oct 05 2017 10:33:05 -0500">

<script src=’/js/next-stories.20170925144113.js’>
2 days

Course
Number

44,651
<body><h1>CS 556 Interactive Software Systems

/home.html>Dan R. Olsen Jr.</a><li>Office: 3360 TM
1 week

Bill Date 49,002
(a) shall terminate on 30-09-2012.

ealth Service Act (42 U.S.C. 254c-15(c)(8)
-

Email
Address

29,035
06:13:00 -0700 From:phillip.allen@enron.com To:

Date:Mon, 23 Oct 2000 06:13:00 -0700 From: tom
1 week

Table 1: Dataset Summary.

BiLSTM layers to encode a sequence of character
embeddings into a sequence of hidden vectors, and
a max pooling layer followed by 2 fully-connected
layers to project the hidden vectors into binary la-
bels (Figure 1, on the right).

Fine-tuning: Once we have a model MRE

trained on weak labels, there are multiple ways
to improve the weak model with human annota-
tions to get MRE+human. One common way
is to freeze the parameters of all other layers of
MRE and fine-tune the last fully-connected layer
(Donahue et al., 2014). Felbo et al. (2017) pro-
pose a ’chain-thaw’ strategy, which freezes all lay-
ers, then sequentially unfreezes and fine-tunes a
single layer at a time. We exploit a less costly
strategy as proposed in (Erhan et al., 2010), which
uses the weights learned in MRE to initialize
MRE+human, and start training MRE+human

immediately with human annotations.

4 Experiment Design

We aim to answer three research questions in our
experiments: Q1. Is it possible to train an accu-
rate NN classifier with a limited number of human
generated labels? Q2. What is the difference be-
tween REs and an NN pretrained on those REs?
Q3. Does the quality of REs matter?

4.1 Data Sets

We use four datasets which are described in Table
1 in our experiments:

• Date Time: We download 6,000 news articles
provided in the dataset One Week of Global
News Feeds in Kaggle 1. After chunking each
news article, we get 761,002 strings.

• Course Number: The documents to produce
chuncked strings are from The 4 Universities

1https://www.kaggle.com/therohk/
global-news-week

Data Set at CMU World Wide Knowledge
Base (Web->KB) project2. This dataset has
44,651 strings.

• Bill Date: 600 US Congress bills from the
THOMAS online database are used to iden-
tify the entity mentions of type datetime pro-
vided by (Bartoli et al., 2016). We generate
49,002 chuncked strings for this task. Each
text instance contains the bill date (and time)
and the location (index) of the datetime sub-
string in the text.

• Email Address: The dataset is a collection
of publicly available Enron email addresses
from (Li et al., 2008; Brauer et al., 2011). It
has 29,035 chuncked strings in total.

To answer the above 3 questions, we manually
label 6,000 random strings from each data set. We
create our training and testing data from this sam-
ple. The remaining strings are used to create DRE .
We list the human effort spent on labelling each
data set in Table 1.

As an example of human annotations is
the string data-timestamp="Thu Oct 05

2017 10:33:05 -0500">Ex-dep, which con-
tains an entity of type datetime. The string
<scriptsrc=’/js/prev-next-stories.

20170925144113.js’defer> is an example
of a negative instance. We give examples of
positive and negative instances in Table 1. The
presence of an entity mention of a desired type is
highlighted in bold in positive instances.

Our human annotated data sets are attached as
supplementary materials.

4.2 Regular Expression Generation
The number and the source of REs used to train
the deep model MRE are listed in Table 2.

For the recognition of Date/Time entity
2http://www.cs.cmu.edu/afs/cs/project/

theo-20/www/data/

https://www.kaggle.com/therohk/global-news-week
https://www.kaggle.com/therohk/global-news-week
http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/


1995

Task |R| Source Labor
Date
Time

25 Experts 5 hrs

Course
Number

4
Li et al. (2008)

Murthy et al. (2012)
-

Bill
Date

5 Murthy et al. (2012) -

Email
Address

5 RE Library3 -

Table 2: Summary of REs.

mentions, we create 25 distinct REs in total
(a member of our team who is familiar with
REs generated the 25 REs, then the rest of
the team checked these REs). For example,
the RE (20[0-9][0-9])(0[1-9]|1[0-2]

)(\d{2})([01][0-9]|2[0-3])([0-5][0-9]

)([0-5][0-9]) identifies datetime entities in
the format YYYYMMDDhhmmss, while the RE
(20[0-9][0-9])-(0[1-9]|1[0-2])-(\d{2})

T([01][0-9]|2[0-3]):([0-5][0-9]):

([0-5][0-9])Z identifies datetime entities
in the format YYYY-MM-DDThh:mm:ssZ.

For the task of course number identification, we
used four REs, one of which is borrowed from the
results learned by ReLIE (Li et al., 2008), and the
remaining three are from (Murthy et al., 2012).
The regular expressions to extract the entity men-
tions of date are all from (Murthy et al., 2012). For
email address, we use the top five REs from the RE
Library3 website.

4.3 Experimental Setup
Models in Comparison We compare 5 models
on the 4 data sets: (1) Naive, which always pre-
dicts 0, because 0 is the majority class on all 4
tasks. (2) RE, which uses the set of REs R de-
signed by experts or tools to weakly label the
strings. Although we have multiple REs for each
task, R can be any subset of the available REs.
(3) MRE , which is the pretrained model of weak
labels generated by R in model (2). (4) Mhuman,
which is the model trained with human annota-
tions. (5) MRE+human, which is the fine tuned
model MRE .

Evaluation Metrics For each data set, we divide
the 6,000 strings with human annotations into 5
folds. We leave one fold as our test data. The train-
ing data is selected from the other 4 folds. We re-
port four scores for each model: Accuracy (ACC),

3http://www.regexlib.com/

F1, Precision, and Recall. We report the average
results over three random repetitions in Section 5.

Hyperparameters We use 100 dimensions
in the embedding layer. We set the activation
function in the first fully connected layers as
tanh. The batch size is set to 300. We also add
dropout layers after the embedding layer, the
max pooling layer, and the first fully-connected
layer to avoid overfitting, with drop out rate at
0.5. Our implementation is in PyTorch. We
tune the learning rate (lr), the hidden units
size (nhidden) in BiLSTM layers and the
output size (nfc) of the first fully-connected
layer by 5-fold cross validation using a ran-
dom 6,000 sample from DRE , for the sake of
expediency. The ranges of selection are: lr ∈
[0.0002, 0.0005, 0.001, 0.002, 0.004, 0.008, 0.015],
nhidden ∈ [50, 75, 100, 125, 150, 200] and nfc
∈ [20, 50, 100, 200, 500]. We use the random
search algorithm proposed in (Bergstra and
Bengio, 2012) that has been proved more effective
than grid search. The hyperparameters used to
train Mhuman and MRE+human are identical
to those used to train MRE .

We train 2 epochs for MRE on weakly labeled
data. Mhuman and MRE+human are trained
for 50 epochs on strongly labeled data.

5 Experimental Results

In this section, we evaluate the proposed frame-
work with extensive experiments on the 4 entity
recognition tasks. We use the empirical results to
understand how the quality of initial REs impacts
our conclusions.

5.1 Entity Mention Detection with Limited
Human Annotations

We report the comparisons of the 5 models in
Table 3 when we only have 20 human annota-
tions. We use all the available REs in each task
in this experiment. Comparing the last two rows
of each task, MRE+human always outperforms
Mhuman by a large margin according to all 4
evaluation metrics on all 4 data sets. The F1, Pre-
cision and Recall scores are more than twice larger
for all of tasks. The pretraining strategy is quite ef-
fective despite the very limited human annotation.

In addition, MRE+human is much better than
RE in the datetime and Course Number tasks. Its
Recall scores increase by 19.1% and 14.4%, re-
spectively, in the two tasks. This means the human

http://www.regexlib.com/
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Model Name Date Time (%) Course Number (%)
ACC F1 Precision Recall ACC F1 Precision Recall

Naive 77.34 0.00 0.00 0.00 68.47 0.00 0.00 0.00

RE 90.65 76.77 88.00 68.33 71.64 59.91 54.01 67.28

MRE 91.45 79.09 89.01 71.39 72.64 61.52 55.21 69.47

Mhuman 74.78 40.75 37.25 46.38 62.81 30.74 37.63 28.45

MRE+human 93.50 85.44 87.03 84.95 82.86 74.31 72.45 77.01

Bill Date (%) Email Address (%)
Naive 92.83 0.00 0.00 0.00 88.75 0.00 0.00 0.00

RE 94.56 38.23 97.92 24.01 98.72 94.61 89.79 100.00

MRE 94.53 38.10 96.30 23.96 98.64 94.28 89.19 100.00

Mhuman 92.56 2.15 6.25 1.30 83.44 42.30 35.99 53.03

MRE+human 94.36 39.95 87.88 27.59 97.75 90.95 83.60 100.00

Table 3: The comparisons in the presence of very few human annotations: |Dhuman| = 20.
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Figure 2: Trend of F1 when varying the number of human annotations.

annotations greatly increase the coverage of the
initial REs for entity mentions. The Bill Date task
is hard, since the initial REs already achieve Pre-
cision = 98% and entity mentions are really rare
(ACC = 93% in Naive model). We still are able
to improve the Recall by 15%, but at the expense
of reduced Precision. This only gives a slight im-
provement in F1 (4.5%) and unchanged Accuracy.
The Email Address task is even harder, with 90%
Precision and 100% Recall from the initial REs.
We fail to improve the accuracy with only 20 hu-
man annotations in this task.

To summarize, the answer to Q1, it is possible
to train accurate NNs with limited amount of hu-

man generated labels and large amount of weak
labels generated automatically.

5.2 Effect of the Number of Human
Annotations

In Figure 2 we show how F1 varies with the
size of the strongly labeled dataset, |Dhuman| =
[20, 50, 100, 200, 500, 1000, 2000, 4800]. The
observed trend is consistent over all 4 tasks:
the larger the set of human annotations the
better the performance of both Mhuman

and MRE+human. For the first 2 tasks,
MRE+human surpasses all other competitors
at 20; it takes 50 human annotations in Bill Date
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Date Time
Example Labels

Group 1
19 / 11 / 8

"20170825" /><meta name="utime" content="20170828042824"/> 1 / 1 / 0
{"origin":"mw1273","timestamp":"20171005170835","ttl":1900800} 1 / 1 / 0
<span class="timestamp-published">08/29/2017 12:13 pm ET</span> 1 / 1 / 0

2017/08/29/1/1700000000AEN20170829007751315F.html 0 / 0 / 1
11-hristo-dimitrov-2017-10-05-06-57-492-c37d5a31-4ade 0 / 0 / 1

Group 2
48 / 36 / 12

0","dateModified": "Thu, 05 Oct 2017 17:26:30 +0000" 1 / 0 / 1
<meta property="published",content="2017-08-28T14:4316-0400" /> 1 / 0 / 1

<div>published August 24, 2017 at 6:00 am</time></div> 1 / 0 / 1
http://www.businesswire.com/news/home/20170829005822/en/</p> 0 / 1 / 0
resources/MWimages/MW-FV607-lava-2-MC-20171004095909.jpg"> 0 / 1 / 0

Table 4: Examples of misclassified strings by MRE and RE for Date Time task. The first columns shows
number of misclassified strings, number of positives, and number of negaives. The last column represent
human label and classifications by RE, and MRE . Datetime is in bold for positive human annotation.

task, and 2, 000 in Email Address task.

5.3 Case Studies

From Table 3, we observe that MRE achieves
higher F1 scores than RE by about 2.3% on Date
Time and 1.6% on Course Number tasks. This is
a seemingly surprising outcome; NN trained on
weak labels does better on human labeled test data
than the REs used to generate the weak labels.
To provide an insight, in Table 4 we illustrate ex-
ample strings on which RE and MRE disagree.
Group 1 consists of 19 strings where RE is cor-
rect and MRE is not. Group 2 consists of 48
strings where RE is incorrect and MRE is cor-
rect. Looking at the examples in the first and last
2 rows of the table, we find strings that match RE
with YYYYMMDDhhmmss format. This is an un-
usual form and it is expected that it might not al-
ways correspond to datetime entity. We hypoth-
esize that the neural network encountered many
negative strings in the weakly labeled data that
have a similar form and learned that this form is
not a reliable predictor of datetime.

Rows 6 - 8 in Table 4 illustrate the resilience of
MRE to small variations in the original REs. For
example, despite an extra space in row 6, a miss-
ing colon in row 7, and a mixture of spoken lan-
guage in row 8, MRE is able to detect those enti-
ties, but REs are not. We give cases where MRE

makes mistakes in rows 3 - 5, showing that the NN
is not able to learn the underlying REs with 100%
accuracy.

To summarize, the answer to Q2, it appears that
NNs are more noise resilient than REs.

5.4 Impact of the Initial REs

In this subsection, we investigate the impact of
the choice of REs R on the accuracy of NN mod-
els. Since Naive and Mhuman models are not
affected by R, we compare only three models in
this subsection: RE, MRE and MRE+human.
We select 4 out of the 25 REs in the datetime task
for this study. The 4 REs are of different qual-
ity. We list the 4 REs in Figure 3. An exam-
ple pattern that RE1 matches is 20180503101212,
for RE2 it is 2018-05-03 10:12:12, for RE3
it is 2018-05-03T10:12:12Z in UTC time zone
and for RE4 it is 2018-05-03 10:12:12+00:00 or
2018-05-03 10:12:12-00:00. We also consider
the quality of NNs trained on weak labels from the
whole set of 25 REs, denoted as All.

In Table 5 we compare the performance of RE
and MRE for the 5 different selections of REs
for weak labeling. It can be observed that RE1 is
the weakest individual RE in the group with F1 =
4.83, while RE4 is the strongest with F1= 41.86.
Using all 25 REs gives the highest accuracy of
F1= 76.77. We can see that MRE closely fol-
lows the performance of RE and it is interest-
ing to observe that MRE becomes visibly supe-
rior only with good REs.

In Figure 3, we plot the 4 accuracy metrics
for model MRE+human, which was pretrained
on weakly labeled data generated by 5 different
choices of REs, with varying initial RE sets and
sizes of human annotations. We observe a signifi-
cant influence of REs on accuracy. We can also ob-
serve that as the number of strong labels grows, the
impact of RE choice decreases. When the number
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Initial Set RE MRE

ACC F1 Precision Recall ACC F1 Precision Recall
RE1 75.88 4.83 24.89 2.68 75.71 4.20 23.68 2.32

RE2 79.97 20.72 100.00 11.58 80.00 20.92 100.00 11.70

RE3 79.78 19.34 100.00 10.75 79.83 19.75 100.00 10.99

RE4 83.40 41.86 100.00 26.71 83.73 43.77 100.00 28.19

All 90.65 76.77 88.00 68.33 91.45 79.09 89.01 71.39

Table 5: Comparison between RE and MRE model for 5 different sets of REs.
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Figure 3: Performance of MRE+human for different initial sets of REs and sizes of Dhuman.

of strong labels exceeds 1, 000, the impact of the
RE choice becomes negligible.

In summary, to answer Q3, there is a trade-
off between creating more REs and creating more
strong labels: (1) If designing a comprehensive RE
takes a lot of time, a good strategy may be to take
some time to construct one moderately good RE
and spend more time on data labeling. (2) If the
pattern is easy to describe by an RE, it may be a
good strategy to spend time on creating a better set
of REs and spend less time on labeling.

6 Conclusions

The main premise of this work is that it is practi-
cally impossible to create REs capable of identi-
fying entities with perfect precision and recall at
web scale. This paper explores ways to combine
the expressive power of REs, ability of deep learn-
ing, and human-in-the loop into a novel integrated

framework for entity recognition in web data. The
framework starts by creating or collecting the ex-
isting REs for a particular type of an entity type
(e.g., emails). Those REs are then used over a
large document corpus to collect weak labels for
the entity mentions and an NN is trained to pre-
dict those RE-generated weak labels. Finally, a
human expert is asked to label a small set of doc-
uments and the neural network is fine tuned on
those documents. The experimental evaluation on
several entity identification problems shows that
the proposed framework achieves impressive ac-
curacy, while requiring very modest human effort.

Web sources often change in ways that prevent
the induced REs from extracting data correctly. At
the web scale, we require automated tools to main-
tain them. One direction of future work is to use
our framework to diagnose when a RE is broken
over a text stream.
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