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Abstract

The availability of large scale annotated cor-
pora for coreference is essential to the devel-
opment of the field. However, creating re-
sources at the required scale via expert anno-
tation would be too expensive. Crowdsourc-
ing has been proposed as an alternative; but
this approach has not been widely used for
coreference. This paper addresses one cru-
cial hurdle on the way to make this possible,
by introducing a new model of annotation for
aggregating crowdsourced anaphoric annota-
tions. The model is evaluated along three di-
mensions: the accuracy of the inferred men-
tion pairs, the quality of the post-hoc con-
structed silver chains, and the viability of us-
ing the silver chains as an alternative to the
expert-annotated chains in training a state of
the art coreference system. The results suggest
that our model can extract from crowdsourced
annotations coreference chains of comparable
quality to those obtained with expert annota-
tion.

1 Introduction

The task of identifying and resolving anaphoric
reference to discourse entities, known in NLP as
coreference resolution, has long been considered
a core aspect of language interpretation (Poesio
et al., 2016b), also because of its role in applica-
tions such as summarization (Baldwin and Mor-
ton, 1998; Steinberger et al., 2007), information
extraction (Humphreys et al.) or question answer-
ing (Morton, 1999; Zheng, 2002).

In the 1990s the field made a paradigmatic turn
towards corpus based approaches initiated by cam-
paigns such as MUC (Grishman and Sundheim,
1995; Chinchor, 1998) and since then we have
seen the development of a range of data-driven
approaches, spurred by the development of ever
larger and richer datasets. Nowadays, a vari-
ety of datasets exist for several languages (Poesio

et al., 2016a). These include medium-scale mul-
tilingual datasets such as ONTONOTES (Pradhan
et al., 2007; Weischedel et al., 2011), which led
to the most recent evaluation campaigns, in par-
ticular CONLL 2012 (Pradhan et al., 2012), and
are used in most current research (Björkelund and
Kuhn, 2014; Martschat and Strube, 2015; Clark
and Manning, 2016; Lee et al., 2017). However,
there are still many languages and domains for
which no such resources are available, and even
for English much larger corpora than ONTONOTES

will eventually be required.
However, annotating data on the scale required

to train state of the art systems using traditional
expert annotation would be unaffordable. One
alternative is to employ crowdsourcing, either
via platforms like Amazon Mechanical Turk and
Crowdflower, or using Games-With-A-Purpose
(Poesio et al., 2017). Studies such as (Snow
et al., 2008; Raykar et al., 2010) have shown that
when a sufficiently large number of workers is em-
ployed, expert-level quality can be achieved, at
a fraction of the cost required to create such re-
sources using traditional methods. The one ef-
fort to create a large-scale coreference corpus en-
tirely through crowdsourcing, the Phrase Detec-
tives project (Poesio et al., 2013; Chamberlain
et al., 2016; Chamberlain, 2016), employs the
Phrase Detectives game with a purpose. The
Phrase Detectives corpus consists of 843 docu-
ments for a total of 1.2 million tokens and 392,741
markables; at present, 563 documents for a total
of 360,000 tokens have been annotated.1 A sec-
ond coreference corpus created using crowdsourc-
ing (in the context of a trivia game) also exists, the

1Note that although the Phrase Detectives corpus is
slightly smaller in terms of tokens than the currently largest
coreference corpus for English, the CONLL 2012 dataset
(Pradhan et al., 2012), it has about twice the number of mark-
ables, 390,000 vs. 190,000.
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Quiz Bowl dataset (Guha et al., 2015).2

However, such existing corpora are not widely
used yet. One of the reasons for this is the lack
of suitable aggregation methods for anaphora.
Crowdsourced annotations require aggregation
methods to select among the different interpreta-
tions produced by the crowd. Standard practice
for crowdsourced data analysis has seen a shift in
recent years from simple majority vote to much
more effective aggregation methods (Smyth et al.,
1994; Quoc Viet Hung et al., 2013; Sheshadri and
Lease, 2013; Carpenter, 2008; Hovy et al., 2013;
Passonneau and Carpenter, 2014). Probabilistic
models of annotation, in particular, make it possi-
ble to characterize the accuracy of the annotators
and correct for their bias (Dawid and Skene, 1979;
Passonneau and Carpenter, 2014), to account for
item-level effects (e.g.: difficulty) (Whitehill et al.,
2009), and to employ different pooling strategies
(Carpenter, 2008). However, existing models of
annotation cannot be used for anaphora. Such
methods assume that coders choose between a
fixed set of general labels, the same labels across
all annotated items. In anaphoric annotation, by
contrast, coders relate markables to coreference
chains which depend on the markables that are an-
notated in that given document (Passonneau, 2004;
Artstein and Poesio, 2008)

Contributions In this paper we propose a men-
tion pair-based approach to aggregating crowd-
sourced anaphoric annotations. Concretely, we in-
troduce a new model of annotation capable of in-
ferring the most likely mention pairs from crowd-
annotated anaphoric relations. We then use these
pairs to build the most likely coreference chains.
This approach to building chains is evaluated on
both crowdsourced and synthetic (via simulation)
coreference datasets. The evaluations include as-
sessing the accuracy of the inferred mention pairs;
the quality of the chains; and the viability of us-
ing these chains derived from mention pairs as an
alternative to gold chains when training a state of
the art coreference system. We conclude by also
demonstrating the quality of the proposed model

2Another corpus creation project using crowdsourcing
(and also games) for anaphoric annotation is the Groningen
Meaning Bank (Bos et al., 2017). However, in the GMB
crowdsourcing is not used to generate interpretations: play-
ers correct automatically annotated interpretations rather than
providing the annotations themselves. Another crucial differ-
ence is that interpretations are not aggregated in the sense
discussed below; rather, an expert adjudicates between the
interpretations produced by players.

in a standard annotation task. The implementation
is available as supplementary material.

2 A Mention-Pair Model of Annotation

Traditional models of annotation (Dawid and
Skene, 1979; Smyth et al., 1994; Raykar et al.,
2010; Hovy et al., 2013) are specified assuming
the annotations are chosen among a general set
of classes that is consistent across the annotated
items. This is the case in a type of annotation
closely related to anaphoric annotation, informa-
tion status annotation (Nissim et al., 2004; Riester
et al., 2010). In this type of annotation, an annota-
tor marks a mention as either discourse old (DO) –
referring to an existing entity (coreference chain)
– or as discourse-new (DN) – introducing a new
coreference chain, but without specifying which
coreference chain the mention belongs to, if any.
We will refer below to categories such as DN and
DO as (general) classes.

Traditional models of annotation can model this
type of annotation, but not the task of anaphoric
annotation proper. In standard annotation schemes
for anaphora/coreference (Poesio et al., 2016a)
the annotator may mark a mention as referring
to a discourse new entity as above; but in case
the mention is identified as discourse-old, this en-
tity, or coreference chain–the set of coreferring
mentions–is also specified. The available corefer-
ence chains differ from document to document.

Our proposal for a probabilistic model of this
type of annotation is based on one of the most
widely used models of coreference resolution: the
mention pair model. In the mention pair model,
the task of linking the mention to a coreference
chain/entity is split in two parts: classifying men-
tion pairs as coreferring or not, and subsequent
clustering (Soon et al., 2001; Hoste, 2016). The
model we propose addresses the first part.

More formally, the crowdsourced data to be
modeled consists of I mentions (indexed by i)
annotated by a total of J coders (indexed by j).
Each mention i has Ni annotations (indexed by
n), for a total of Mi distinct labels (indexed by
m). Each label m of mention i belongs to a class
zi,m. The label of a mention could be the ID
of the antecedent, in case that mention is anno-
tated as belonging to the discourse old (general)
class; or could be discourse new or another general
class (e.g.: property, non referring). In these lat-
ter cases, the labels coincide with the classes they
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belong to.
An important difficulty we had to address is la-

bel sparsity. The solution we propose is to trans-
form the mention-level annotations into a series of
binary decisions with respect to each candidate la-
bel. In the extended literature this is often referred
to as the binary relevance method (Tsoumakas and
Katakis, 2007; Madjarov et al., 2012). We then
model these (label-level) decisions as the result of
the sensitivity (the true positive rate) and speci-
ficity (the true negative rate) of the annotators
which we assume are class dependent. This latter
assumption allows inferring different levels of an-
notator ability for each class (e.g.: capturing that
DO labels are generally harder compared to DN).

The graphical model of our Mention Pair An-
notations model (MPA) is presented in Figure 1,
while the generative process is given below:

• For every class h ∈ {1, 2, ...,K}:

– Draw class specific true label likelihood
πh ∼ Beta(a, b)

• For every annotator j ∈ {1, 2, ..., J}:

– For every class h ∈ {1, 2, ...,K}:
∗ Draw sensitivity αj,h ∼ Beta(d, e)

∗ Draw specificity βj,h ∼ Beta(t, u)

• For every mention i ∈ {1, 2, ..., I}:

– For every candidate label m ∈
{1, 2, ...,Mi}:
∗ Draw true label indicator ci,m ∼
Bern(πzi,m)

∗ For every position n ∈
{1, 2, ..., Ni}:
· If ci,m = 1 then draw decision
yi,m,n ∼ Bern(αjj[i,m,n],zi,m)3

· Otherwise, draw decision
yi,m,n ∼ Bern(1− βjj[i,m,n],zi,m)

The model addresses the first part of the men-
tion pair framework: the posterior of the true label
indicators is used to link each mention with the
most likely label, obtaining the mention pairs. The
coreference chains are then built by following the
link structure from the inferred pairs.

Note that for a traditional annotation task with
no distinction between generic classes and spe-
cific labels the MPA model is equivalent to train-
ing K binary Bayesian versions of the Dawid

3Notation: jj[i,m,n] returns the index of the annotator who
made the n-th decision on the m-th label of mention i.

Figure 1: Plate diagram for MPA

and Skene (1979) model (one for each general
class) on data processed using the binary relevance
method. Note also that whereas traditional models
of annotation assume one true class per annotated
item, an implicit benefit of our approach is allow-
ing for potentially multiple true classes, which can
be useful to detect ambiguity (Poesio and Artstein,
2005), but we don’t exploit that in this work.

2.1 Parameter Estimation

We infer the parameters of the proposed model
using Variational Inference (VI). Unlike Markov
Chain Monte Carlo (MCMC) approaches (e.g.:
Gibbs Sampling, Hamiltonian Monte Carlo), VI is
deterministic, fast, and benefits from a clear con-
vergence criterion (Blei et al., 2017).

Specifically we approximate the intractable pos-
terior p(θ|D) with a variational distribution q(θ)
such that the Kullback-Leibler (KL) divergence
between the two distributions is minimized. It can
be shown this minimization is equivalent to maxi-
mizing the evidence lower bound (ELBO) below:

L = Eq[log p(π, α, β, c, y|a, b, d, e, t, u, z)]
− Eq[log q(π, α, β, c|λ, η, γ, µ, θ, ε, φ, ζ)]

(1)

We need a variational distribution q that is
tractable under expectations. Following common
practice (Blei et al., 2003; Hoffman et al., 2013;
Blei et al., 2017), we choose q to be in the mean
field variational family where each hidden variable
is independent and governed by its own parameter.
Elegant solutions have been derived for models
whose complete conditionals are in the exponen-
tial family (Blei and Jordan, 2006; Hoffman et al.,
2013). Concretely, we used the fact that the nat-
ural parameters of the variational distributions are
equal to the expected value of the natural parame-
ters of the corresponding complete conditionals.

The derivations are standard in the VI literature
(see, for example, Hoffman et al., 2013). (To save
space, we only provide here the update formulas of
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the variational parameters; supplementary details
are in the Appendix.)

Equations (2) and (3) give the variational update
formulas for the class-level true label likelihood.
We have q(πh|λh, ηh) = Beta(λh, ηh), where:

λh = a+

I,Mi∑
i,m

I(zi,m = h)Eq[I(ci,m = 1)] (2)

ηh = b+

I,Mi∑
i,m

I(zi,m = h)Eq[I(ci,m = 0)] (3)

In Equation (4) and (5) we list the varia-
tional update formulas for the class-level anno-
tator sensitivity. We have q(αj,h|γj,h, µj,h) =
Beta(γj,h, µj,h), where:

γj,h = d+

I,Mi,Ni∑
i,m,n

I(jj[i,m, n] = j)

I(zi,m = h)I(yi,m,n = 1)Eq[I(ci,m = 1)]

(4)

µj,h = e+

I,Mi,Ni∑
i,m,n

I(jj[i,m, n] = j)

I(zi,m = h)I(yi,m,n = 0)Eq[I(ci,m = 1)]

(5)

In Equations (6) and (7) we list the varia-
tional update formulas for the class-level anno-
tator specificity. We have q(βj,h|θj,h, εj,h) =
Beta(θj,h, εj,h), where:

θj,h = t+

I,Mi,Ni∑
i,m,n

I(jj[i,m, n] = j)

I(zi,m = h)I(yi,m,n = 0)Eq[I(ci,m = 0)]

(6)

εj,h = u+

I,Mi,Ni∑
i,m,n

I(jj[i,m, n] = j)

I(zi,m = h)I(yi,m,n = 1)Eq[I(ci,m = 0)]

(7)

In Equations (8) and (9) we list the variational
update formulas for the true label indicator. We
have q(ci,m|φi,m) = Bern(φi,m), where ζi,m =
1− φi,m and:

log φi,m ∝ Eq[log πzi,m ]+

+

Ni∑
n=1

I(yi,m,n = 1)Eq[logαjj[i,m,n],zi,m ]+

+ I(yi,m,n = 0)Eq[log(1− αjj[i,m,n],zi,m)]

(8)

log ζi,m ∝ Eq[log(1− πzi,m)]+

+

Ni∑
n=1

I(yi,m,n = 0)Eq[log βjj[i,m,n],zi,m ]+

+ I(yi,m,n = 1)Eq[log(1− βjj[i,m,n],zi,m)]

(9)

Finally, for the above formulas, we used the
fact that Eq[I(ci,m = 1)] = φi,m. The other
expectations can be easily calculated noting that
for a distribution part of the exponential family,
the first derivative of the log normalizer is equal
to the expected value of the sufficient statistics
(Blei et al., 2003). For example, Eq[log πzi,m ] =
Ψ(λzi,m) − Ψ(λzi,m + ηzi,m), where Ψ(.) is the
digamma function. Similar observations apply to
the α and β related expectations.

The algorithm, known as Coordinate Ascent
Variational Inference (CAVI) (Blei et al., 2017),
involves iterating between Equations (2), (3), (4),
(5), (6), (7), (8) and (9) until convergence. The
ELBO expressed in Equation (1) is guaranteed to
increase at every step. Convergence is achieved
when the ELBO plateaus. Throughout the experi-
ments we used non-informative, uniform priors.

3 Evaluation

We carried out a series of evaluations of increasing
complexity of our MPA model. We first assess the
accuracy of the inferred mention pairs. Second,
we cluster the pairs into appropriate coreference
chains and evaluate the quality of these chains.
Third, we assess the viability of using silver chains
as an alternative to the gold chains when training
a state of the art coreference system. Finally, we
conclude the evaluation with a performance check
in a standard annotation task.

3.1 Datasets
The largest coreference dataset with crowdsourced
annotations is the Phrase Detectives corpus. A
subset of this corpus is the Phrase Detectives 1.0
dataset (Chamberlain et al., 2016), which also in-
cludes gold annotations and can therefore be used
to evaluate the accuracy of MPA at mention-pair
and coreference chain inference, but is too small
to train a state-of-the-art coreference system. To
carry out this second type of evaluation we used
the approach, common in the crowdsourcing liter-
ature (Carpenter, 2008; Raykar et al., 2010; Hovy
et al., 2013; Felt et al., 2014), of generating sim-
ulated datasets by corrupting the gold standard
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Figure 2: Sensitivity profiles extracted from the PD
corpus: DO (x-axis) vs. DN (y-axis)

of an existing corpus. For this purpose, we use
the CONLL-2012 dataset (Pradhan et al., 2012), at
present the standard dataset for coreference reso-
lution.

3.1.1 Crowdsourced Data
The Phrase Detectives (PD) 1.0 dataset has been
annotated using the Phrase Detectives game with
a purpose.4 The annotation scheme for PD is
based on that for the ARRAU corpus (Poesio et al.,
2018). Players have to label predefined5 mark-
ables with one of the following categories: non-
referring (e.g., for expletives), discourse-new,
discourse-old (in which case an antecedent is also
marked, the most recent mention belonging to the
antecedent’s coreference chain), or property (for
appositions and copular structures). The PD 1.0
dataset is the portion of the corpus that contains, in
addition to the annotations by the players, a gold
label for each markable. The coreference chains
are obtained using a simple clustering of the men-
tion pairs. An important limitation of this corpus
is its small size (around 6000 markables from 45
documents), making it unfit for the training and
evaluation of state of the art supervised systems.

3.1.2 Synthetic Data
The CONLL-2012 dataset specifies gold chains,
not mention pairs. So we need first to extract ap-
propriate mention pairs from these chains. To do
this, for each mention we select as gold label the
closest mention from its gold chain (or discourse
new if the mention is the first in its chain).

4http://www.phrasedetectives.org
5In standard annotation projects markables are predefined

for better agreement. The markables used in PD are automat-
ically identified, but players can highlight errors in markable
identification that can then be corrected.

Simulation Profile Type Error Distribution

1 Synthetic Uniform
2 Synthetic Sparse
3 PD-inspired Uniform
4 PD-inspired Sparse

Table 1: Simulation summary

Data Method Accuracy

avg. s.d.

PD 1.0 MV 84.32 -

MPA 91.43 -

Synthetic Uniform MV 85.09 0.52

MPA 90.12 0.52

Synthetic Sparse MV 76.55 0.46

MPA 85.92 0.60

PD-inspired Uniform MV 89.26 0.47

MPA 97.38 0.28

PD-inspired Sparse MV 82.72 0.56

MPA 94.36 0.33

Table 2: Mention pair accuracy results. Each simulated
scenario is randomly generated 10 times (summary is
in terms of average result and standard deviation)

The simulations are then generated by extract-
ing from each gold label a number of ‘crowd-
sourced labels’ produced by (simulated) annota-
tors with varying degrees of ability. We consid-
ered a range of simulated scenarios, all sharing the
following settings:

• 10 distinct annotators per mention and 20 dis-
tinct mentions per annotator. The annotators
receive random mentions to annotate.6

• Each annotator is assigned randomly a pro-
file. The profiles indicate the sensitivity of
the annotators with respect to discourse old
and new. For example, the (DO 0.8, DN 0.9)
profile indicates that, given a mention whose
true class is DO, the annotator has 0.8 prob-
ability of getting it right; and of 0.9 for DN.
We considered both profiles reflecting the ac-
tual profiles of players in Phrase Detectives
(Chamberlain, 2016) and synthetic profiles.

• 5 choices for the annotators to choose from
for each mention: the correct label, the DN

6This equal load reflects work distribution as found in mi-
crotask crowdsourcing rather than in games such as Phrase
Detectives, where a few players do most of the work (Cham-
berlain, 2016).

http://www.phrasedetectives.org
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PD 1.0 Method MUC BCUB CEAFE Avg.
F1P R F1 P R F1 P R F1

Singletons
included

MV 95.18 69.44 80.30 95.53 78.79 86.36 79.04 95.12 86.34 84.33

MPA 92.87 86.07 89.34 94.79 88.56 91.57 90.53 94.27 92.36 91.09

Stanford 65.55 59.70 62.49 79.83 74.54 77.09 77.74 85.41 81.40 73.66

Singletons
excluded

MV 95.18 69.44 80.30 93.36 46.05 61.68 64.23 55.17 59.35 67.11

MPA 92.87 86.07 89.34 88.46 72.83 79.89 79.65 76.32 77.95 82.39

Stanford 65.55 59.70 62.49 51.09 39.16 44.33 41.44 49.02 44.91 50.58

Table 3: The quality of the coreference chains on the PD 1.0 dataset

PD 1.0 Method P R F1

Non Referring
scores

MV 82.98 20.00 32.23

MPA 75.14 66.67 70.65

Table 4: Non-referring scores for the PD 1.0 dataset

label (without including it twice if this is the
correct label), and the 3 (or 4 if the correct
label is DN) incorrect DO antecedents situated
closest to the mention.

The range of options considered in the simulation
is specified by two aspects: the sensitivity from the
annotator profiles and the distribution of the errors
they make. We use the following two profile types:

• Synthetic profiles: 5 profiles covering a wide
range of abilities (DO 0.8, DN 0.9), (DO 0.7,
DN 0.8), (DO 0.4, DN 0.5), (DO 0.3, DN 0.4),
(DO 0.2, DN 0.3). The profiles roughly corre-
spond to two experts and three novices whose
class sensitivities are relatively close – with
extra mass associated with DN because this
class is generally easier compared to DO.

• Phrase Detectives inspired profiles: from the
PD annotators who annotated more than 10
DO and 10 DN mentions (thresholds set to
have a minimum confidence) we extracted a
total of 89 profiles. This gave us much more
interesting sensitivity pairs compared to the
ones from the synthetic profiles, i.e., contrast-
ing class abilities – see Figure 2.

We also considered a range of ways in which an-
notators may make mistakes:

• Distribute the errors uniformly random given
the remaining mass (1 - sensitivity)

• Distribute the errors in a sparse manner, i.e.,
assume that some errors will be more likely

than others. This can be achieved by drawing
randomly from a 4-dimensional (4 = number
of errors) uniform Dirichlet for each mention.
The annotator probabilities over the 5 choices
will then consist of their sensitivity, and the
error distribution normalized with respect to
the remaining mass.

The settings just discussed lead to 4 simulations
summarized in Table 1.

3.2 Evaluation 1: Mention Pair Accuracy

We use MPA to link each mention with the most
likely label based on the posterior of the true label
indicators. We then assess the accuracy of the in-
ferred mention pairs against the gold standard, i.e.,
the agreement with the gold mention pairs. In this
task the proposed model is compared against a ma-
jority vote baseline where each mention is paired
with the most voted label.7

The evaluation is conducted on the crowd-
sourced annotated PD 1.0 dataset and on simulated
data generated from the CONLL-2012 test set. The
results, summarized in Table 2, indicate the men-
tion pairs inferred by our model (MPA) obtain a
much better level of agreement with the gold men-
tion pairs, compared with the output of the ma-
jority vote (MV) baseline. MV implicitly assumes
equal expertise among the annotators, which has
repeatedly been shown to be false in annotation
practice (Poesio and Artstein, 2005; Passonneau
and Carpenter, 2014; Plank et al., 2014).

3.3 Evaluation 2: Silver Chain Quality

After the mention pairs have been inferred using
MPA, producing the coreference chains – we will
henceforth refer to the coreference chains thus ob-

7Throughout the paper we report the best majority vote
result after 10 random rounds of splitting ties.
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CoNLL 2012 Test Dataset MUC BCUB CEAFE Avg.
F1Simulation Method P R F1 P R F1 P R F1

None Stanford 89.78 73.88 81.06 83.93 59.22 69.44 73.87 60.57 66.56 72.35

Synthetic
Uniform

MV avg. 88.27 86.00 87.12 73.92 70.81 72.33 70.62 76.73 73.55 77.67

s.d. 0.38 0.35 0.36 0.83 0.52 0.62 0.49 0.60 0.50 0.47

MPA avg. 90.92 91.97 91.44 75.51 80.14 77.75 81.98 78.81 80.37 83.19

s.d. 0.48 0.36 0.41 1.20 0.67 0.93 0.74 1.16 0.93 0.75

Synthetic
Sparse

MV avg. 81.99 79.01 80.47 65.91 62.64 64.23 60.61 68.00 64.09 69.59

s.d. 0.32 0.43 0.38 0.45 0.51 0.40 0.39 0.24 0.28 0.32

MPA avg. 87.90 88.24 88.07 70.67 73.91 72.25 74.62 73.63 74.12 78.15

s.d. 0.47 0.44 0.45 0.96 0.65 0.77 0.75 0.93 0.82 0.66

PD-inspired
Uniform

MV avg. 91.84 88.28 90.02 80.94 74.19 77.41 75.13 84.93 79.73 82.39

s.d. 0.36 0.49 0.42 0.61 0.84 0.66 0.88 0.55 0.72 0.58

MPA avg. 97.42 97.20 97.31 91.61 91.53 91.57 93.87 94.58 94.23 94.37

s.d. 0.27 0.28 0.27 1.05 1.28 1.15 0.67 0.61 0.63 0.68

PD-inspired
Sparse

MV avg. 86.86 81.70 84.20 74.26 65.42 69.56 65.45 78.51 71.39 75.05

s.d. 0.49 0.54 0.51 0.63 0.48 0.52 0.67 0.55 0.60 0.53

MPA avg. 94.86 94.09 94.47 85.24 84.42 84.83 87.52 89.91 88.70 89.33

s.d. 0.32 0.36 0.34 0.70 0.75 0.71 0.60 0.49 0.54 0.52

Table 5: The quality of the coreference chains on the CoNLL-2012 test set. Each simulated scenario is randomly
generated 10 times (summary reported in terms of average result and standard deviation)

tained as silver coreference chains8 – is a straight-
forward clustering task: we simply follow the link
structure from the pairs. In this Section we as-
sess the quality of the silver chains using standard
coreference metrics – in particular, the Extended
Scorer introduced in (Poesio et al., 2018) which
extends the official CONLL scorer to include in the
evaluation system-predicted singletons and non re-
ferring expressions, both of which are annotated
in Phrase Detectives; when singletons and non-
referring expressions are not considered, the Ex-
tended Scorer is identical to the official scorer.

As in the previous experiment, the evaluation is
conducted on the crowdsourced annotated PD 1.0
dataset and on simulated data generated from the
CONLL-2012 test set. We compare silver chains
produced using our MPA model, using MV, and
using the Stanford deterministic coreference sys-
tem (Stanford) (Lee et al., 2011). To run the latter
on PD 1.0, we used the default annotators of the
CoreNLP toolkit (Manning et al., 2014) to supply
the information required by the coreference sys-

8Our use of the term ’silver standard’ should not be con-
fused with the other common use of standard generated out
of automatic annotations.

tem and switched off the post-processing to output
singleton clusters; for the CONLL-2012 data we set
the dcoref.replicate.conll = true to run exactly
the same method as Lee et al. (2011). On both
datasets we evaluated on gold mentions.

Table 3 summarizes the results on the crowd-
sourced annotated PD 1.0 dataset. The silver
chains obtained using our MPA model are of a far
better quality than those of baseline alternatives
such as MV and Stanford. Note also that even the
simple MV baseline built from crowdsourced an-
notations yields much better chains compared to a
standard coreference system such as the Stanford
system. This underlines the advantage of crowd-
sourced annotations for coreference over automat-
ically produced annotations. In Table 4 we present
the scores of MPA and MV on cases of non refer-
ring. In this case, as well, the probabilistic model
substantially outperforms the MV baseline.

In Table 5 we present the results obtained on
simulated data from the CONLL-2012 test set. The
results follow a similar trend to those observed us-
ing actual annotations: a much better quality of
the chains produced using the mention pairs in-
ferred by our MPA model, across all the simulated
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MUC BCUB CEAFE Avg.
F1Simulation Method P R F1 P R F1 P R F1

None Gold 78.40 73.40 75.80 68.60 61.80 65.00 62.70 59.00 60.80 67.20

Stanford 79.87 63.67 70.86 71.63 47.85 57.37 58.55 48.08 52.80 60.34

Synthetic
Uniform

MV avg. 78.67 67.51 72.65 67.68 51.41 58.41 59.59 52.63 55.89 62.32

s.d. 0.87 0.73 0.13 1.48 0.99 0.27 0.62 0.64 0.34 0.22

MPA avg. 78.27 70.21 74.02 66.67 56.06 60.90 61.44 54.92 57.99 64.30

s.d. 0.64 0.57 0.23 1.03 0.81 0.31 0.50 0.51 0.27 0.24

Synthetic
Sparse

MV avg. 77.95 64.45 70.55 66.80 47.21 55.29 57.64 49.64 53.34 59.73

s.d. 0.75 1.18 0.52 1.17 1.75 0.89 0.64 1.10 0.76 0.72

MPA avg. 77.99 68.82 73.11 66.01 53.76 59.25 60.25 53.46 56.65 63.01

s.d. 0.55 0.51 0.25 0.93 0.84 0.42 0.43 0.38 0.27 0.28

PD-inspired
Uniform

MV avg. 78.99 68.44 73.33 68.42 52.86 59.63 59.99 54.04 56.85 63.27

s.d. 0.58 0.60 0.14 0.92 0.75 0.38 0.79 0.27 0.44 0.27

MPA avg. 78.35 72.39 75.25 67.65 59.89 63.53 62.32 57.70 59.92 66.23

s.d. 0.24 0.34 0.15 0.58 0.42 0.20 0.21 0.38 0.25 0.14

PD-inspired
Sparse

MV avg. 78.72 65.46 71.47 67.99 48.43 56.55 58.29 51.33 54.59 60.87

s.d. 0.70 0.68 0.33 1.43 0.96 0.55 0.57 0.62 0.53 0.45

MPA avg. 78.34 71.47 74.75 67.43 58.11 62.42 61.90 56.77 59.22 65.46

s.d. 0.44 0.62 0.20 0.83 0.94 0.26 0.27 0.49 0.28 0.23

Table 6: Results of a state of the art coreference system trained on silver chains obtained in different ways. Each
simulated scenario is randomly generated 10 times (summary is in terms of average result and standard deviation)

scenarios. Furthermore, the MV baseline achieves
better chains compared to the Stanford system in 3
out of 4 simulation settings, again showcasing the
potential of crowdsourced annotations.

3.4 Training on Silver Chains

In this Section we assessed the viability of using
the (silver) chains extracted from crowdsourcing
as an alternative to gold chains when training a
state of the art coreference system. Concretely,
we train the best-performing current system Lee
et al. (2017) on chains produced using our MPA

model, the MV baseline and the Stanford deter-
ministic system (Lee et al., 2011) (used mainly for
calibration, i.e., an alternative baseline that’s not
based on crowdsourced annotations). We also in-
clude the results obtained using actual gold chains.

The results are in Table 6. Across all simulated
scenarios, the silver chains produced by our MPA

model obtain the closest performance to training
on gold chains, and the best result is only 1 per-
centage point less than the result with gold chains.
Again, the MV chains lead to better performance
than those obtained using a system (Stanford).

These results, once again, indicate the utility of
crowdsourced annotations for coreference tasks.

3.5 Traditional Crowdsourcing Tasks

In this Section we show that MPA is state of the art
also on traditional crowdsourcing datasets, where
annotations fall into general classes that are con-
sistent across the annotated items. This evaluation
was done on the datasets (WSD, RTE and TEMP)
introduced by Snow et al. (2008) and widely used
as benchmarks in the literature on annotation mod-
els (Hovy et al., 2013; Carpenter, 2008).

We compare the results against a majority vote
baseline and two well-known state of the art mod-
els: a Bayesian version of the Dawid and Skene
(1979) (DS) model and MACE (Hovy et al., 2013).
We implement DS ourselves using variational in-
ference, while for MACE, we simply report the
published results. As in Hovy et al. (2013) the as-
sessment is done in terms of accuracy against the
gold standard. The results, presented in Table 7,
indicate the proposed model achieves performance
on par with the state of the art.
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4 Related Work

To our knowledge, this is the first paper proposing
a model of crowdsourced annotations for corefer-
ence. We did draw inspiration however from ex-
isting mention pair models of coreference and tra-
ditional models of annotation.

The so-called mention pair model is one of the
early machine learning approaches to coreference
resolution, made popular by Soon et al. (2001).
The model is based on a two step procedure: a
classification step which identifies the coreferent
mention pairs, followed by a clustering step which
builds the coreference chains from the aforemen-
tioned pairs. The diversity of mention pair mod-
els comes from the distinct approaches taken for
each of the two steps (Hoste, 2016). Although
we follow a similar two step procedure, there are
also important differences. Our way of identifying
the mention pairs is completely unsupervised, and
relies entirely on the crowdsourced annotations.
Furthermore, we pair every mention with only one
label, reducing the second step of clustering men-
tion pairs into appropriate coreference chains to
a simple grouping task guided by a unique path
which arises from the pairs.

All existing probabilistic models of annotation
(Dawid and Skene, 1979; Smyth et al., 1994;
Raykar et al., 2010; Hovy et al., 2013; Passon-
neau and Carpenter, 2014) assume the annotations
fall into a general set of classes that is consistent
across the annotated items. This is clearly not the
case in a coreference resolution task, a limitation
we had to address. We first transformed the an-
notations into a series of (per label) binary deci-
sions, approach often referred to, in the multi-class
classification literature, as the binary relevance
method (Tsoumakas and Katakis, 2007; Madjarov
et al., 2012). The transformation avoids modeling
the sparse labels directly. We further exploited the
fact that the annotations fall into a general set of
classes and assumed the inter-label decisions are
the result of the class-dependent ability of the an-
notators.

5 Conclusions

Crowdsourced annotations are an increasingly
popular alternative to expert annotation. Even
so, their viability for coreference annotation had
not been explored so far. This paper is a first
step to filling this gap. We introduced a men-
tion pair-based approach to aggregating crowd-

RTE TEMP WSD

MV 90.00 93.00 99.00

MACE 93.00 94.00 99.00

DS 93.00 94.00 99.00

MPA 93.00 94.00 99.00

Table 7: Accuracy on standard crowdsourced data

sourced anaphoric annotations and assessed the
quality of the inferred pairs, of the post-hoc con-
structed coreference chains, and the viability of
using the inferred chains as an alternative to gold
chains when training a state of the art corefer-
ence system. Throughout the experiments, the
model introduced was superior to baseline alter-
natives such as majority vote and chains obtained
automatically using a coreference system, across
both genuinely crowdsourced and simulated coref-
erence datasets. Furthermore, even the annotation-
based baseline achieved results consistently better
than those obtained by automatic coreference re-
solvers, strengthening the case for using crowd-
sourced annotations to create coreference datasets.
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A Supplementary Parameter Estimation
Details

This Section gives supplementary details for the
derivations involved in the parameter estimation
process.

In Equation (10) we derive the complete con-
ditional of the class-specific true label likelihood:

p(πh|...) ∝ p(πh|a, b)
I,Mi∏
i,m

p(ci,m|πh)I(zi,m=h)

∝ πa−1
h (1− πh)b−1×

×
I,Mi∏
i,m

π
I(ci,m=1)I(zi,m=h)
h

× (1− πh)I(ci,m=0)I(zi,m=h)

∝ π
a−1+

∑I,Mi
i,m I(zi,m=h)I(ci,m=1)

h

(1− πh)b−1+
∑I,Mi

i,m I(zi,m=h)I(ci,m=0)

∝ Beta(a+

I,Mi∑
i,m

I(zi,m = h)I(ci,m = 1),

b+

I,Mi∑
i,m

I(zi,m = h)I(ci,m = 0))

(10)

The corresponding variational distribution has
the same form, i,e, q(πh|λh, ηh) = Beta(λh, ηh).
Taking the expectation of the natural parameters of
the above distribution gives the variational update
formulas for the class-level true label likelihood
expressed in the paper. For example, for the λh
variational parameter we have:

λh = a+

I,Mi∑
i,m

I(zi,m = h)Eq[I(ci,m = 1)]

= a+

I,Mi∑
i,m

I(zi,m = h)φi,m

(11)

Similar steps were taken to derive the varia-
tional parameters associated with the sensitivity α
and specificity β.

In Equation (12) we derive the complete condi-
tional associated with the positive outcome of the
true label indicator:

p(ci,m = 1|...) ∝ p(ci,m = 1|πzi,m)×

×
Ni∏
n

p(yi,m,n|αjj[i,m,n],zi,m)

∝ πzi,m
Ni∏
n

α
I(yi,m,n=1)

jj[i,m,n],zi,m

(1− αjj[i,m,n],zi,m)I(yi,m,n=0)

∝ exp{log πzi,m+

Ni∑
n=1

I(yi,m,n = 1) logαjj[i,m,n],zi,m+

I(yi,m,n = 0) log(1− αjj[i,m,n],zi,m)}
(12)

The corresponding variational distribution has
the same form, i,e, q(ci,m|φi,m) = Bern(φi,m).
Taking the necessary expectations leads to the up-
date formula expressed in the paper. Concretely,
we have:

log φi,m ∝ Eq[log πzi,m ]+

+

Ni∑
n=1

I(yi,m,n = 1)Eq[logαjj[i,m,n],zi,m ]+

+ I(yi,m,n = 0)Eq[log(1− αjj[i,m,n],zi,m)]

∝ Ψ(λzi,m)−Ψ(λzi,m + ηzi,m)+

+

Ni∑
n=1

I(yi,m,n = 1)[Ψ(γjj[i,m,n],zi,m)−

Ψ(γjj[i,m,n],zi,m + µjj[i,m,n],zi,m)]+

+ I(yi,m,n = 0)[Ψ(µjj[i,m,n],zi,m)−
Ψ(γjj[i,m,n],zi,m + µjj[i,m,n],zi,m)]

(13)

The update formula for the negative outcome of
the true label indicator ζi,m is derived in a similar
manner. Following the above derivations should
also make it straightforward to expand the ELBO.

For completeness, we make a note of the
digamma function Ψ() – this is the first derivative
of the log Γ function and can be computed using a
Taylor approximation.


